nuttx/drivers/audio/wm8994.c

2836 lines
76 KiB
C
Raw Normal View History

/****************************************************************************
2020-11-28 10:02:11 +01:00
* drivers/audio/wm8994.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
2020-11-28 10:02:11 +01:00
/****************************************************************************
2020-11-28 10:02:11 +01:00
* Included Files
****************************************************************************/
2020-11-28 10:02:11 +01:00
#include <nuttx/config.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <stdint.h>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <assert.h>
2020-11-28 10:02:11 +01:00
#include <errno.h>
#include <fixedmath.h>
#include <debug.h>
#include <nuttx/irq.h>
#include <nuttx/kmalloc.h>
#include <nuttx/clock.h>
#include <nuttx/queue.h>
2020-11-28 10:02:11 +01:00
#include <nuttx/wqueue.h>
#include <nuttx/signal.h>
#include <nuttx/mqueue.h>
#include <nuttx/i2c/i2c_master.h>
#include <nuttx/fs/fs.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/audio/i2s.h>
#include <nuttx/audio/audio.h>
#include <nuttx/audio/wm8994.h>
#include "wm8994.h"
/* Pre-processor Definitions */
/* Maximum number of retries */
#define MAX_RETRIES 3
#define WM8994_OUTPUT_DEVICE_SPEAKER ((uint16_t)0x0001)
#define WM8994_OUTPUT_DEVICE_HEADPHONE ((uint16_t)0x0002)
#define WM8994_OUTPUT_DEVICE_BOTH ((uint16_t)0x0003)
#define WM8994_OUTPUT_DEVICE_AUTO ((uint16_t)0x0004)
#define WM8994_INPUT_DEVICE_DIGITAL_MICROPHONE_1 ((uint16_t)0x0100)
#define WM8994_INPUT_DEVICE_DIGITAL_MICROPHONE_2 ((uint16_t)0x0200)
#define WM8994_INPUT_DEVICE_INPUT_LINE_1 ((uint16_t)0x0300)
#define WM8994_INPUT_DEVICE_INPUT_LINE_2 ((uint16_t)0x0400)
#define WM8994_INPUT_DEVICE_DIGITAL_MIC1_MIC2 ((uint16_t)0x0800)
#define WM8994_DEFAULT_OUTPUT_DEVICE (WM8994_OUTPUT_DEVICE_SPEAKER)
#define WM8994_DEFAULT_INPUT_DEVICE (WM8994_INPUT_DEVICE_DIGITAL_MIC1_MIC2)
#define WM8994_STARTUP_MODE_COLD (1)
/****************************************************************************
2020-11-28 10:02:11 +01:00
* Private Function Prototypes
****************************************************************************/
2020-11-28 10:02:11 +01:00
#if !defined(CONFIG_WM8994_REGDUMP) && !defined(CONFIG_WM8994_CLKDEBUG)
static
#endif
uint16_t wm8994_readreg(FAR struct wm8994_dev_s *priv,
uint16_t regaddr);
static void wm8994_writereg(FAR struct wm8994_dev_s *priv,
uint16_t regaddr, uint16_t regval);
#ifndef CONFIG_AUDIO_EXCLUDE_VOLUME
static inline uint16_t wm8994_scalevolume(uint16_t volume, b16_t scale);
static void wm8994_setvolume(FAR struct wm8994_dev_s *priv,
uint16_t volume, bool mute);
2020-11-28 10:02:11 +01:00
#endif
#ifndef CONFIG_AUDIO_EXCLUDE_TONE
static void wm8994_setbass(FAR struct wm8994_dev_s *priv, uint8_t bass);
static void wm8994_settreble(FAR struct wm8994_dev_s *priv,
uint8_t treble);
#endif
static void wm8994_setdatawidth(FAR struct wm8994_dev_s *priv);
static void wm8994_setbitrate(FAR struct wm8994_dev_s *priv);
static void wm8994_setdatawidth(FAR struct wm8994_dev_s *priv);
static void wm8994_setbitrate(FAR struct wm8994_dev_s *priv);
2020-11-28 10:02:11 +01:00
/* Audio lower half methods (and close friends) */
static int wm8994_getcaps(FAR struct audio_lowerhalf_s *dev, int type,
FAR struct audio_caps_s *caps);
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_configure(FAR struct audio_lowerhalf_s *dev,
FAR void *session, FAR const struct audio_caps_s *caps);
#else
static int wm8994_configure(FAR struct audio_lowerhalf_s *dev,
FAR const struct audio_caps_s *caps);
#endif
static int wm8994_shutdown(FAR struct audio_lowerhalf_s *dev);
static void wm8994_senddone(FAR struct i2s_dev_s *i2s,
FAR struct ap_buffer_s *apb, FAR void *arg, int result);
static void wm8994_returnbuffers(FAR struct wm8994_dev_s *priv);
static int wm8994_sendbuffer(FAR struct wm8994_dev_s *priv);
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_start(FAR struct audio_lowerhalf_s *dev,
FAR void *session);
#else
static int wm8994_start(FAR struct audio_lowerhalf_s *dev);
#endif
