nuttx/arch/arm/src/stm32/stm32f40xxx_rtcc.c

1523 lines
41 KiB
C
Raw Normal View History

2016-04-02 18:46:10 +02:00
/************************************************************************************
* arch/arm/src/stm32/stm32f40xxx_rtcc.c
*
* Copyright (C) 2012-2016 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
* Modified: Neil Hancock
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
/************************************************************************************
* Included Files
************************************************************************************/
2016-06-02 15:58:13 +02:00
#include <nuttx/config.h>
2016-04-02 18:46:10 +02:00
#include <stdbool.h>
#include <sched.h>
2016-04-02 18:46:10 +02:00
#include <time.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/arch.h>
#include <nuttx/irq.h>
#include "up_arch.h"
#include "stm32_rcc.h"
#include "stm32_pwr.h"
#include "stm32_exti.h"
#include "stm32_rtc.h"
#include <arch/board/board.h>
#ifdef CONFIG_RTC
/************************************************************************************
* Pre-processor Definitions
************************************************************************************/
/* Configuration ********************************************************************/
/* This RTC implementation supports
* - date/time RTC hardware
* - extended functions Alarm A and B for STM32F4xx and onwards
* */
#ifndef CONFIG_RTC_DATETIME
# error "CONFIG_RTC_DATETIME must be set to use this driver"
#endif
#ifdef CONFIG_RTC_HIRES
# error "CONFIG_RTC_HIRES must NOT be set with this driver"
#endif
#ifndef CONFIG_STM32_PWR
# error "CONFIG_STM32_PWR must selected to use this driver"
#endif
#ifndef CONFIG_DEBUG
# undef CONFIG_DEBUG_RTC
#endif
#if !defined(CONFIG_RTC_MAGIC)
# define CONFIG_RTC_MAGIC (0xfacefeee)
#endif
#if !defined(CONFIG_RTC_MAGIC_REG)
# define CONFIG_RTC_MAGIC_REG (0)
#endif
/* Constants ************************************************************************/
#define SYNCHRO_TIMEOUT (0x00020000)
#define INITMODE_TIMEOUT (0x00010000)
#define RTC_MAGIC CONFIG_RTC_MAGIC
#define RTC_MAGIC_REG STM32_RTC_BKR(CONFIG_RTC_MAGIC_REG)
/* Proxy definitions to make the same code work for all the STM32 series ************/
# define STM32_RCC_XXX STM32_RCC_BDCR
# define RCC_XXX_YYYRST RCC_BDCR_BDRST
# define RCC_XXX_RTCEN RCC_BDCR_RTCEN
# define RCC_XXX_RTCSEL_MASK RCC_BDCR_RTCSEL_MASK
# define RCC_XXX_RTCSEL_LSE RCC_BDCR_RTCSEL_LSE
# define RCC_XXX_RTCSEL_LSI RCC_BDCR_RTCSEL_LSI
# define RCC_XXX_RTCSEL_HSE RCC_BDCR_RTCSEL_HSE
/* Time conversions */
#define MINUTES_IN_HOUR 60
#define HOURS_IN_DAY 24
/* Can't exceed 24hours-2min without providing extra logic for carry over for day. */
#define MAX_RTC_ALARM_REL_MINUTES (24*MINUTES_IN_HOUR)-2
#define hours_add(parm_hrs) \
time->tm_hour += parm_hrs;\
if ((HOURS_IN_DAY-1) < (time->tm_hour))\
2016-04-02 18:46:10 +02:00
{\
time->tm_hour = (parm_hrs - HOURS_IN_DAY);\
2016-04-02 18:46:10 +02:00
}
2016-04-02 21:11:57 +02:00
#define RTC_ALRMR_DIS_MASK (RTC_ALRMR_MSK4 | RTC_ALRMR_MSK3 | \
RTC_ALRMR_MSK2 | RTC_ALRMR_MSK1)
2016-04-02 22:58:01 +02:00
#define RTC_ALRMR_DIS_DATE_MASK (RTC_ALRMR_MSK4)
#define RTC_ALRMR_ENABLE (0)
2016-04-02 21:11:57 +02:00
2016-04-02 18:46:10 +02:00
/* Debug ****************************************************************************/
