2014-03-25 00:45:45 +01:00
|
|
|
/************************************************************************************
|
|
|
|
* drivers/mtd/sector512.c
|
|
|
|
* MTD driver that contains another MTD driver and converts a larger sector size
|
|
|
|
* to a standard 512 byte sector size.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2014 Gregory Nutt. All rights reserved.
|
|
|
|
* Author: Gregory Nutt <gnutt@nuttx.org>
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
|
|
* used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Included Files
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
#include <nuttx/config.h>
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#include <errno.h>
|
|
|
|
#include <debug.h>
|
|
|
|
|
|
|
|
#include <nuttx/kmalloc.h>
|
|
|
|
#include <nuttx/fs/ioctl.h>
|
|
|
|
#include <nuttx/mtd/mtd.h>
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Pre-processor Definitions
|
|
|
|
************************************************************************************/
|
|
|
|
/* Configuration */
|
|
|
|
|
|
|
|
#ifndef CONFIG_MTD_SECT512_ERASED_STATE
|
|
|
|
# define CONFIG_MTD_SECT512_ERASED_STATE 0xff
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* 512-byte sector constants */
|
|
|
|
|
|
|
|
#define SECTOR_512 512
|
|
|
|
#define SHIFT_512 9
|
|
|
|
#define MASK_512 511
|
|
|
|
|
|
|
|
/* Cache flags */
|
|
|
|
|
|
|
|
#define SST25_CACHE_VALID (1 << 0) /* 1=Cache has valid data */
|
|
|
|
#define SST25_CACHE_DIRTY (1 << 1) /* 1=Cache is dirty */
|
|
|
|
#define SST25_CACHE_ERASED (1 << 2) /* 1=Backing FLASH is erased */
|
|
|
|
|
|
|
|
#define IS_VALID(p) ((((p)->flags) & SST25_CACHE_VALID) != 0)
|
|
|
|
#define IS_DIRTY(p) ((((p)->flags) & SST25_CACHE_DIRTY) != 0)
|
|
|
|
#define IS_ERASED(p) ((((p)->flags) & SST25_CACHE_DIRTY) != 0)
|
|
|
|
|
|
|
|
#define SET_VALID(p) do { (p)->flags |= SST25_CACHE_VALID; } while (0)
|
|
|
|
#define SET_DIRTY(p) do { (p)->flags |= SST25_CACHE_DIRTY; } while (0)
|
|
|
|
#define SET_ERASED(p) do { (p)->flags |= SST25_CACHE_DIRTY; } while (0)
|
|
|
|
|
|
|
|
#define CLR_VALID(p) do { (p)->flags &= ~SST25_CACHE_VALID; } while (0)
|
|
|
|
#define CLR_DIRTY(p) do { (p)->flags &= ~SST25_CACHE_DIRTY; } while (0)
|
|
|
|
#define CLR_ERASED(p) do { (p)->flags &= ~SST25_CACHE_DIRTY; } while (0)
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Private Types
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
/* This type represents the state of the MTD device. The struct mtd_dev_s must
|
|
|
|
* appear at the beginning of the definition so that you can freely cast between
|
|
|
|
* pointers to struct mtd_dev_s and struct s512_dev_s.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct s512_dev_s
|
|
|
|
{
|
|
|
|
struct mtd_dev_s mtd; /* MTD interface */
|
|
|
|
FAR struct mtd_dev_s *dev; /* Saved lower level MTD interface instance */
|
|
|
|
uint32_t eblocksize; /* Size of one erase block */
|
|
|
|
size_t neblocks; /* Number of erase blocks */
|
|
|
|
size_t sectperblock; /* Number of read/write sectors per erase block */
|
|
|
|
uint16_t stdperblock; /* Number of 512 byte sectors in one erase block */
|
|
|
|
uint8_t flags; /* Buffered sector flags */
|
2015-10-10 18:41:00 +02:00
|
|
|
uint32_t eblockno; /* Erase sector number in the cache */
|
2014-03-25 00:45:45 +01:00
|
|
|
FAR uint8_t *eblock; /* Allocated erase block */
|
|
|
|
};
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Private Function Prototypes
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
/* Helpers */
|
|
|
|
|
|
|
|