#ifndef CONFIG_AUDIO_EXCLUDE_STOP
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_stop(FAR struct audio_lowerhalf_s *dev,
FAR void *session);
#else
static int wm8994_stop(FAR struct audio_lowerhalf_s *dev);
#endif
#endif
#ifndef CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_pause(FAR struct audio_lowerhalf_s *dev,
FAR void *session);
static int wm8994_resume(FAR struct audio_lowerhalf_s *dev,
FAR void *session);
#else
static int wm8994_pause(FAR struct audio_lowerhalf_s *dev);
static int wm8994_resume(FAR struct audio_lowerhalf_s *dev);
#endif
#endif
static int wm8994_enqueuebuffer(FAR struct audio_lowerhalf_s *dev,
FAR struct ap_buffer_s *apb);
static int wm8994_cancelbuffer(FAR struct audio_lowerhalf_s *dev,
FAR struct ap_buffer_s *apb);
static int wm8994_ioctl(FAR struct audio_lowerhalf_s *dev, int cmd,
unsigned long arg);
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_reserve(FAR struct audio_lowerhalf_s *dev,
FAR void **session);
#else
static int wm8994_reserve(FAR struct audio_lowerhalf_s *dev);
#endif
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_release(FAR struct audio_lowerhalf_s *dev,
FAR void *session);
#else
static int wm8994_release(FAR struct audio_lowerhalf_s *dev);
#endif
/* Interrupt handling an worker thread */
#ifdef WM8994_USE_FFLOCK_INT
static void wm8994_interrupt_work(FAR void *arg);
static int wm8994_interrupt(FAR const struct wm8994_lower_s *lower,
FAR void *arg);
#endif
static void *wm8994_workerthread(pthread_addr_t pvarg);
/* Initialization */
static void wm8994_audio_output(FAR struct wm8994_dev_s *priv);
#if 0 /* Not used */
static void wm8994_audio_input(FAR struct wm8994_dev_s *priv);
#endif
#ifdef WM8994_USE_FFLOCK_INT
static void wm8994_configure_ints(FAR struct wm8994_dev_s *priv);
#else
# define wm8994_configure_ints(p)
#endif
static void wm8994_hw_reset(FAR struct wm8994_dev_s *priv);
/* Private Data */
static const struct audio_ops_s g_audioops =
{
wm8994_getcaps, /* getcaps */
wm8994_configure, /* configure */
wm8994_shutdown, /* shutdown */
wm8994_start, /* start */
#ifndef CONFIG_AUDIO_EXCLUDE_STOP
wm8994_stop, /* stop */
#endif
#ifndef CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME
wm8994_pause, /* pause */
wm8994_resume, /* resume */
#endif
NULL, /* allocbuffer */
NULL, /* freebuffer */
wm8994_enqueuebuffer, /* enqueue_buffer */
wm8994_cancelbuffer, /* cancel_buffer */
wm8994_ioctl, /* ioctl */
NULL, /* read */
NULL, /* write */
wm8994_reserve, /* reserve */
wm8994_release /* release */
};
/* Private Functions */
/* Name: wm8994_readreg
*
* Description:
* Read the specified 16-bit register from the WM8994 device.
*
*/
#if !defined(CONFIG_WM8994_REGDUMP) && !defined(CONFIG_WM8994_CLKDEBUG)
static
#endif
uint16_t wm8994_readreg(FAR struct wm8994_dev_s *priv, uint16_t regaddr)
{
int retries;
/* Try up to three times to read the register */
for (retries = 1; retries <= MAX_RETRIES; retries++)
{
struct i2c_msg_s msg[2];
uint8_t data[2];
uint16_t buffer = ((regaddr >> 8) & 0xff) | ((regaddr << 8) & 0xff00);
int ret;
/* Set up to write the address */
msg[0].frequency = priv->lower->frequency;
msg[0].addr = priv->lower->address;
msg[0].flags = 0;
msg[0].buffer = (uint8_t *)&buffer;
msg[0].length = 2;
/* Followed by the read data */
msg[1].frequency = priv->lower->frequency;
msg[1].addr = priv->lower->address;
msg[1].flags = I2C_M_READ;
msg[1].buffer = data;
msg[1].length = 2;
/* Read the register data. The returned value is the number messages
* completed.
*/
ret = I2C_TRANSFER(priv->i2c, msg, 2);
if (ret < 0)
{
#ifdef CONFIG_I2C_RESET
/* Perhaps the I2C bus is locked up? Try to shake the bus free.
* Don't bother with the reset if this was the last attempt.
*/
if (retries < MAX_RETRIES)
{
audwarn("WARNING: I2C_TRANSFER failed: %d ... Resetting\n", ret);
ret = I2C_RESET(priv->i2c);
if (ret < 0)
{
auderr("ERROR: I2C_RESET failed: %d\n", ret);
break;
}
}
#else
auderr("ERROR: I2C_TRANSFER failed: %d\n", ret);
#endif
}
else
{
uint16_t regval;
/* The I2C transfer was successful... break out of the loop and
* return the value read.