#ifdef CONFIG_DEBUG_RTC
# define rtcdbg dbg
# define rtcvdbg vdbg
# define rtclldbg lldbg
# define rtcllvdbg llvdbg
2016-04-02 18:46:10 +02:00
#else
# define rtcdbg(x...)
# define rtcvdbg(x...)
# define rtclldbg(x...)
# define rtcllvdbg(x...)
#endif
2016-04-02 21:11:57 +02:00
/************************************************************************************
* Private Types
************************************************************************************/
#ifdef CONFIG_RTC_ALARM
2016-04-02 21:11:57 +02:00
typedef unsigned int rtc_alarmreg_t;
struct alm_cbinfo_s
{
volatile alm_callback_t ac_cb; /* Client callback function */
volatile FAR void *ac_arg; /* Argument to pass with the callback function */
};
#endif
2016-04-02 18:46:10 +02:00
/************************************************************************************
* Private Data
************************************************************************************/
#ifdef CONFIG_RTC_ALARM
2016-04-02 18:46:10 +02:00
/* Callback to use when an EXTI is activated */
static struct alm_cbinfo_s g_alarmcb[RTC_ALARM_LAST];
2016-04-02 18:46:10 +02:00
#endif
/************************************************************************************
* Public Data
************************************************************************************/
/* g_rtc_enabled is set true after the RTC has successfully initialized */
volatile bool g_rtc_enabled = false;
/************************************************************************************
* Private Function Prototypes
************************************************************************************/
#ifdef CONFIG_RTC_ALARM
2016-04-02 18:46:10 +02:00
static int rtchw_check_alrawf(void);
static int rtchw_set_alrmar(rtc_alarmreg_t alarmreg);
#if CONFIG_RTC_NALARMS > 1
static int rtchw_check_alrbwf(void);
2016-04-02 18:46:10 +02:00
static int rtchw_set_alrmbr(rtc_alarmreg_t alarmreg);
#endif
#endif
2016-04-02 18:46:10 +02:00
/************************************************************************************
* Private Functions
************************************************************************************/
/************************************************************************************
* Name: rtc_dumpregs
*
* Description:
* Disable RTC write protection
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
************************************************************************************/
#ifdef CONFIG_DEBUG_RTC
static void rtc_dumpregs(FAR const char *msg)
{
2016-05-31 23:52:56 +02:00
int rtc_state;
rtclldbg("%s:\n", msg);
2016-04-02 18:46:10 +02:00
rtclldbg(" TR: %08x\n", getreg32(STM32_RTC_TR));
rtclldbg(" DR: %08x\n", getreg32(STM32_RTC_DR));
rtclldbg(" CR: %08x\n", getreg32(STM32_RTC_CR));
rtclldbg(" ISR: %08x\n", getreg32(STM32_RTC_ISR));
rtclldbg(" PRER: %08x\n", getreg32(STM32_RTC_PRER));
rtclldbg(" WUTR: %08x\n", getreg32(STM32_RTC_WUTR));
rtclldbg(" ALRMAR: %08x\n", getreg32(STM32_RTC_ALRMAR));
rtclldbg(" ALRMBR: %08x\n", getreg32(STM32_RTC_ALRMBR));
rtclldbg(" SHIFTR: %08x\n", getreg32(STM32_RTC_SHIFTR));
rtclldbg(" TSTR: %08x\n", getreg32(STM32_RTC_TSTR));
rtclldbg(" TSDR: %08x\n", getreg32(STM32_RTC_TSDR));
rtclldbg(" TSSSR: %08x\n", getreg32(STM32_RTC_TSSSR));
rtclldbg(" CALR: %08x\n", getreg32(STM32_RTC_CALR));
rtclldbg(" TAFCR: %08x\n", getreg32(STM32_RTC_TAFCR));
rtclldbg("ALRMASSR: %08x\n", getreg32(STM32_RTC_ALRMASSR));
rtclldbg("ALRMBSSR: %08x\n", getreg32(STM32_RTC_ALRMBSSR));
rtclldbg("MAGICREG: %08x\n", getreg32(RTC_MAGIC_REG));
2016-05-31 23:52:56 +02:00
rtc_state =
((getreg32(STM32_EXTI_RTSR) & EXTI_RTC_ALARM) ? 0x1000 : 0) |
((getreg32(STM32_EXTI_FTSR) & EXTI_RTC_ALARM) ? 0x0100 : 0) |
((getreg32(STM32_EXTI_IMR) & EXTI_RTC_ALARM) ? 0x0010 : 0) |
((getreg32(STM32_EXTI_EMR) & EXTI_RTC_ALARM) ? 0x0001 : 0);
2016-05-31 23:17:52 +02:00
rtclldbg("EXTI (RTSR FTSR ISR EVT): %01x\n",rtc_state);
2016-04-02 18:46:10 +02:00
}
#else
# define rtc_dumpregs(msg)
#endif
/************************************************************************************
* Name: rtc_dumptime
*
* Description:
* Disable RTC write protection
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
************************************************************************************/
#ifdef CONFIG_DEBUG_RTC
static void rtc_dumptime(FAR const struct tm *tp, FAR const char *msg)
{
rtclldbg("%s:\n", msg);
rtclldbg(" tm_sec: %08x\n", tp->tm_sec);
rtclldbg(" tm_min: %08x\n", tp->tm_min);
rtclldbg(" tm_hour: %08x\n", tp->tm_hour);
rtclldbg(" tm_mday: %08x\n", tp->tm_mday);
rtclldbg(" tm_mon: %08x\n", tp->tm_mon);
rtclldbg(" tm_year: %08x\n", tp->tm_year);
}
#else
# define rtc_dumptime(tp, msg)
#endif
/************************************************************************************
* Name: rtc_wprunlock
*
* Description:
* Disable RTC write protection
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
************************************************************************************/
static void rtc_wprunlock(void)
{
/* Enable write access to the backup domain (RTC registers, RTC backup data
* registers and backup SRAM).
*/
(void)stm32_pwr_enablebkp(true);
/* The following steps are required to unlock the write protection on all the
* RTC registers (except for RTC_ISR[13:8], RTC_TAFCR, and RTC_BKPxR).
*
* 1. Write 0xCA into the RTC_WPR register.
* 2. Write 0x53 into the RTC_WPR register.
*
* Writing a wrong key re-activates the write protection.
*/
putreg32(0xca, STM32_RTC_WPR);
putreg32(0x53, STM32_RTC_WPR);
}
/************************************************************************************
* Name: rtc_wprlock
*
* Description:
* Enable RTC write protection
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
************************************************************************************/
static inline void rtc_wprlock(void)
{
/* Writing any wrong key re-activates the write protection. */
putreg32(0xff, STM32_RTC_WPR);
/* Disable write access to the backup domain (RTC registers, RTC backup data
* registers and backup SRAM).
*/
(void)stm32_pwr_enablebkp(false);
}
/************************************************************************************
* Name: rtc_synchwait
*
* Description:
* Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are
* synchronized with RTC APB clock.
*
* Input Parameters:
* None
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
static int rtc_synchwait(void)
{
volatile uint32_t timeout;
uint32_t regval;
int ret;
/* Disable the write protection for RTC registers */
rtc_wprunlock();
/* Clear Registers synchronization flag (RSF) */
regval = getreg32(STM32_RTC_ISR);
regval &= ~RTC_ISR_RSF;
putreg32(regval, STM32_RTC_ISR);
/* Now wait the registers to become synchronised */
ret = -ETIMEDOUT;
for (timeout = 0; timeout < SYNCHRO_TIMEOUT; timeout++)
{
regval = getreg32(STM32_RTC_ISR);
if ((regval & RTC_ISR_RSF) != 0)
{
/* Synchronized */
ret = OK;
break;
}
}
/* Re-enable the write protection for RTC registers */
rtc_wprlock();
return ret;
}
/************************************************************************************
* Name: rtc_enterinit
*
* Description:
* Enter RTC initialization mode.