static FAR uint8_t *s512_cacheread(struct s512_dev_s *priv, off_t sector);
|
|
|
|
#ifndef CONFIG_MTD_SECT512_READONLY
|
|
|
|
static void s512_cacheflush(struct s512_dev_s *priv);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* MTD driver methods */
|
|
|
|
|
|
|
|
static int s512_erase(FAR struct mtd_dev_s *dev, off_t sector512, size_t nsectors);
|
|
|
|
static ssize_t s512_bread(FAR struct mtd_dev_s *dev, off_t sector512,
|
|
|
|
size_t nsectors, FAR uint8_t *buf);
|
|
|
|
static ssize_t s512_bwrite(FAR struct mtd_dev_s *dev, off_t sector512,
|
|
|
|
size_t nsectors, FAR const uint8_t *buf);
|
|
|
|
static ssize_t s512_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
|
|
|
|
FAR uint8_t *buffer);
|
|
|
|
static int s512_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg);
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Private Data
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Private Functions
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: s512_cacheread
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static FAR uint8_t *s512_cacheread(struct s512_dev_s *priv, off_t sector512)
|
|
|
|
{
|
|
|
|
off_t eblockno;
|
|
|
|
off_t sector;
|
|
|
|
ssize_t result;
|
|
|
|
int index;
|
2014-04-13 22:32:20 +02:00
|
|
|
|
2014-03-25 00:45:45 +01:00
|
|
|
/* Get the erase block containing this sector */
|
|
|
|
|
|
|
|
eblockno = sector512 / priv->stdperblock;
|
|
|
|
fvdbg("sector512: %lu eblockno: %lu\n",
|
|
|
|
(unsigned long)sector512, (unsigned long)eblockno);
|
|
|
|
|
|
|
|
/* Check if the requested erase block is already in the cache */
|
|
|
|
|
|
|
|
if (!IS_VALID(priv) || eblockno != priv->eblockno)
|
|
|
|
{
|
|
|
|
/* No.. Flush any dirty erase block currently in the cache */
|
|
|
|
|
|
|
|
s512_cacheflush(priv);
|
|
|
|
|
|
|
|
/* Read the erase block into the cache */
|
|
|
|
|
|
|
|
sector = eblockno * priv->sectperblock;
|
|
|
|
result = priv->dev->bread(priv->dev, sector, priv->sectperblock,
|
|
|
|
priv->eblock);
|
|
|
|
if (result < 0)
|
|
|
|
{
|
|
|
|
fdbg("ERROR: bread(%lu, %lu) returned %ld\n",
|
|
|
|
(unsigned long)sector, (unsigned long)priv->eblocksize,
|
|
|
|
(long)result);
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Mark the sector as cached */
|
|
|
|
|
|
|
|
priv->eblockno = eblockno;
|
|
|
|
|
|
|
|
SET_VALID(priv); /* The data in the cache is valid */
|
|
|
|
CLR_DIRTY(priv); /* It should match the FLASH contents */
|
|
|
|
CLR_ERASED(priv); /* The underlying FLASH has not been erased */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get the index to the 512 sector in the erase block that holds the argument */
|
|
|
|
|
|
|
|
index = sector512 % priv->stdperblock;
|
|
|
|
|
|
|
|
/* Return the address in the cache that holds this sector */
|
|
|
|
|
|
|
|
return &priv->eblock[index << SHIFT_512];
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: s512_cacheflush
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
#if !defined(CONFIG_MTD_SECT512_READONLY)
|
|
|
|
static void s512_cacheflush(struct s512_dev_s *priv)
|
|
|
|
{
|
|
|
|
off_t sector;
|
|
|
|
ssize_t result;
|
|
|
|
|
|
|
|
/* If the cached is dirty (meaning that it no longer matches the old FLASH contents)
|
|
|
|
* or was erased (with the cache containing the correct FLASH contents), then write
|
|
|
|
* the cached erase block to FLASH.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (IS_DIRTY(priv) || IS_ERASED(priv))
|
|
|
|
{
|
|
|
|
/* Write entire erase block to FLASH */
|
|
|
|
|
|
|
|
sector = priv->eblockno * priv->sectperblock;
|
|
|
|
result = priv->dev->bwrite(priv->dev, sector, priv->sectperblock, priv->eblock);
