nuttx/drivers/mtd/Kconfig

410 lines
9.9 KiB
Plaintext
Raw Normal View History

#
# For a description of the syntax of this configuration file,
# see misc/tools/kconfig-language.txt.
#
comment "MTD Configuration"
config MTD_PARTITION
bool "Support MTD partitions"
default n
---help---
MTD partitions are build as MTD drivers that manage a sub-region
of the FLASH memory. The contain the original FLASH MTD driver and
simply manage all accesses to assure that (1) FLASH accesses are
always offset to the beginning of the partition, and (2) that FLASH
accesses do not extend outside of the partition.
A FLASH device may be broken up into several partitions managed,
each managed by a separate MTD driver. The MTD parition interface
is described in:
include/nuttx/mtd/mtd.h
FAR struct mtd_dev_s *mtd_partition(FAR struct mtd_dev_s *mtd, off_t offset, off_t nblocks);
Each call to mtd_partition() will create a new MTD driver instance
managing the sub-region of flash beginning at 'offset' (in blocks)
and of size 'nblocks' on the device specified by 'mtd'.
config MTD_BYTE_WRITE
bool "Byte write"
default n
---help---
Some devices (such as the EON EN25F80) support writing an arbitrary
number of bytes to FLASH. This setting enables MTD interfaces to
support such writes. The SMART file system can take advantage of
this option if it is enabled.
config MTD_CONFIG
bool "Enable Dev Config (MTD based) device"
default n
---help---
Provides a /dev/config device for saving / restoring application
configuration data to a standard MTD device or partition.
config MTD_CONFIG_RAM_CONSOLIDATE
bool "Always use RAM consolidation method (work in progress)"
default n
---help---
When the MTD device used for /dev/config contains more than one
erase block, the "unused entry" consolidation reserves one erase
block by default for cleanup purposes. This consumes the minimum
amount of RAM, however it "wastes" one erase block on the device.
(For configurations that have only a single erase block assigned
to the config device, RAM consolidation is the ONLY option.)
Another apporach is to allow the driver to use the entire MTD
device (or partition) to save config data, and then allocate a
RAM buffer (the size of one erase block) to perform the
consolidation. Enabling this feature basically trades off RAM
usage for FLASH usage. If the MTD device used for config data
has small erase sizes (4K, etc.) and there is plenty of free RAM
available, then this is probably a good option.
Another benefit of this option is it reduces code space a bit
since the "reserved block" consolidate routine is not needed.
config MTD_CONFIG_ERASEDVALUE
hex "Erased value of bytes on the MTD device"
depends on MTD_CONFIG
default 0xff
---help---
Specifies the value of the erased state of the MTD FLASH. For
most FLASH parts, this is 0xff, but could also be zero depending
on the device.
comment "MTD Device Drivers"
config MTD_NAND
bool "Enable NAND support"
default n
---help---
Enable support for NAND FLASH devices.
2013-11-16 18:46:35 +01:00
config ARCH_NAND_HWECC
bool
default n
if MTD_NAND
2013-11-16 18:46:35 +01:00
config MTD_NAND_MAXNUMBLOCKS
int "Max blocks"
default 1024
---help---
Maximum number of blocks in a device
config MTD_NAND_MAXNUMPAGESPERBLOCK
int "Max pages per block"
default 256
---help---
Maximum number of pages in one block
config MTD_NAND_MAXPAGEDATASIZE
int "Max page size"
default 4096
---help---
Maximum size of the data area of one page, in bytes.
config MTD_NAND_MAXPAGESPARESIZE
int "Max size of spare area"
default 256
---help---
Maximum size of the spare area of one page, in bytes.
config MTD_NAND_MAXSPAREECCBYTES
int "Max number of ECC bytes"
default 48
---help---
Maximum number of ECC bytes stored in the spare for one single page.
config MTD_NAND_BLOCKCHECK
bool "Block check"
default y
---help---
Enable support for ECC and bad block checking.
if MTD_NAND_BLOCKCHECK
config MTD_NAND_SWECC
bool "Sofware ECC support"
default n if ARCH_NAND_HWECC
default y if !ARCH_NAND_HWECC
---help---
Build in logic to support software calculation of ECC.
config MTD_NAND_HWECC
bool "Hardware ECC support"
default n
depends on ARCH_NAND_HWECC
---help---
Build in logic to support hardware calculation of ECC.
2013-11-16 18:46:35 +01:00
config MTD_NAND_MAXSPAREEXTRABYTES
int "Max extra free bytes"
default 206
---help---
Maximum number of extra free bytes inside the spare area of a page.
config MTD_NAND_MAX_HWECCSIZE
int "Max H/W ECC size"
default 200
depends on MTD_NAND_HWECC
2013-11-16 18:46:35 +01:00
---help---
Maximum HW ECC size
config MTD_NAND_EMBEDDEDECC
bool "Support devices with Embedded ECC"
default n
2013-11-15 22:56:24 +01:00
---help---
Some NAND devices have internal, embedded ECC function. One (the
only one supported) is Micron, 4-bit ECC, device size = 1Gb or 2Gb
or 4Gb.
endif # MTD_NAND
config RAMMTD
bool "RAM-based MTD driver"
default n
---help---
Build support for a RAM-based MTD driver.
if RAMMTD
config RAMMTD_BLOCKSIZE
int "RAM MTD block size"
default 512
config RAMMTD_ERASESIZE
int "RAM MTD erase block size"
default 4096
config RAMMTD_ERASESTATE
hex "Simulated erase state"
default 0xff
config RAMMTD_FLASHSIM
bool "RAM MTD FLASH Simulation"
default n
---help---
RAMMTD_FLASHSIM will add some extra logic to improve the level of
FLASH simulation.