*
* Input Parameters:
* None
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
static int rtc_enterinit(void)
{
volatile uint32_t timeout;
uint32_t regval;
int ret;
/* Check if the Initialization mode is already set */
regval = getreg32(STM32_RTC_ISR);
ret = OK;
if ((regval & RTC_ISR_INITF) == 0)
{
/* Set the Initialization mode */
putreg32(RTC_ISR_INIT, STM32_RTC_ISR);
/* Wait until the RTC is in the INIT state (or a timeout occurs) */
ret = -ETIMEDOUT;
for (timeout = 0; timeout < INITMODE_TIMEOUT; timeout++)
{
regval = getreg32(STM32_RTC_ISR);
if ((regval & RTC_ISR_INITF) != 0)
{
ret = OK;
break;
}
}
}
return ret;
}
/************************************************************************************
* Name: rtc_exitinit
*
* Description:
* Exit RTC initialization mode.
*
* Input Parameters:
* None
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
static void rtc_exitinit(void)
{
uint32_t regval;
regval = getreg32(STM32_RTC_ISR);
regval &= ~(RTC_ISR_INIT);
putreg32(regval, STM32_RTC_ISR);
}
/************************************************************************************
* Name: rtc_bin2bcd
*
* Description:
* Converts a 2 digit binary to BCD format
*
* Input Parameters:
* value - The byte to be converted.
*
* Returned Value:
* The value in BCD representation
*
************************************************************************************/
static uint32_t rtc_bin2bcd(int value)
{
uint32_t msbcd = 0;
while (value >= 10)
{
msbcd++;
value -= 10;
}
return (msbcd << 4) | value;
}
/************************************************************************************
* Name: rtc_bin2bcd
*
* Description:
* Convert from 2 digit BCD to binary.
*
* Input Parameters:
* value - The BCD value to be converted.
*
* Returned Value:
* The value in binary representation
*
************************************************************************************/
static int rtc_bcd2bin(uint32_t value)
{
uint32_t tens = (value >> 4) * 10;
return (int)(tens + (value & 0x0f));
}
/************************************************************************************
* Name: rtc_setup
*
* Description:
* Performs first time configuration of the RTC. A special value written into
* back-up register 0 will prevent this function from being called on sub-sequent
* resets or power up.
*
* Input Parameters:
* None
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
static int rtc_setup(void)
{
uint32_t regval;
int ret;
/* Disable the write protection for RTC registers */
rtc_wprunlock();
/* Set Initialization mode */
ret = rtc_enterinit();
if (ret == OK)
{
/* Set the 24 hour format by clearing the FMT bit in the RTC
* control register
*/
regval = getreg32(STM32_RTC_CR);
regval &= ~RTC_CR_FMT;
putreg32(regval, STM32_RTC_CR);
/* Configure RTC pre-scaler with the required values */
#ifdef CONFIG_RTC_HSECLOCK
/* For a 1 MHz clock this yields 0.9999360041 Hz on the second
* timer - which is pretty close.
*/
putreg32(((uint32_t)7182 << RTC_PRER_PREDIV_S_SHIFT) |
((uint32_t)0x7f << RTC_PRER_PREDIV_A_SHIFT),
STM32_RTC_PRER);
#else
/* Correct values for 32.768 KHz LSE clock and inaccurate LSI clock */
putreg32(((uint32_t)0xff << RTC_PRER_PREDIV_S_SHIFT) |
((uint32_t)0x7f << RTC_PRER_PREDIV_A_SHIFT),
STM32_RTC_PRER);
#endif
/* Exit RTC initialization mode */
rtc_exitinit();
}
/* Re-enable the write protection for RTC registers */
rtc_wprlock();
return ret;
}
/************************************************************************************
* Name: rtc_resume
*
* Description:
* Called when the RTC was already initialized on a previous power cycle. This
* just brings the RTC back into full operation.
*
* Input Parameters:
* None
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
static void rtc_resume(void)
{
#ifdef CONFIG_RTC_ALARM
uint32_t regval;
/* Clear the RTC alarm flags */
regval = getreg32(STM32_RTC_ISR);
regval &= ~(RTC_ISR_ALRAF | RTC_ISR_ALRBF);
putreg32(regval, STM32_RTC_ISR);
2016-05-31 23:17:52 +02:00
/* Clear the RTC Alarm Pending bit */
2016-04-02 18:46:10 +02:00
putreg32(EXTI_RTC_ALARM, STM32_EXTI_PR);
2016-04-02 18:46:10 +02:00
#endif
}
/************************************************************************************
2016-04-03 20:38:02 +02:00
* Name: stm32_rtc_alarm_handler
2016-04-02 18:46:10 +02:00
*
* Description:
* RTC ALARM interrupt service routine through the EXTI line
*
* Input Parameters:
* irq - The IRQ number that generated the interrupt
* context - Architecture specific register save information.
*
* Returned Value:
* Zero (OK) on success; A negated errno value on failure.