|
|
|
|
if (result < 0)
|
|
|
|
{
|
|
|
|
fdbg("ERROR: bwrite(%lu, %lu) returned %ld\n",
|
|
|
|
(unsigned long)sector, (unsigned long)priv->eblocksize,
|
|
|
|
(long)result);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The cache is no long dirty and the FLASH is no longer erased */
|
|
|
|
|
|
|
|
CLR_DIRTY(priv);
|
|
|
|
CLR_ERASED(priv);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: s512_erase
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static int s512_erase(FAR struct mtd_dev_s *dev, off_t sector512, size_t nsectors)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_MTD_SECT512_READONLY
|
|
|
|
return -EACESS
|
|
|
|
#else
|
|
|
|
FAR struct s512_dev_s *priv = (FAR struct s512_dev_s *)dev;
|
|
|
|
FAR uint8_t *dest;
|
|
|
|
size_t sectorsleft = nsectors;
|
|
|
|
size_t eblockno;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
fvdbg("sector512: %08lx nsectors: %lu\n",
|
|
|
|
(unsigned long)sector512, (unsigned int)nsectors);
|
|
|
|
|
|
|
|
while (sectorsleft-- > 0)
|
|
|
|
{
|
|
|
|
/* Erase each sector. First, make sure that the erase block containing the
|
|
|
|
* 512 byte sector is in the cache.
|
|
|
|
*/
|
|
|
|
|
|
|
|
dest = s512_cacheread(priv, sector512);
|
|
|
|
if (!dest)
|
|
|
|
{
|
|
|
|
fdbg("ERROR: s512_cacheread(%ul) failed\n", (unsigned long)sector512);
|
|
|
|
DEBUGPANIC();
|
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Erase the block containing this sector if it is not already erased.
|
2015-10-10 18:41:00 +02:00
|
|
|
* The erased indicator will be cleared when the data from the erase sector
|
|
|
|
* is read into the cache and set here when we erase the block.
|
|
|
|
*/
|
2014-03-25 00:45:45 +01:00
|
|
|
|
|
|
|
if (!IS_ERASED(priv))
|
|
|
|
{
|
|
|
|
eblockno = sector512 / priv->stdperblock;
|
|
|
|
fvdbg("sector512: %lu eblockno: %lu\n",
|
|
|
|
(unsigned long)sector512, (unsigned long)eblockno);
|
|
|
|
|
|
|
|
ret = priv->dev->erase(priv->dev, eblockno, 1);
|
|
|
|
if (ret < 0)
|
|
|
|
{
|
|
|
|
fdbg("ERROR: Failed to erase block %lu: %d\n",
|
|
|
|
(unsigned long)eblockno, ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
SET_ERASED(priv);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Put the cached sector data into the erase state and mark the cache
|
|
|
|
* as dirty (but don't update the FLASH yet. The caller will do that
|
|
|
|
* at a more optimal time).
|
|
|
|
*/
|
|
|
|
|
|
|
|
memset(dest, CONFIG_MTD_SECT512_ERASED_STATE, SECTOR_512);
|
|
|
|
SET_DIRTY(priv);
|
|
|
|
sector512++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Flush the last erase block left in the cache */
|
|
|
|
|
|
|
|
s512_cacheflush(priv);
|
|
|
|
|
|
|
|
return (int)nsectors;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: s512_bread
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static ssize_t s512_bread(FAR struct mtd_dev_s *dev, off_t sector512,
|
|
|
|
size_t nsectors, FAR uint8_t *buffer)
|
|
|
|
{
|
|
|
|
FAR struct s512_dev_s *priv = (FAR struct s512_dev_s *)dev;
|
|
|
|
FAR uint8_t *src;
|
|
|
|
ssize_t remaining;
|
|
|
|
ssize_t result = nsectors;
|
|
|
|
|
|
|
|
fvdbg("sector512: %08lx nsectors: %d\n", (long)sector512, (int)nsectors);
|
|
|
|
|
|
|
|
/* Read each 512 byte sector from the block via the erase block cache */
|
|
|
|
|
|
|
|
for (remaining = nsectors; remaining; remaining--)
|
|
|
|
{
|
|
|
|
/* Make sure that the next sector is in the erase block cache */
|
|
|
|
|
|
|
|
src = s512_cacheread(priv, sector512);
|
|
|
|
if (!src)
|
|
|
|
{
|
|
|
|