*/
regval = ((uint16_t)data[0] << 8) | (uint16_t)data[1];
audinfo("Read: %02x -> %04x\n", regaddr, regval);
return regval;
}
audinfo("retries=%d regaddr=%02x\n", retries, regaddr);
}
/* No error indication is returned on a failure... just return zero */
return 0;
}
/* Name: wm8994_writereg
*
* Description:
* Write the specified 16-bit register to the WM8994 device.
*
*/
static void wm8994_writereg(FAR struct wm8994_dev_s *priv, uint16_t regaddr,
uint16_t regval)
{
struct i2c_config_s config;
int retries;
/* Setup up the I2C configuration */
config.frequency = priv->lower->frequency;
config.address = priv->lower->address;
config.addrlen = 7;
/* Try up to three times to read the register */
for (retries = 1; retries <= MAX_RETRIES; retries++)
{
uint8_t data[4];
int ret;
/* Set up the data to write */
data[0] = regaddr >> 8;
data[1] = regaddr & 0xff;
data[2] = regval >> 8;
data[3] = regval & 0xff;
/* Read the register data. The returned value is the number messages
* completed.
*/
ret = i2c_write(priv->i2c, &config, data, 4);
2020-11-28 10:02:11 +01:00
if (ret < 0)
{
#ifdef CONFIG_I2C_RESET
/* Perhaps the I2C bus is locked up? Try to shake the bus free.
* Don't bother with the reset if this was the last attempt.
*/
if (retries < MAX_RETRIES)
{
audwarn("WARNING: i2c_write failed: %d ... Resetting\n", ret);
ret = I2C_RESET(priv->i2c);
if (ret < 0)
{
auderr("ERROR: I2C_RESET failed: %d\n", ret);
break;
}
}
#else
auderr("ERROR: I2C_TRANSFER failed: %d\n", ret);
#endif
}
else
{
/* The I2C transfer was successful... break out of the loop and
* return the value read.
*/
audinfo("Write: %02x <- %04x\n", regaddr, regval);
return;
}
audinfo("retries=%d regaddr=%02x\n", retries, regaddr);
}
}
/****************************************************************************
* Name: wm8994_setsamplefreq
*
* Description:
* Sets the sample frequency for AIF1
*
****************************************************************************/
static void wm8994_setsamplefreq(FAR struct wm8994_dev_s *priv)
{
uint16_t regval;
/* Table 106 in WM8994 manual */
switch (priv->samprate)
{
case 8000:
regval = WM8994_AIF1_SR_8K;
break;
case 11025:
regval = WM8994_AIF1_SR_11K;
break;
case 12000:
regval = WM8994_AIF1_SR_12K;
break;
case 16000:
regval = WM8994_AIF1_SR_16K;
break;
case 22050:
regval = WM8994_AIF1_SR_22K;
break;
case 24000:
regval = WM8994_AIF1_SR_24K;
break;
case 32000:
regval = WM8994_AIF1_SR_32K;
break;
case 44100:
regval = WM8994_AIF1_SR_44K;
break;
case 48000:
regval = WM8994_AIF1_SR_48K;
break;
/* If these frequencies should be added, the sample rate
* would need to be changed to 32 bit throughout the code
*/
#if 0
case 88200:
regval = WM8994_AIF1_SR_88K;
break;
case 96000:
regval = WM8994_AIF1_SR_96K;
break;
#endif
default:
regval = WM8994_AIF1_SR_11K; /* 11025 as default */
}
/* AIF1CLK / fs ratio = 256 */
regval |= WM8994_AIF1CLK_RATE_3;
wm8994_writereg(priv, WM8994_AIF1_RATE, regval);
}
2020-11-28 10:02:11 +01:00
/* Name: wm8994_scalevolume
*
* Description:
* Set the right and left volume values in the WM8994 device based
* on the current volume and balance settings.
*
*/
#ifndef CONFIG_AUDIO_EXCLUDE_VOLUME
static inline uint16_t wm8994_scalevolume(uint16_t volume, b16_t scale)
{
return b16toi((b16_t)volume * scale);
}
#endif
/****************************************************************************
* Name: wm8994_setvolume
2020-11-28 10:02:11 +01:00
*
* Description:
* Set the right and left volume values in the WM8994 device based on the
* current volume and balance settings.
2020-11-28 10:02:11 +01:00
*
****************************************************************************/
#ifndef CONFIG_AUDIO_EXCLUDE_VOLUME
static void wm8994_setvolume(FAR struct wm8994_dev_s *priv, uint16_t volume,
bool mute)
{
uint32_t leftlevel;
uint32_t rightlevel;
uint16_t regval;
audinfo("volume=%u mute=%u\n", volume, mute);
#ifndef CONFIG_AUDIO_EXCLUDE_BALANCE
/* Calculate the left channel volume level {0..1000} */
if (priv->balance <= (b16HALF - 1))
{
leftlevel = volume;
}
else if (priv->balance == (b16ONE - 1))
{
leftlevel = 0;
}
else
{
/* Note: b16ONE - balance goes from 0 to 0.5.