*
************************************************************************************/
#ifdef CONFIG_RTC_ALARM
2016-04-03 20:38:02 +02:00
static int stm32_rtc_alarm_handler(int irq, void *context)
2016-04-02 18:46:10 +02:00
{
FAR struct alm_cbinfo_s *cbinfo;
alm_callback_t cb;
FAR void *arg;
2016-04-02 18:46:10 +02:00
uint32_t isr;
uint32_t cr;
int ret = OK;
isr = getreg32(STM32_RTC_ISR);
/* Check for EXTI from Alarm A or B and handle according */
if ((isr & RTC_ISR_ALRAF) != 0)
{
2016-04-02 22:58:01 +02:00
cr = getreg32(STM32_RTC_CR);
2016-04-02 18:46:10 +02:00
if ((cr & RTC_CR_ALRAIE) != 0)
{
cbinfo = &g_alarmcb[RTC_ALARMA];
if (cbinfo->ac_cb != NULL)
2016-04-02 18:46:10 +02:00
{
/* Alarm A callback */
cb = cbinfo->ac_cb;
arg = (FAR void *)cbinfo->ac_arg;
cbinfo->ac_cb = NULL;
cbinfo->ac_arg = NULL;
cb(arg, RTC_ALARMA);
2016-04-02 18:46:10 +02:00
}
isr = getreg32(STM32_RTC_ISR) & ~RTC_ISR_ALRAF;
putreg32(isr, STM32_RTC_CR);
}
}
#if CONFIG_RTC_NALARMS > 1
2016-04-02 18:46:10 +02:00
if ((isr & RTC_ISR_ALRBF) != 0)
{
2016-04-02 22:58:01 +02:00
cr = getreg32(STM32_RTC_CR);
2016-04-02 18:46:10 +02:00
if ((cr & RTC_CR_ALRBIE) != 0)
{
cbinfo = &g_alarmcb[RTC_ALARMB];
if (cbinfo->ac_cb != NULL)
2016-04-02 18:46:10 +02:00
{
/* Alarm B callback */
cb = cbinfo->ac_cb;
arg = (FAR void *)cbinfo->ac_arg;
cbinfo->ac_cb = NULL;
cbinfo->ac_arg = NULL;
cb(arg, RTC_ALARMB);
2016-04-02 18:46:10 +02:00
}
isr = getreg32(STM32_RTC_ISR) & ~RTC_ISR_ALRBF;
putreg32(isr, STM32_RTC_CR);
}
}
#endif
2016-04-02 18:46:10 +02:00
return ret;
}
#endif
2016-04-02 18:46:10 +02:00
/************************************************************************************
* Name: rtchw_check_alrXwf X= a or B
*
* Description:
* Check registers
*
* Input Parameters:
* None
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
#ifdef CONFIG_RTC_ALARM
static int rtchw_check_alrawf(void)
{
volatile uint32_t timeout;
uint32_t regval;
2016-04-02 22:58:01 +02:00
int ret = -ETIMEDOUT;
2016-04-02 18:46:10 +02:00
/* Check RTC_ISR ALRAWF for access to alarm register,
* Can take 2 RTCCLK cycles or timeout
* CubeMX use GetTick.
*/
for (timeout = 0; timeout < INITMODE_TIMEOUT; timeout++)
{
regval = getreg32(STM32_RTC_ISR);
if ((regval & RTC_ISR_ALRAWF) != 0)
{
2016-04-02 22:58:01 +02:00
ret = OK;
2016-04-02 18:46:10 +02:00
break;
}
}
2016-04-02 22:58:01 +02:00
return ret;
2016-04-02 18:46:10 +02:00
}
#endif
2016-04-02 18:46:10 +02:00
#if defined(CONFIG_RTC_ALARM) && CONFIG_RTC_NALARMS > 1
2016-04-02 18:46:10 +02:00
static int rtchw_check_alrbwf(void)
{
volatile uint32_t timeout;
uint32_t regval;
2016-04-02 22:58:01 +02:00
int ret = -ETIMEDOUT;
2016-04-02 18:46:10 +02:00
/* Check RTC_ISR ALRAWF for access to alarm register,
* can take 2 RTCCLK cycles or timeout
* CubeMX use GetTick.
*/
for (timeout = 0; timeout < INITMODE_TIMEOUT; timeout++)
{
regval = getreg32(STM32_RTC_ISR);
if ((regval & RTC_ISR_ALRBWF) != 0)
{
2016-04-02 22:58:01 +02:00
ret = OK;
2016-04-02 18:46:10 +02:00
break;
}
}
2016-04-02 22:58:01 +02:00
return ret;
2016-04-02 18:46:10 +02:00
}
#endif
2016-04-02 18:46:10 +02:00
/************************************************************************************
* Name: stm32_rtchw_set_alrmXr X is a or b
*
* Description:
* Set the alarm (A or B) hardware registers, using the required hardware access
* protocol
2016-04-02 18:46:10 +02:00
*
* Input Parameters:
* alarmreg - the register
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
#ifdef CONFIG_RTC_ALARM
2016-04-02 18:46:10 +02:00
static int rtchw_set_alrmar(rtc_alarmreg_t alarmreg)
{
2016-04-04 16:30:03 +02:00
int ret = -EBUSY;
2016-04-02 18:46:10 +02:00
/* Need to follow RTC register wrote protection
* Disable the write protection for RTC registers
*/
rtc_wprunlock();
/* Disable RTC alarm & Interrupt */
modifyreg32(STM32_RTC_CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE), 0);
2016-04-02 18:46:10 +02:00
ret = rtchw_check_alrawf();
if (ret != OK)
{
goto errout_with_wprunlock;
2016-04-02 18:46:10 +02:00
}
/* Set the RTC Alarm register */
putreg32(alarmreg, STM32_RTC_ALRMAR);
rtcvdbg(" TR: %08x ALRMAR: %08x\n",
2016-04-02 18:46:10 +02:00
getreg32(STM32_RTC_TR), getreg32(STM32_RTC_ALRMAR));
/* Enable RTC alarm */
modifyreg32(STM32_RTC_CR, 0, (RTC_CR_ALRAE | RTC_CR_ALRAIE));
2016-04-02 18:46:10 +02:00
errout_with_wprunlock:
2016-04-02 18:46:10 +02:00
rtc_wprlock();
return ret;
}
#endif
2016-04-02 18:46:10 +02:00
#if defined(CONFIG_RTC_ALARM) && CONFIG_RTC_NALARMS > 1
2016-04-02 18:46:10 +02:00
static int rtchw_set_alrmbr(rtc_alarmreg_t alarmreg)
{
2016-04-04 16:30:03 +02:00
int ret = -EBUSY;
2016-04-02 18:46:10 +02:00
/* Need to follow RTC register wrote protection
* Disable the write protection for RTC registers
*/
rtc_wprunlock();
/* Disable RTC alarm B & Interrupt B */
modifyreg32(STM32_RTC_CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE), 0);
2016-04-02 18:46:10 +02:00
ret = rtchw_check_alrbwf();
if (ret != OK)
{
goto rtchw_set_alrmbr_exit;
}
/* Set the RTC Alarm register */
putreg32(alarmreg, STM32_RTC_ALRMBR);
rtcvdbg(" TR: %08x ALRMBR: %08x\n",
getreg32(STM32_RTC_TR), getreg32(STM32_RTC_ALRMBR));
2016-04-02 18:46:10 +02:00
/* Enable RTC alarm B */
modifyreg32(STM32_RTC_CR, 0, (RTC_CR_ALRBE | RTC_CR_ALRBIE));
2016-04-02 18:46:10 +02:00
rtchw_set_alrmbr_exit:
rtc_wprlock();
return ret;
}
#endif
2016-04-02 18:46:10 +02:00
/************************************************************************************
* Public Functions
************************************************************************************/
/************************************************************************************
* Name: up_rtc_initialize
*
* Description:
* Initialize the hardware RTC per the selected configuration. This function is
* called once during the OS initialization sequence
*
* Input Parameters:
* None
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
int up_rtc_initialize(void)
{
uint32_t regval;
uint32_t tr_bkp;
uint32_t dr_bkp;
int ret;
int maxretry = 10;
int nretry = 0;
/* Clocking for the PWR block must be provided. However, this is done
* unconditionally in stm32f40xxx_rcc.c on power up. This done unconditionally
* because the PWR block is also needed to set the internal voltage regulator for
* maximum performance.