endif
config MTD_AT24XX
2013-09-12 17:44:38 +02:00
bool "I2C-based AT24xx eeprom"
default n
select I2C
---help---
2013-09-12 17:44:38 +02:00
Build support for I2C-based AT24CXX EEPROM(at24c32, at24c64,
at24c128, at24c256)
if MTD_AT24XX
config AT24XX_SIZE
2013-09-12 17:44:38 +02:00
int "AT24xx size (kbit)"
default 64
2013-09-12 17:44:38 +02:00
---help---
This is the XX in the AT24Cxx part number. For example, if you have a
AT 24C512, then the correct value is 512. This value is also the capacity
of the part in kilobits. For example, the 24C512 supports 512 Kbits or
512 /8 = 64 KiB.
config AT24XX_ADDR
2013-09-12 17:44:38 +02:00
hex "AT24XX I2C address"
default 0x50
2013-09-12 17:44:38 +02:00
range 0x50 0x57
endif
config MTD_AT25
bool "SPI-based AT25 FLASH"
default n
select SPI
if MTD_AT25
config AT25_SPIMODE
int "AT25 SPI Mode"
default 0
config AT25_SPIFREQUENCY
int "AT25 SPI Frequency"
default 20000000
endif
config MTD_AT45DB
bool "SPI-based AT45DB flash"
default n
select SPI
if MTD_AT45DB
config AT45DB_FREQUENCY
int "AT45DB frequency"
default 1000000
config AT45DB_PREWAIT
bool "Enable higher performance write logic"
default y
config AT45DB_PWRSAVE
bool "Enable power save"
default n
endif
config MTD_M25P
bool "SPI-based M25P FLASH"
default n
select SPI
if MTD_M25P
config M25P_SPIMODE
int "M25P SPI mode"
default 0
config M25P_MANUFACTURER
hex "M25P manufacturers ID"
default 0x20
---help---
Various manufacturers may have produced the parts. 0x20 is the manufacturer ID
for the STMicro MP25x serial FLASH. If, for example, you are using the a Macronix
International MX25 serial FLASH, the correct manufacturer ID would be 0xc2.
config M25P_MEMORY_TYPE
hex "M25P memory type ID"
default 0x20
---help---
The memory type for M25 "P" series is 0x20, but the driver also supports "F" series
devices, such as the EON EN25F80 part which adds a 4K sector erase capability. The
memory type for "F" series parts from EON is 0x31. The 4K sector erase size will
automatically be enabled when filessytems that can use it are enabled, such as SMART.
config M25P_SUBSECTOR_ERASE
bool "Sub-Sector Erase"
default n
---help---
Some devices (such as the EON EN25F80) support a smaller erase block
size (4K vs 64K). This option enables support for sub-sector erase.
The SMART file system can take advantage of this option if it is enabled.
endif
config MTD_SMART
bool "Sector Mapped Allocation for Really Tiny (SMART) Flash support"
default n
---help---
The MP25x series of Flash devices are typically very small and have a very large
erase block size. This causes issues with the standard Flash Translation Layer
block driver since it tries to allocate a RAM block the size of a flash erase
block, which is typically 64K. This block driver uses a different approach
to sacrifice performance for RAM memory footprint by saving data in sectors
(typically 2K - 4K based on memory size) and relocating sectors as needed when
an erase block needs to be erased.
config MTD_SMART_SECTOR_SIZE
int "SMART Device sector size"
depends on MTD_SMART
default 1024
---help---
Sets the size of a single alloction on the SMART device. Larger sector sizes
reduce overhead per sector, but cause more wasted space with a lot of smaller
files.
config MTD_RAMTRON
bool "SPI-based RAMTRON NVRAM Devices FM25V10"
default n
select SPI
---help---
SPI-based RAMTRON NVRAM Devices FM25V10
config MTD_SST25
bool "SPI-based SST25 FLASH"
default n
select SPI
if MTD_SST25
config SST25_SPIMODE
int "SST25 SPI Mode"
default 0
config SST25_SPIFREQUENCY
int "SST25 SPI Frequency"
default 20000000
config SST25_READONLY
bool "SST25 Read-Only FLASH"
default n
config SST25_SECTOR512
bool "Simulate 512 byte Erase Blocks"
default n
config SST25_SLOWWRITE
bool
default n
---help---
There used to be a bug in the current code when using the higher speed AAI
write sequence. The nature of the bug is that the WRDI instruction is not
working. At the end of the AAI sequence, the status register continues to
report that the SST25 is write enabled (WEL bit) and in AAI mode (AAI
bit). This has been fixed by David Sidrane!
config SST25_SLOWREAD
bool
default n
endif
config MTD_SST39FV
bool "SST39FV NOR FLASH"
default n
---help---
Selects 16-bit SST NOR FLASH. This includes support for:
SST39FV1601/SST39FV1602: 2Mb
SST39FV3201/SST39FV3202: 4Mb
if MTD_SST39FV
config SST39VF_BASE_ADDRESS
hex "SST39FV bass address"
default 0x00000000
---help---
This is the address where the SST29VF FLASH can be found in memory.
endif
config MTD_W25
bool "SPI-based W25 FLASH"
default n
select SPI
if MTD_W25
config W25_SPIMODE
int "W25 SPI Mode"
default 0
config W25_SPIFREQUENCY
int "W25 SPI Frequency"
default 20000000
config W25_READONLY
bool "W25 Read-Only FLASH"
default n
config W25_SECTOR512
bool "Simulate 512 byte Erase Blocks"
default n
config W25_SLOWREAD
bool
default n
endif