* Hence need to multiply volume by 2!
*/
leftlevel = wm8994_scalevolume(2 * volume,
b16ONE - (b16_t)priv->balance);
}
/* Calculate the right channel volume level {0..1000} */
if (priv->balance >= (b16HALF - 1))
{
rightlevel = volume;
}
else if (priv->balance == 0)
{
rightlevel = 0;
}
else
{
/* Note: b16ONE - balance goes from 0 to 0.5.
* Hence need to multiply volume by 2!
*/
rightlevel = wm8994_scalevolume(2 * volume,
(b16_t)priv->balance);
}
#else
leftlevel = priv->volume;
rightlevel = priv->volume;
#endif
/* Set the volume */
regval = WM8994_HPOUT1_VU_ENABLED | WM8994_HPOUT1L_VOL(leftlevel);
if (!mute)
{
regval |= WM8994_HPOUT1L_MUTE_N_NO;
}
wm8994_writereg(priv, WM8994_LEFT_OUTPUT_VOL, regval);
wm8994_writereg(priv, WM8994_SPEAKER_VOL_LEFT, regval);
regval = WM8994_HPOUT1_VU_ENABLED | WM8994_HPOUT1R_VOL(rightlevel);
if (!mute)
{
regval |= WM8994_HPOUT1R_MUTE_N_NO;
}
wm8994_writereg(priv, WM8994_RIGHT_OUTPUT_VOL, regval);
wm8994_writereg(priv, WM8994_SPEAKER_VOL_RIGHT, regval);
/* Remember the volume level and mute settings */
priv->volume = volume;
priv->mute = mute;
}
#endif /* CONFIG_AUDIO_EXCLUDE_VOLUME */
/****************************************************************************
* Name: wm8994_setbass
2020-11-28 10:02:11 +01:00
*
* Description:
* Set the bass level.
2020-11-28 10:02:11 +01:00
*
* The level and range are in whole percentage levels (0-100).
2020-11-28 10:02:11 +01:00
*
****************************************************************************/
#ifndef CONFIG_AUDIO_EXCLUDE_TONE
static void wm8994_setbass(FAR struct wm8994_dev_s *priv, uint8_t bass)
{
audinfo("bass=%u\n", bass);
#warning Missing logic
}
#endif /* CONFIG_AUDIO_EXCLUDE_TONE */
/****************************************************************************
* Name: wm8994_settreble
2020-11-28 10:02:11 +01:00
*
* Description:
* Set the treble level .
2020-11-28 10:02:11 +01:00
*
* The level and range are in whole percentage levels (0-100).
2020-11-28 10:02:11 +01:00
*
****************************************************************************/
#ifndef CONFIG_AUDIO_EXCLUDE_TONE
static void wm8994_settreble(FAR struct wm8994_dev_s *priv, uint8_t treble)
{
audinfo("treble=%u\n", treble);
#warning Missing logic
}
#endif /* CONFIG_AUDIO_EXCLUDE_TONE */
/****************************************************************************
* Name: wm8994_setdatawidth
2020-11-28 10:02:11 +01:00
*
* Description:
* Set the 8- or 16-bit data modes
2020-11-28 10:02:11 +01:00
*
****************************************************************************/
static void wm8994_setdatawidth(FAR struct wm8994_dev_s *priv)
{
/* TODO */
}
/* Name: wm8994_setbitrate
2020-11-28 10:02:11 +01:00
*
* Description:
* Enter callback function to let the board set
* the I2S Frequency appropriately.
2020-11-28 10:02:11 +01:00
*
* TODO: Currently the FLL is not used as in the current application
* the WM8994 will operate in Slave mode. Code snippet
* may be helpful to generalize this code to multiple
* outputs and other I2S frame formats.
2020-11-28 10:02:11 +01:00
*/
static void wm8994_setbitrate(FAR struct wm8994_dev_s *priv)
{
uint32_t fout;
unsigned int framelen;
2020-11-28 10:02:11 +01:00
DEBUGASSERT(priv && priv->lower);
/* First calculate the desired bitrate (fout). This is based on
*
* 1. The I2S frame length (in bits)
* 2. The number of frames per second = nchannels * samplerate
*
*/
framelen = (priv->bpsamp == 8) ? WM8994_FRAMELEN8 : WM8994_FRAMELEN16;
fout = (uint32_t)priv->samprate * (uint32_t)priv->nchannels * framelen;
audinfo("sample rate=%u nchannels=%u bpsamp=%u framelen=%d fout=%lu\n",
priv->samprate, priv->nchannels, priv->bpsamp, framelen,
(unsigned long)fout);
/* The WM8994 does have an internal FLL
* However, for the application here, the STM32 I2S PLL is used
* Only way to achieve right clock rate is by setting the
* SAI clock accordingly (for STM32F746G Discovery)
*
* TODO: Generalize.