fdbg("ERROR: s512_cacheread(%ul) failed\n", (unsigned long)sector512);
|
|
|
|
DEBUGPANIC();
|
|
|
|
|
|
|
|
result = (ssize_t)nsectors - remaining;
|
|
|
|
if (result <= 0)
|
|
|
|
{
|
|
|
|
result = -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy the sector data from the erase block cache into the user buffer */
|
|
|
|
|
|
|
|
memcpy(buffer, src, SECTOR_512);
|
|
|
|
|
|
|
|
buffer += SECTOR_512;
|
|
|
|
sector512++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: s512_bwrite
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static ssize_t s512_bwrite(FAR struct mtd_dev_s *dev, off_t sector512, size_t nsectors,
|
|
|
|
FAR const uint8_t *buffer)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_MTD_SECT512_READONLY
|
|
|
|
return -EACCESS;
|
|
|
|
#else
|
|
|
|
FAR struct s512_dev_s *priv = (FAR struct s512_dev_s *)dev;
|
|
|
|
ssize_t remaining;
|
|
|
|
ssize_t result;
|
|
|
|
off_t eblockno;
|
|
|
|
|
|
|
|
fvdbg("sector512: %08lx nsectors: %d\n", (long)sector512, (int)nsectors);
|
|
|
|
|
|
|
|
FAR uint8_t *dest;
|
|
|
|
|
|
|
|
for (remaining = nsectors; remaining > 0; remaining--)
|
|
|
|
{
|
|
|
|
/* First, make sure that the erase block containing 512 byte sector is in
|
|
|
|
* memory.
|
|
|
|
*/
|
|
|
|
|
|
|
|
dest = s512_cacheread(priv, sector512);
|
|
|
|
if (!dest)
|
|
|
|
{
|
|
|
|
result = (ssize_t)nsectors - remaining;
|
|
|
|
if (result <= 0)
|
|
|
|
{
|
|
|
|
result = -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Erase the block containing this sector if it is not already erased.
|
|
|
|
* The erased indicated will be cleared when the data from the erase sector
|
|
|
|
* is read into the cache and set here when we erase the sector.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (!IS_ERASED(priv))
|
|
|
|
{
|
|
|
|
eblockno = sector512 / priv->stdperblock;
|
|
|
|
fvdbg("sector512: %lu eblockno: %lu\n",
|
|
|
|
(unsigned long)sector512, (unsigned long)eblockno);
|
|
|
|
|
|
|
|
result = priv->dev->erase(priv->dev, eblockno, 1);
|
|
|
|
if (result < 0)
|
|
|
|
{
|
|
|
|
fdbg("ERROR: Failed to erase block %lu: %ld\n",
|
|
|
|
(unsigned long)eblockno, (long)result);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
SET_ERASED(priv);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy the new sector data into cached erase block */
|
|
|
|
|
|
|
|
memcpy(dest, buffer, SECTOR_512);
|
|
|
|
SET_DIRTY(priv);
|
|
|
|
|
|
|
|
/* Set up for the next 512 byte sector */
|
|
|
|
|
|
|
|
buffer += SECTOR_512;
|
|
|
|
sector512++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Flush the last erase block left in the cache */
|
|
|
|
|
|
|
|
s512_cacheflush(priv);
|
|
|
|
return nsectors;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: s512_read
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static ssize_t s512_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
|
|
|
|
FAR uint8_t *buffer)
|
|
|
|
{
|
|
|
|
FAR struct s512_dev_s *priv = (FAR struct s512_dev_s *)dev;
|
|
|
|
FAR uint8_t *src;
|
|
|
|
ssize_t remaining;
|
|
|
|
ssize_t xfrsize;
|
|
|
|
off_t sectoffset;
|
|
|
|
off_t sector;
|
|
|
|
|
|
|
|
fvdbg("offset: %08lx nbytes: %lu\n",
|
|
|
|
(unsigned long)offset, (unsigned long)nbytes);
|
|
|
|
|
|
|
|
/* Convert the offset into 512 byte sector address and a byte offset */
|
|
|
|
|
|
|
|
sectoffset = offset & MASK_512;
|
|
|
|
sector = offset >> SHIFT_512;
|
|
|
|
|
|
|
|
for (remaining = nbytes; remaining > 0; remaining -= xfrsize)
|
|
|
|
{
|
|
|
|
/* Read the erase block into the cache and get the address of the
|
|
|
|
* beginning of the 512 byte block in the cached erase block.