*/
/* Select the clock source */
/* Save the token before losing it when resetting */
regval = getreg32(RTC_MAGIC_REG);
(void)stm32_pwr_enablebkp(true);
if (regval != RTC_MAGIC)
{
/* We might be changing RTCSEL - to ensure such changes work, we must reset the
* backup domain (having backed up the RTC_MAGIC token)
*/
modifyreg32(STM32_RCC_XXX, 0, RCC_XXX_YYYRST);
modifyreg32(STM32_RCC_XXX, RCC_XXX_YYYRST, 0);
/* Some boards do not have the external 32khz oscillator installed, for those
* boards we must fallback to the crummy internal RC clock or the external high
* rate clock
*/
#ifdef CONFIG_RTC_HSECLOCK
/* Use the HSE clock as the input to the RTC block */
2016-05-31 23:17:52 +02:00
rtc_dumpregs("On reset HSE");
2016-04-02 18:46:10 +02:00
modifyreg32(STM32_RCC_XXX, RCC_XXX_RTCSEL_MASK, RCC_XXX_RTCSEL_HSE);
#elif defined(CONFIG_RTC_LSICLOCK)
/* Use the LSI clock as the input to the RTC block */
2016-05-31 23:17:52 +02:00
rtc_dumpregs("On reset LSI");
2016-04-02 18:46:10 +02:00
modifyreg32(STM32_RCC_XXX, RCC_XXX_RTCSEL_MASK, RCC_XXX_RTCSEL_LSI);
#elif defined(CONFIG_RTC_LSECLOCK)
/* Use the LSE clock as the input to the RTC block */
2016-05-31 23:17:52 +02:00
rtc_dumpregs("On reset LSE");
2016-04-02 18:46:10 +02:00
modifyreg32(STM32_RCC_XXX, RCC_XXX_RTCSEL_MASK, RCC_XXX_RTCSEL_LSE);
#endif
/* Enable the RTC Clock by setting the RTCEN bit in the RCC register */
modifyreg32(STM32_RCC_XXX, 0, RCC_XXX_RTCEN);
}
else /* The RTC is already in use: check if the clock source is changed */
{
#if defined(CONFIG_RTC_HSECLOCK) || defined(CONFIG_RTC_LSICLOCK) || \
defined(CONFIG_RTC_LSECLOCK)
uint32_t clksrc = getreg32(STM32_RCC_XXX);
2016-05-31 23:17:52 +02:00
rtc_dumpregs("On reset warm");
2016-04-02 18:46:10 +02:00
#if defined(CONFIG_RTC_HSECLOCK)
if ((clksrc & RCC_XXX_RTCSEL_MASK) != RCC_XXX_RTCSEL_HSE)
#elif defined(CONFIG_RTC_LSICLOCK)
if ((clksrc & RCC_XXX_RTCSEL_MASK) != RCC_XXX_RTCSEL_LSI)
#elif defined(CONFIG_RTC_LSECLOCK)
if ((clksrc & RCC_XXX_RTCSEL_MASK) != RCC_XXX_RTCSEL_LSE)
#endif
#endif
{
tr_bkp = getreg32(STM32_RTC_TR);
dr_bkp = getreg32(STM32_RTC_DR);
modifyreg32(STM32_RCC_XXX, 0, RCC_XXX_YYYRST);
modifyreg32(STM32_RCC_XXX, RCC_XXX_YYYRST, 0);
#if defined(CONFIG_RTC_HSECLOCK)
/* Change to the new clock as the input to the RTC block */
modifyreg32(STM32_RCC_XXX, RCC_XXX_RTCSEL_MASK, RCC_XXX_RTCSEL_HSE);
#elif defined(CONFIG_RTC_LSICLOCK)
modifyreg32(STM32_RCC_XXX, RCC_XXX_RTCSEL_MASK, RCC_XXX_RTCSEL_LSI);
#elif defined(CONFIG_RTC_LSECLOCK)
modifyreg32(STM32_RCC_XXX, RCC_XXX_RTCSEL_MASK, RCC_XXX_RTCSEL_LSE);
#endif
putreg32(tr_bkp, STM32_RTC_TR);
putreg32(dr_bkp, STM32_RTC_DR);
/* Remember that the RTC is initialized */
putreg32(RTC_MAGIC, RTC_MAGIC_REG);
/* Enable the RTC Clock by setting the RTCEN bit in the RCC register */
modifyreg32(STM32_RCC_XXX, 0, RCC_XXX_RTCEN);
}
}
(void)stm32_pwr_enablebkp(false);
/* Loop, attempting to initialize/resume the RTC. This loop is necessary
* because it seems that occasionally it takes longer to initialize the RTC
* (the actual failure is in rtc_synchwait()).