*/
wm8994_setsamplefreq(priv);
I2S_RXSAMPLERATE(priv->i2s, priv->samprate);
2020-11-28 10:02:11 +01:00
}
/* Name: wm8994_getcaps
*
* Description:
* Get the audio device capabilities
*
*/
static int wm8994_getcaps(FAR struct audio_lowerhalf_s *dev, int type,
FAR struct audio_caps_s *caps)
{
/* Validate the structure */
DEBUGASSERT(caps && caps->ac_len >= sizeof(struct audio_caps_s));
audinfo("type=%d ac_type=%d\n", type, caps->ac_type);
/* Fill in the caller's structure based on requested info */
caps->ac_format.hw = 0;
caps->ac_controls.w = 0;
switch (caps->ac_type)
{
/* Caller is querying for the types of units we support */
case AUDIO_TYPE_QUERY:
/* Provide our overall capabilities. The interfacing software
* must then call us back for specific info for each capability.
*/
caps->ac_channels = 2; /* Stereo output */
switch (caps->ac_subtype)
{
case AUDIO_TYPE_QUERY:
/* We don't decode any formats! Only something above us in
* the audio stream can perform decoding on our behalf.
*/
/* The types of audio units we implement */
caps->ac_controls.b[0] =
AUDIO_TYPE_OUTPUT | AUDIO_TYPE_FEATURE |
AUDIO_TYPE_PROCESSING;
break;
case AUDIO_FMT_MIDI:
/* We only support Format 0 */
caps->ac_controls.b[0] = AUDIO_SUBFMT_END;
break;
default:
caps->ac_controls.b[0] = AUDIO_SUBFMT_END;
break;
}
break;
/* Provide capabilities of our OUTPUT unit */
case AUDIO_TYPE_OUTPUT:
caps->ac_channels = 2;
switch (caps->ac_subtype)
{
case AUDIO_TYPE_QUERY:
/* Report the Sample rates we support */
caps->ac_controls.b[0] =
AUDIO_SAMP_RATE_8K | AUDIO_SAMP_RATE_11K |
AUDIO_SAMP_RATE_16K | AUDIO_SAMP_RATE_22K |
AUDIO_SAMP_RATE_32K | AUDIO_SAMP_RATE_44K |
AUDIO_SAMP_RATE_48K;
break;
case AUDIO_FMT_MP3:
case AUDIO_FMT_WMA:
case AUDIO_FMT_PCM:
break;
default:
break;
}
break;
/* Provide capabilities of our FEATURE units */
case AUDIO_TYPE_FEATURE:
/* If the sub-type is UNDEF,
* then report the Feature Units we support
*/
if (caps->ac_subtype == AUDIO_FU_UNDEF)
{
/* Fill in the ac_controls section with
* the Feature Units we have
*/
caps->ac_controls.b[0] = AUDIO_FU_VOLUME | AUDIO_FU_BASS |
AUDIO_FU_TREBLE;
caps->ac_controls.b[1] = AUDIO_FU_BALANCE >> 8;
}
else
{
/* TODO: Do we need to provide specific info for the Feature
* Units, such as volume setting ranges, etc.?
*/
}
break;
/* Provide capabilities of our PROCESSING unit */
case AUDIO_TYPE_PROCESSING:
switch (caps->ac_subtype)
{
case AUDIO_PU_UNDEF:
/* Provide the type of Processing Units we support */
caps->ac_controls.b[0] = AUDIO_PU_STEREO_EXTENDER;
break;
case AUDIO_PU_STEREO_EXTENDER:
/* Provide capabilities of our Stereo Extender */
caps->ac_controls.b[0] =
AUDIO_STEXT_ENABLE | AUDIO_STEXT_WIDTH;
break;
default:
/* Other types of processing uint we don't support */
break;
}
break;
/* All others we don't support */
default:
/* Zero out the fields to indicate no support */
caps->ac_subtype = 0;
caps->ac_channels = 0;
break;
}
/* Return the length of the audio_caps_s struct for validation of
* proper Audio device type.
*/
return caps->ac_len;
2020-11-28 10:02:11 +01:00
}
/* Name: wm8994_configure
*
* Description:
* Configure the audio device for the specified mode of operation.
*
*/
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_configure(FAR struct audio_lowerhalf_s *dev,
FAR void *session,
FAR const struct audio_caps_s *caps)
#else
static int wm8994_configure(FAR struct audio_lowerhalf_s *dev,
FAR const struct audio_caps_s *caps)
#endif
{
FAR struct wm8994_dev_s *priv = (FAR struct wm8994_dev_s *)dev;
int ret = OK;
DEBUGASSERT(priv != NULL && caps != NULL);
audinfo("ac_type: %d\n", caps->ac_type);
/* Process the configure operation */
switch (caps->ac_type)
{
case AUDIO_TYPE_FEATURE:
audinfo(" AUDIO_TYPE_FEATURE\n");
/* Process based on Feature Unit */
switch (caps->ac_format.hw)
{
#ifndef CONFIG_AUDIO_EXCLUDE_VOLUME
case AUDIO_FU_VOLUME:
{
/* Set the volume */
uint16_t volume = caps->ac_controls.hw[0];
audinfo(" Volume: %d\n", volume);
if (volume >= 0 && volume <= 1000)
{
/* Scale the volume setting to the range {0.. 63} */
wm8994_setvolume(priv, (63 * volume / 1000), priv->mute);
}
else
{
ret = -EDOM;
}
}
break;
#endif /* CONFIG_AUDIO_EXCLUDE_VOLUME */
#ifndef CONFIG_AUDIO_EXCLUDE_BALANCE
case AUDIO_FU_BALANCE:
{
/* Set the balance. The percentage level (0-100) is in the
* ac_controls.b[0] parameter.