|
|
|
|
*/
|
|
|
|
|
|
|
|
src = s512_cacheread(priv, sector);
|
|
|
|
if (!src)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
|
|
|
|
fdbg("ERROR: s512_cacheread(%ul) failed\n", (unsigned long)sector);
|
|
|
|
DEBUGPANIC();
|
|
|
|
|
|
|
|
result = (ssize_t)nbytes - remaining;
|
|
|
|
if (result <= 0)
|
|
|
|
{
|
|
|
|
result = -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Then copy the requested bytes from the cached erase block */
|
|
|
|
|
|
|
|
xfrsize = remaining;
|
|
|
|
if (sectoffset + xfrsize > SECTOR_512)
|
|
|
|
{
|
|
|
|
xfrsize = SECTOR_512 - sectoffset;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(buffer, src + sectoffset, xfrsize);
|
|
|
|
buffer += xfrsize;
|
|
|
|
}
|
2014-04-13 22:32:20 +02:00
|
|
|
|
2014-03-25 00:45:45 +01:00
|
|
|
fvdbg("return nbytes: %d\n", (int)nbytes);
|
|
|
|
return nbytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: s512_ioctl
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static int s512_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg)
|
|
|
|
{
|
|
|
|
FAR struct s512_dev_s *priv = (FAR struct s512_dev_s *)dev;
|
|
|
|
int ret = -EINVAL; /* Assume good command with bad parameters */
|
|
|
|
|
|
|
|
fvdbg("cmd: %d \n", cmd);
|
|
|
|
|
|
|
|
switch (cmd)
|
|
|
|
{
|
|
|
|
case MTDIOC_GEOMETRY:
|
|
|
|
{
|
|
|
|
FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg);
|
|
|
|
if (geo)
|
|
|
|
{
|
|
|
|
/* Populate the geometry structure with information need to know
|
|
|
|
* the capacity and how to access the device.
|
|
|
|
*
|
|
|
|
* NOTE: that the device is treated as though it where just an array
|
|
|
|
* of fixed size blocks. That is most likely not true, but the client
|
|
|
|
* will expect the device logic to do whatever is necessary to make it
|
|
|
|
* appear so.
|
|
|
|
*/
|
|
|
|
|
|
|
|
geo->blocksize = SECTOR_512;
|
|
|
|
geo->erasesize = SECTOR_512;
|
|
|
|
geo->neraseblocks = priv->neblocks * priv->stdperblock;
|
|
|
|
ret = OK;
|
|
|
|
|
|
|
|
fvdbg("blocksize: %d erasesize: %d neraseblocks: %d\n",
|
|
|
|
geo->blocksize, geo->erasesize, geo->neraseblocks);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case MTDIOC_BULKERASE:
|
|
|
|
{
|
|
|
|
/* Erase the entire device */
|
|
|
|
|
|
|
|
ret = priv->dev->ioctl(priv->dev, MTDIOC_BULKERASE, 0);
|
|
|
|
if (ret >= 0)
|
|
|
|
{
|
|
|
|
priv->flags = 0; /* Buffered sector flags */
|
2015-10-10 18:41:00 +02:00
|
|
|
priv->eblockno = 0; /* Erase sector number in the cache */
|
2014-03-25 00:45:45 +01:00
|
|
|
priv->eblock = NULL; /* Allocated erase block */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
2014-04-13 22:32:20 +02:00
|
|
|
|
2014-03-25 00:45:45 +01:00
|
|
|
case MTDIOC_XIPBASE:
|
|
|
|
default:
|
|
|
|
ret = -ENOTTY; /* Bad command */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
fvdbg("return %d\n", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Public Functions
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: s512_initialize
|
|
|
|
*
|
|
|
|
* Description:
|
|
|
|
* Create an initialized MTD device instance. This MTD driver contains another
|
|
|
|
* MTD driver and converts a larger sector size to a standard 512 byte sector
|
|
|
|
* size.