*/
do
{
/* Wait for the RTC Time and Date registers to be synchronized with RTC APB
* clock.
*/
ret = rtc_synchwait();
/* Check that rtc_syncwait() returned successfully */
switch (ret)
{
case OK:
{
rtclldbg("rtc_syncwait() okay\n");
break;
}
default:
{
rtclldbg("rtc_syncwait() failed (%d)\n", ret);
break;
}
}
}
while (ret != OK && ++nretry < maxretry);
/* Check if the one-time initialization of the RTC has already been
* performed. We can determine this by checking if the magic number
* has been writing to to back-up date register DR0.
*/
if (regval != RTC_MAGIC)
{
rtclldbg("Do setup\n");
/* Perform the one-time setup of the LSE clocking to the RTC */
ret = rtc_setup();
/* Enable write access to the backup domain (RTC registers, RTC
* backup data registers and backup SRAM).
*/
(void)stm32_pwr_enablebkp(true);
/* Remember that the RTC is initialized */
putreg32(RTC_MAGIC, RTC_MAGIC_REG);
}
else
{
rtclldbg("Do resume\n");
/* RTC already set-up, just resume normal operation */
rtc_resume();
rtc_dumpregs("Did resume");
}
/* Disable write access to the backup domain (RTC registers, RTC backup
* data registers and backup SRAM).
*/
(void)stm32_pwr_enablebkp(false);
if (ret != OK && nretry > 0)
{
rtclldbg("setup/resume ran %d times and failed with %d\n",
nretry, ret);
return -ETIMEDOUT;
}
#ifdef CONFIG_RTC_ALARM
/* Configure RTC interrupt to catch alarm interrupts. All RTC interrupts are
* connected to the EXTI controller. To enable the RTC Alarm interrupt, the
* following sequence is required:
*
* 1. Configure and enable the EXTI Line 17 RTC ALARM in interrupt mode and select the
* rising edge sensitivity.
* For STM32F4xx
* EXTI line 21 RTC Tamper & Timestamp
* EXTI line 22 RTC Wakeup
* 2. Configure and enable the RTC_Alarm IRQ channel in the NVIC.
* 3. Configure the RTC to generate RTC alarms (Alarm A or Alarm B).
*/
2016-04-03 20:38:02 +02:00
stm32_exti_alarm(true, false, true, stm32_rtc_alarm_handler);
2016-05-31 23:17:52 +02:00
rtc_dumpregs("After InitExtiAlarm");
#else
rtc_dumpregs("After Initialization");
2016-04-02 18:46:10 +02:00
#endif
g_rtc_enabled = true;
return OK;
}
/************************************************************************************
* Name: stm32_rtc_getdatetime_with_subseconds
*
* Description:
* Get the current date and time from the date/time RTC. This interface
* is only supported by the date/time RTC hardware implementation.
* It is used to replace the system timer. It is only used by the RTOS during
* initialization to set up the system time when CONFIG_RTC and CONFIG_RTC_DATETIME
* are selected (and CONFIG_RTC_HIRES is not).
*
* NOTE: Some date/time RTC hardware is capability of sub-second accuracy. That
* sub-second accuracy is returned through 'nsec'.
*
* Input Parameters:
* tp - The location to return the high resolution time value.
* nsec - The location to return the subsecond time value.
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
#ifdef CONFIG_STM32_HAVE_RTC_SUBSECONDS
int stm32_rtc_getdatetime_with_subseconds(FAR struct tm *tp, FAR long *nsec)
#else
int up_rtc_getdatetime(FAR struct tm *tp)
#endif
{
#ifdef CONFIG_STM32_HAVE_RTC_SUBSECONDS
uint32_t ssr;
#endif
uint32_t dr;
uint32_t tr;
uint32_t tmp;
/* Sample the data time registers. There is a race condition here... If we sample
* the time just before midnight on December 31, the date could be wrong because
* the day rolled over while were sampling.
*/
do
{
dr = getreg32(STM32_RTC_DR);
tr = getreg32(STM32_RTC_TR);
#ifdef CONFIG_STM32_HAVE_RTC_SUBSECONDS
ssr = getreg32(STM32_RTC_SSR);
#endif
tmp = getreg32(STM32_RTC_DR);
}
while (tmp != dr);
rtc_dumpregs("Reading Time");
/* Convert the RTC time to fields in struct tm format. All of the STM32
* All of the ranges of values correspond between struct tm and the time
* register.
*/
tmp = (tr & (RTC_TR_SU_MASK | RTC_TR_ST_MASK)) >> RTC_TR_SU_SHIFT;
tp->tm_sec = rtc_bcd2bin(tmp);
tmp = (tr & (RTC_TR_MNU_MASK | RTC_TR_MNT_MASK)) >> RTC_TR_MNU_SHIFT;
tp->tm_min = rtc_bcd2bin(tmp);
tmp = (tr & (RTC_TR_HU_MASK | RTC_TR_HT_MASK)) >> RTC_TR_HU_SHIFT;
tp->tm_hour = rtc_bcd2bin(tmp);
/* Now convert the RTC date to fields in struct tm format:
* Days: 1-31 match in both cases.
* Month: STM32 is 1-12, struct tm is 0-11.
* Years: STM32 is 00-99, struct tm is years since 1900.
* WeekDay: STM32 is 1 = Mon - 7 = Sun
*
* Issue: I am not sure what the STM32 years mean. Are these the
* years 2000-2099? I'll assume so.