*/
uint16_t balance = caps->ac_controls.hw[0];
audinfo(" Balance: %d\n", balance);
if (balance >= 0 && balance <= 1000)
{
/* Scale the volume setting to the range {0.. 63} */
priv->balance = (balance * (b16ONE - 1)) / 1000;
wm8994_setvolume(priv, priv->volume, priv->mute);
}
else
{
ret = -EDOM;
}
}
break;
#endif /* CONFIG_AUDIO_EXCLUDE_BALANCE */
#ifndef CONFIG_AUDIO_EXCLUDE_TONE
case AUDIO_FU_BASS:
{
/* Set the bass. The percentage level (0-100) is in the
* ac_controls.b[0] parameter.
*/
uint8_t bass = caps->ac_controls.b[0];
audinfo(" Bass: %d\n", bass);
if (bass <= 100)
{
wm8994_setbass(priv, bass);
}
else
{
ret = -EDOM;
}
}
break;
case AUDIO_FU_TREBLE:
{
/* Set the treble. The percentage level (0-100) is in the
* ac_controls.b[0] parameter.
*/
uint8_t treble = caps->ac_controls.b[0];
audinfo(" Treble: %d\n", treble);
if (treble <= 100)
{
wm8994_settreble(priv, treble);
}
else
{
ret = -EDOM;
}
}
break;
#endif /* CONFIG_AUDIO_EXCLUDE_TONE */
default:
auderr(" ERROR: Unrecognized feature unit\n");
ret = -ENOTTY;
break;
}
break;
case AUDIO_TYPE_OUTPUT:
{
audinfo(" AUDIO_TYPE_OUTPUT:\n");
audinfo(" Number of channels: %u\n", caps->ac_channels);
audinfo(" Sample rate: %u\n", caps->ac_controls.hw[0]);
audinfo(" Sample width: %u\n", caps->ac_controls.b[2]);
/* Verify that all of the requested values are supported */
ret = -ERANGE;
if (caps->ac_channels != 1 && caps->ac_channels != 2)
{
auderr("ERROR: Unsupported number of channels: %d\n",
caps->ac_channels);
break;
}
if (caps->ac_controls.b[2] != 8 && caps->ac_controls.b[2] != 16)
{
auderr("ERROR: Unsupported bits per sample: %d\n",
caps->ac_controls.b[2]);
break;
}
/* Save the current stream configuration */
priv->samprate = caps->ac_controls.hw[0];
priv->nchannels = caps->ac_channels;
priv->bpsamp = caps->ac_controls.b[2];
/* Reconfigure the FLL to support the resulting number or channels,
* bits per sample, and bitrate.
*/
wm8994_setdatawidth(priv);
wm8994_setbitrate(priv);
wm8994_clock_analysis(&priv->dev, "AUDIO_TYPE_OUTPUT");
ret = OK;
}
break;
case AUDIO_TYPE_PROCESSING:
break;
}
2020-11-28 10:02:11 +01:00
return ret;
}
/* Name: wm8994_shutdown
*
* Description:
* Shutdown the WM8994 chip and put it in the lowest power state possible.
*
*/
static int wm8994_shutdown(FAR struct audio_lowerhalf_s *dev)
{
FAR struct wm8994_dev_s *priv = (FAR struct wm8994_dev_s *)dev;
DEBUGASSERT(priv);
/* First disable interrupts */
WM8994_DISABLE(priv->lower);
/* Now issue a software reset. This puts all WM8994 registers back in
* their default state.
*/
wm8994_hw_reset(priv);
return OK;
}
/* Name: wm8994_senddone
*
* Description:
* This is the I2S callback function that is invoked when the transfer
* completes.
*
*/
static void wm8994_senddone(FAR struct i2s_dev_s *i2s,
FAR struct ap_buffer_s *apb, FAR void *arg,
int result)
{
FAR struct wm8994_dev_s *priv = (FAR struct wm8994_dev_s *)arg;
struct audio_msg_s msg;
irqstate_t flags;
int ret;
DEBUGASSERT(i2s && priv && priv->running && apb);
audinfo("apb=%p inflight=%d result=%d\n", apb, priv->inflight, result);
/* We do not place any restriction on the context in which this function
* is called. It may be called from an interrupt handler. Therefore, the
* doneq and in-flight values might be accessed from the interrupt level.
* Not the best design. But we will use interrupt controls to protect
* against that possibility.
*/
flags = enter_critical_section();
/* Add the completed buffer to the end of our doneq. We do not yet
* decrement the reference count.