|
|
|
|
*
|
|
|
|
* MTD devices are not registered in the file system, but are created as instances
|
|
|
|
* that can be bound to other functions (such as a block or character driver front
|
|
|
|
* end).
|
|
|
|
*
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
FAR struct mtd_dev_s *s512_initialize(FAR struct mtd_dev_s *mtd)
|
|
|
|
{
|
|
|
|
FAR struct s512_dev_s *priv;
|
|
|
|
FAR struct mtd_geometry_s geo;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
fvdbg("mtd: %p\n", mtd);
|
|
|
|
|
|
|
|
/* Get the device geometry */
|
|
|
|
|
|
|
|
DEBUGASSERT(mtd && mtd->ioctl);
|
|
|
|
ret = mtd->ioctl(mtd, MTDIOC_GEOMETRY, (unsigned long)((uintptr_t)&geo));
|
|
|
|
|
|
|
|
/* We expect that the block size will be >512 and an even multiple of 512 */
|
|
|
|
|
|
|
|
if (ret < 0 || geo.erasesize <= SECTOR_512 ||
|
2015-10-10 18:41:00 +02:00
|
|
|
(geo.erasesize & ~MASK_512) != geo.erasesize)
|
2014-03-25 00:45:45 +01:00
|
|
|
{
|
|
|
|
fdbg("ERROR: MTDIOC_GEOMETRY ioctl returned %d, eraseize=%d\n",
|
|
|
|
ret, geo.erasesize);
|
|
|
|
DEBUGPANIC();
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate a state structure (we allocate the structure instead of using
|
|
|
|
* a fixed, static allocation so that we can handle multiple FLASH devices.
|
|
|
|
* The current implementation would handle only one FLASH part per SPI
|
|
|
|
* device (only because of the SPIDEV_FLASH definition) and so would have
|
|
|
|
* to be extended to handle multiple FLASH parts on the same SPI bus.
|
|
|
|
*/
|
|
|
|
|
2014-09-01 01:34:44 +02:00
|
|
|
priv = (FAR struct s512_dev_s *)kmm_zalloc(sizeof(struct s512_dev_s));
|
2014-03-25 00:45:45 +01:00
|
|
|
if (priv)
|
|
|
|
{
|
|
|
|
/* Initialize the allocated structure. (unsupported methods/fields
|
2014-09-01 01:34:44 +02:00
|
|
|
* were already nullified by kmm_zalloc).
|
2014-03-25 00:45:45 +01:00
|
|
|
*/
|
|
|
|
|
|
|
|
priv->mtd.erase = s512_erase;
|
|
|
|
priv->mtd.bread = s512_bread;
|
|
|
|
priv->mtd.bwrite = s512_bwrite;
|
|
|
|
priv->mtd.read = s512_read;
|
|
|
|
priv->mtd.ioctl = s512_ioctl;
|
|
|
|
|
|
|
|
priv->dev = mtd;
|
|
|
|
priv->eblocksize = geo.erasesize;
|
|
|
|
priv->neblocks = geo.neraseblocks;
|
|
|
|
priv->sectperblock = geo.erasesize / geo.blocksize;
|
|
|
|
priv->stdperblock = geo.erasesize >> 9;
|
|
|
|
|
|
|
|
/* Allocate a buffer for the erase block cache */
|
|
|
|
|
2014-09-01 01:26:36 +02:00
|
|
|
priv->eblock = (FAR uint8_t *)kmm_malloc(priv->eblocksize);
|
2014-03-25 00:45:45 +01:00
|
|
|
if (!priv->eblock)
|
|
|
|
{
|
|
|
|
/* Allocation failed! Discard all of that work we just did and return NULL */
|
|
|
|
|
|
|
|
fdbg("Allocation failed\n");
|
2014-09-01 01:04:02 +02:00
|
|
|
kmm_free(priv);
|
2014-03-25 00:45:45 +01:00
|
|
|
priv = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Register the MTD with the procfs system if enabled */
|
|
|
|
|
|
|
|
#ifdef CONFIG_MTD_REGISTRATION
|
|
|
|
mtd_register(&priv->mtd, "sector512");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Return the implementation-specific state structure as the MTD device */
|
|
|
|
|
|
|
|
fvdbg("Return %p\n", priv);
|
|
|
|
return &priv->mtd;
|
|
|
|
}
|