*/
tmp = (dr & (RTC_DR_DU_MASK | RTC_DR_DT_MASK)) >> RTC_DR_DU_SHIFT;
tp->tm_mday = rtc_bcd2bin(tmp);
tmp = (dr & (RTC_DR_MU_MASK | RTC_DR_MT)) >> RTC_DR_MU_SHIFT;
tp->tm_mon = rtc_bcd2bin(tmp) - 1;
tmp = (dr & (RTC_DR_YU_MASK | RTC_DR_YT_MASK)) >> RTC_DR_YU_SHIFT;
tp->tm_year = rtc_bcd2bin(tmp) + 100;
#if defined(CONFIG_LIBC_LOCALTIME) || defined(CONFIG_TIME_EXTENDED)
tmp = (dr & RTC_DR_WDU_MASK) >> RTC_DR_WDU_SHIFT;
tp->tm_wday = tmp % 7;
tp->tm_yday = tp->tm_mday + clock_daysbeforemonth(tp->tm_mon, clock_isleapyear(tp->tm_year + 1900));
tp->tm_isdst = 0
#endif
#ifdef CONFIG_STM32_HAVE_RTC_SUBSECONDS
/* Return RTC sub-seconds if no configured and if a non-NULL value
* of nsec has been provided to receive the sub-second value.
*/
if (nsec)
{
uint32_t prediv_s;
uint32_t usecs;
prediv_s = getreg32(STM32_RTC_PRER) & RTC_PRER_PREDIV_S_MASK;
prediv_s >>= RTC_PRER_PREDIV_S_SHIFT;
ssr &= RTC_SSR_MASK;
/* Maximum prediv_s is 0x7fff, thus we can multiply by 100000 and
* still fit 32-bit unsigned integer.
*/
usecs = (((prediv_s - ssr) * 100000) / (prediv_s + 1)) * 10;
*nsec = usecs * 1000;
}
#endif /* CONFIG_STM32_HAVE_RTC_SUBSECONDS */
rtc_dumptime((FAR const struct tm *)tp, "Returning");
return OK;
}
/************************************************************************************
* Name: up_rtc_getdatetime
*
* Description:
* Get the current date and time from the date/time RTC. This interface
* is only supported by the date/time RTC hardware implementation.
* It is used to replace the system timer. It is only used by the RTOS during
* initialization to set up the system time when CONFIG_RTC and CONFIG_RTC_DATETIME
* are selected (and CONFIG_RTC_HIRES is not).
*
* NOTE: Some date/time RTC hardware is capability of sub-second accuracy. That
* sub-second accuracy is lost in this interface. However, since the system time
* is reinitialized on each power-up/reset, there will be no timing inaccuracy in
* the long run.
*
* Input Parameters:
* tp - The location to return the high resolution time value.
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
#ifdef CONFIG_STM32_HAVE_RTC_SUBSECONDS
int up_rtc_getdatetime(FAR struct tm *tp)
{
return stm32_rtc_getdatetime_with_subseconds(tp, NULL);
}
#endif
/************************************************************************************
* Name: stm32_rtc_setdatetime
*
* Description:
* Set the RTC to the provided time. RTC implementations which provide
* up_rtc_getdatetime() (CONFIG_RTC_DATETIME is selected) should provide this
* function.
*
* Input Parameters:
* tp - the time to use
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
int stm32_rtc_setdatetime(FAR const struct tm *tp)
{
uint32_t tr;
uint32_t dr;
int ret;
rtc_dumptime(tp, "Setting time");
/* Then write the broken out values to the RTC */
/* Convert the struct tm format to RTC time register fields. All of the STM32
* All of the ranges of values correspond between struct tm and the time
* register.
*/
tr = (rtc_bin2bcd(tp->tm_sec) << RTC_TR_SU_SHIFT) |
(rtc_bin2bcd(tp->tm_min) << RTC_TR_MNU_SHIFT) |
(rtc_bin2bcd(tp->tm_hour) << RTC_TR_HU_SHIFT);
2016-04-02 18:46:10 +02:00
/* Now convert the fields in struct tm format to the RTC date register fields:
* Days: 1-31 match in both cases.
* Month: STM32 is 1-12, struct tm is 0-11.
* Years: STM32 is 00-99, struct tm is years since 1900.
* WeekDay: STM32 is 1 = Mon - 7 = Sun
* Issue: I am not sure what the STM32 years mean. Are these the
* years 2000-2099? I'll assume so.
*/
dr = (rtc_bin2bcd(tp->tm_mday) << RTC_DR_DU_SHIFT) |
((rtc_bin2bcd(tp->tm_mon + 1)) << RTC_DR_MU_SHIFT) |
#if defined(CONFIG_LIBC_LOCALTIME) || defined(CONFIG_TIME_EXTENDED)
((tp->tm_wday == 0 ? 7 : (tp->tm_wday & 7)) << RTC_DR_WDU_SHIFT) |
#endif
((rtc_bin2bcd(tp->tm_year - 100)) << RTC_DR_YU_SHIFT);
dr &= ~RTC_DR_RESERVED_BITS;
/* Disable the write protection for RTC registers */
rtc_wprunlock();
/* Set Initialization mode */
ret = rtc_enterinit();
if (ret == OK)
{
/* Set the RTC TR and DR registers */
putreg32(tr, STM32_RTC_TR);
putreg32(dr, STM32_RTC_DR);
/* Exit Initialization mode and wait for the RTC Time and Date
* registers to be synchronized with RTC APB clock.
*/
rtc_exitinit();
ret = rtc_synchwait();
}
/* Re-enable the write protection for RTC registers */
rtc_wprlock();
rtc_dumpregs("New time setting");
return ret;
}
/************************************************************************************
* Name: up_rtc_settime
*
* Description:
* Set the RTC to the provided time. All RTC implementations must be able to
* set their time based on a standard timespec.
*
* Input Parameters:
* tp - the time to use
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
int up_rtc_settime(FAR const struct timespec *tp)
{
FAR struct tm newtime;
/* Break out the time values (not that the time is set only to units of seconds) */
(void)gmtime_r(&tp->tv_sec, &newtime);
return stm32_rtc_setdatetime(&newtime);
}
/****************************************************************************
* Name: stm32_rtc_setalarm
2016-04-02 18:46:10 +02:00
*
* Description:
* Set an alarm to an asbolute time using associated hardware.