*/
dq_addlast((FAR dq_entry_t *)apb, &priv->doneq);
/* And decrement the number of buffers in-flight */
DEBUGASSERT(priv->inflight > 0);
priv->inflight--;
/* Save the result of the transfer */
/* REVISIT: This can be overwritten */
priv->result = result;
leave_critical_section(flags);
/* Now send a message to the worker thread, informing it that there are
* buffers in the done queue that need to be cleaned up.
*/
msg.msg_id = AUDIO_MSG_COMPLETE;
ret = file_mq_send(&priv->mq, (FAR const char *)&msg, sizeof(msg),
CONFIG_WM8994_MSG_PRIO);
2020-11-28 10:02:11 +01:00
if (ret < 0)
{
auderr("ERROR: file_mq_send failed: %d\n", ret);
2020-11-28 10:02:11 +01:00
}
}
/* Name: wm8994_returnbuffers
*
* Description:
* This function is called after the complete of one or more data
* transfers. This function will empty the done queue and release our
* reference to each buffer.
*
*/
static void wm8994_returnbuffers(FAR struct wm8994_dev_s *priv)
{
FAR struct ap_buffer_s *apb;
irqstate_t flags;
/* The doneq and in-flight values might be accessed from the interrupt
* level in some implementations. Not the best design. But we will
* use interrupt controls to protect against that possibility.
*/
flags = enter_critical_section();
while (dq_peek(&priv->doneq) != NULL)
{
/* Take the next buffer from the queue of completed transfers */
apb = (FAR struct ap_buffer_s *)dq_remfirst(&priv->doneq);
leave_critical_section(flags);
audinfo("Returning: apb=%p curbyte=%d nbytes=%d flags=%04x\n",
apb, apb->curbyte, apb->nbytes, apb->flags);
/* Are we returning the final buffer in the stream? */
if ((apb->flags & AUDIO_APB_FINAL) != 0)
{
/* Both the pending and the done queues should be empty and there
* should be no buffers in-flight.
*/
DEBUGASSERT(dq_empty(&priv->doneq) && dq_empty(&priv->pendq) &&
priv->inflight == 0);
/* Set the terminating flag. This will, eventually, cause the
* worker thread to exit (if it is not already terminating).
*/
audinfo("Terminating\n");
priv->terminating = true;
}
/* Release our reference to the audio buffer */
apb_free(apb);
/* Send the buffer back up to the previous level. */
#ifdef CONFIG_AUDIO_MULTI_SESSION
priv->dev.upper(priv->dev.priv, AUDIO_CALLBACK_DEQUEUE, apb, OK, NULL);
#else
priv->dev.upper(priv->dev.priv, AUDIO_CALLBACK_DEQUEUE, apb, OK);
#endif
flags = enter_critical_section();
}
leave_critical_section(flags);
}
/* Name: wm8994_sendbuffer
*
* Description:
* Start the transfer an audio buffer to the WM8994 via I2S. This
* will not wait for the transfer to complete but will return immediately.
* the wmd8994_senddone called will be invoked when the transfer
* completes, stimulating the worker thread to call this function again.
*
*/
static int wm8994_sendbuffer(FAR struct wm8994_dev_s *priv)
{
FAR struct ap_buffer_s *apb;
irqstate_t flags;
uint32_t timeout;
int shift;
int ret = OK;
/* Loop while there are audio buffers to be sent and we have few than
* CONFIG_WM8994_INFLIGHT then "in-flight"
*
* The 'inflight' value might be modified from the interrupt level in some
* implementations. We will use interrupt controls to protect against
* that possibility.
*
* The 'pendq', on the other hand, is protected via a semaphore. Let's
* hold the semaphore while we are busy here and disable the interrupts
* only while accessing 'inflight'.
*/
ret = nxmutex_lock(&priv->pendlock);
if (ret < 0)
{
return ret;
}
2020-11-28 10:02:11 +01:00
while (priv->inflight < CONFIG_WM8994_INFLIGHT &&
dq_peek(&priv->pendq) != NULL && !priv->paused)
{
/* Take next buffer from the queue of pending transfers */
apb = (FAR struct ap_buffer_s *)dq_remfirst(&priv->pendq);
audinfo("Sending apb=%p, size=%d inflight=%d\n",
apb, apb->nbytes, priv->inflight);
/* Increment the number of buffers in-flight before sending in order
* to avoid a possible race condition.
*/
flags = enter_critical_section();
priv->inflight++;
leave_critical_section(flags);
/* Send the entire audio buffer via I2S. What is a reasonable timeout
* to use? This would depend on the bit rate and size of the buffer.
*
* Samples in the buffer (samples):
* = buffer_size * 8 / bpsamp samples
* Sample rate (samples/second):
* = samplerate * nchannels
* Expected transfer time (seconds):
* = (buffer_size * 8) / bpsamp / samplerate / nchannels
*
* We will set the timeout about twice that.
*
* NOTES:
* - The multiplier of 8 becomes 16000 for 2x and units of
* milliseconds.