2016-04-02 18:46:10 +02:00
*
* Input Parameters:
* alminfo - Information about the alarm configuration.
2016-04-02 18:46:10 +02:00
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
****************************************************************************/
2016-04-02 18:46:10 +02:00
#ifdef CONFIG_RTC_ALARM
int stm32_rtc_setalarm(FAR struct alm_setalarm_s *alminfo)
2016-04-02 18:46:10 +02:00
{
FAR struct alm_cbinfo_s *cbinfo;
2016-04-02 18:46:10 +02:00
rtc_alarmreg_t alarmreg;
int ret = -EINVAL;
2016-04-02 18:46:10 +02:00
ASSERT(alminfo != NULL);
DEBUGASSERT(RTC_ALARM_LAST > alminfo->as_id);
2016-04-02 18:46:10 +02:00
/* REVISIT: Should test that the time is in the future */
2016-04-02 18:46:10 +02:00
rtc_dumptime(&alminfo->as_time, "New alarm time");
2016-04-02 18:46:10 +02:00
/* Break out the values to the HW alarm register format. The values in
* all STM32 fields match the fields of struct tm in this case. Notice
* that the alarm is limited to one month.
2016-06-01 01:28:02 +02:00
*/
alarmreg = (rtc_bin2bcd(alminfo->as_time.tm_sec) << RTC_ALRMR_SU_SHIFT) |
(rtc_bin2bcd(alminfo->as_time.tm_min) << RTC_ALRMR_MNU_SHIFT) |
(rtc_bin2bcd(alminfo->as_time.tm_hour) << RTC_ALRMR_HU_SHIFT) |
(rtc_bin2bcd(alminfo->as_time.tm_mday) << RTC_ALRMR_DU_SHIFT);
/* Set the alarm in hardware and enable interrupts */
switch (alminfo->as_id)
2016-04-02 18:46:10 +02:00
{
case RTC_ALARMA:
{
cbinfo = &g_alarmcb[RTC_ALARMA];
cbinfo->ac_cb = alminfo->as_cb;
cbinfo->ac_arg = alminfo->as_arg;
ret = rtchw_set_alrmar(alarmreg | RTC_ALRMR_ENABLE);
if (ret < 0)
{
cbinfo->ac_cb = NULL;
cbinfo->ac_arg = NULL;
}
2016-05-31 23:52:56 +02:00
rtc_dumpregs("Set AlarmA");
}
break;
2016-04-02 18:46:10 +02:00
#if CONFIG_RTC_NALARMS > 1
case RTC_ALARMB:
2016-04-02 18:46:10 +02:00
{
cbinfo = &g_alarmcb[RTC_ALARMB];
cbinfo->ac_cb = alminfo->as_cb;
cbinfo->ac_arg = alminfo->as_arg;
2016-04-02 18:46:10 +02:00
ret = rtchw_set_alrmbr(alarmreg | RTC_ALRMR_ENABLE);
if (ret < 0)
{
cbinfo->ac_cb = NULL;
cbinfo->ac_arg = NULL;
}
2016-05-31 23:52:56 +02:00
rtc_dumpregs("Set AlarmB");
2016-04-02 18:46:10 +02:00
}
break;
#endif
default:
rtcvdbg("ERROR: Invalid ALARM%d\n", alminfo->as_id);
break;
2016-04-02 18:46:10 +02:00
}
2016-04-02 22:58:01 +02:00
return ret;
2016-04-02 18:46:10 +02:00
}
#endif
2016-04-02 18:46:10 +02:00
/****************************************************************************
* Name: stm32_rtc_cancelalarm
*
* Description:
* Cancel an alaram.
*
* Input Parameters:
* alarmid - Identifies the alarm to be cancelled
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
****************************************************************************/
#ifdef CONFIG_RTC_ALARM
int stm32_rtc_cancelalarm(enum alm_id_e alarmid)
{
int ret = -EINVAL;
DEBUGASSERT(RTC_ALARM_LAST > alarmid);
/* Cancel the alarm in hardware and disable interrupts */
switch (alarmid)
{
case RTC_ALARMA:
{
/* Cancel the global callback function */
g_alarmcb[alarmid].ac_cb = NULL;
g_alarmcb[alarmid].ac_arg = NULL;
/* Need to follow RTC register wrote protection.
* Disable the write protection for RTC registers
*/
rtc_wprunlock();
/* Disable RTC alarm and interrupt */
modifyreg32(STM32_RTC_CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE), 0);
ret = rtchw_check_alrawf();
if (ret < 0)
{
goto errout_with_wprunlock;
}
/* Unset the alarm */
putreg32(-1, STM32_RTC_ALRMAR);
rtc_wprlock();
ret = OK;
}
break;
#if CONFIG_RTC_NALARMS > 1
case RTC_ALARMB:
{
/* Cancel the global callback function */
g_alarmcb[alarmid].ac_cb = NULL;
g_alarmcb[alarmid].ac_arg = NULL;
/* Need to follow RTC register wrote protection.
* Disable the write protection for RTC registers
*/
rtc_wprunlock();
/* Disable RTC alarm and interrupt */
modifyreg32(STM32_RTC_CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE), 0);
ret = rtchw_check_alrbwf();
if (ret < 0)
{
goto errout_with_wprunlock;
}
/* Unset the alarm */
putreg32(-1, STM32_RTC_ALRMBR);
rtc_wprlock();
ret = OK;
}
break;
#endif
default:
2016-05-31 23:17:52 +02:00
rtcvdbg("ERROR: Invalid ALARM%d\n", alarmid);
break;
}
return ret;
errout_with_wprunlock:
rtc_wprlock();
return ret;
}
#endif
2016-04-02 18:46:10 +02:00
#endif /* CONFIG_RTC */