* - 16000 is a approximately 16384 (1 << 14), bpsamp is either
* (1 << 3) or (1 << 4), and nchannels is either (1 << 0) or
* (1 << 1). So this can be simplifies to (milliseconds):
*
* = (buffer_size << shift) / samplerate
*/
shift = (priv->bpsamp == 8) ? 14 - 3 : 14 - 4;
shift -= (priv->nchannels > 1) ? 1 : 0;
timeout = MSEC2TICK(((uint32_t)(apb->nbytes - apb->curbyte) << shift) /
(uint32_t)priv->samprate);
ret = I2S_SEND(priv->i2s, apb, wm8994_senddone, priv, timeout);
if (ret < 0)
{
auderr("ERROR: I2S_SEND failed: %d\n", ret);
break;
}
}
nxmutex_unlock(&priv->pendlock);
2020-11-28 10:02:11 +01:00
return ret;
}
/* Name: wm8994_start
*
* Description:
* Start the configured operation (audio streaming, volume enabled, etc.).
*
*/
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_start(FAR struct audio_lowerhalf_s *dev, FAR void *session)
#else
static int wm8994_start(FAR struct audio_lowerhalf_s *dev)
#endif
{
FAR struct wm8994_dev_s *priv = (FAR struct wm8994_dev_s *)dev;
struct sched_param sparam;
struct mq_attr attr;
pthread_attr_t tattr;
FAR void *value;
int ret;
audinfo("Entry\n");
/* Exit reduced power modes of operation */
/* REVISIT */
/* Create a message queue for the worker thread */
snprintf(priv->mqname, sizeof(priv->mqname), "/tmp/%p", priv);
attr.mq_maxmsg = 16;
attr.mq_msgsize = sizeof(struct audio_msg_s);
attr.mq_curmsgs = 0;
attr.mq_flags = 0;
ret = file_mq_open(&priv->mq, priv->mqname, O_RDWR | O_CREAT, 0644, &attr);
if (ret < 0)
2020-11-28 10:02:11 +01:00
{
/* Error creating message queue! */
auderr("ERROR: Couldn't allocate message queue\n");
return ret;
2020-11-28 10:02:11 +01:00
}
/* Join any old worker thread we had created to prevent a memory leak */
if (priv->threadid != 0)
{
audinfo("Joining old thread\n");
pthread_join(priv->threadid, &value);
}
/* Start our thread for sending data to the device */
pthread_attr_init(&tattr);
sparam.sched_priority = sched_get_priority_max(SCHED_FIFO) - 3;
pthread_attr_setschedparam(&tattr, &sparam);
pthread_attr_setstacksize(&tattr, CONFIG_WM8994_WORKER_STACKSIZE);
2020-11-28 10:02:11 +01:00
audinfo("Starting worker thread\n");
ret = pthread_create(&priv->threadid, &tattr, wm8994_workerthread,
(pthread_addr_t)priv);
if (ret != OK)
{
auderr("ERROR: pthread_create failed: %d\n", ret);
}
else
{
pthread_setname_np(priv->threadid, "wm8994");
audinfo("Created worker thread\n");
}
return ret;
}
/* Name: wm8994_stop
*
* Description: Stop the configured operation (audio streaming, volume
* disabled, etc.).
*
*/
#ifndef CONFIG_AUDIO_EXCLUDE_STOP
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_stop(FAR struct audio_lowerhalf_s *dev, FAR void *session)
#else
static int wm8994_stop(FAR struct audio_lowerhalf_s *dev)
#endif
{
FAR struct wm8994_dev_s *priv = (FAR struct wm8994_dev_s *)dev;
struct audio_msg_s term_msg;
FAR void *value;
/* Send a message to stop all audio streaming */
term_msg.msg_id = AUDIO_MSG_STOP;
term_msg.u.data = 0;
file_mq_send(&priv->mq, (FAR const char *)&term_msg,
sizeof(term_msg),
CONFIG_WM8994_MSG_PRIO);
2020-11-28 10:02:11 +01:00
/* Join the worker thread */
pthread_join(priv->threadid, &value);
priv->threadid = 0;
/* Enter into a reduced power usage mode */
/* REVISIT: */
return OK;
}
#endif
/* Name: wm8994_pause
*
* Description: Pauses the playback.
*
*/
#ifndef CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_pause(FAR struct audio_lowerhalf_s *dev, FAR void *session)
#else
static int wm8994_pause(FAR struct audio_lowerhalf_s *dev)
#endif
{
FAR struct wm8994_dev_s *priv = (FAR struct wm8994_dev_s *)dev;
if (priv->running && !priv->paused)
{
/* Disable interrupts to prevent us from suppling any more data */
priv->paused = true;
WM8994_DISABLE(priv->lower);
}
return OK;
}
#endif /* CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME */
/* Name: wm8994_resume
*
* Description: Resumes the playback.
*
*/
#ifndef CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_resume(FAR struct audio_lowerhalf_s *dev,
FAR void *session)
#else
static int wm8994_resume(FAR struct audio_lowerhalf_s *dev)
#endif
{
FAR struct wm8994_dev_s *priv = (FAR struct wm8994_dev_s *)dev;
if (priv->running && priv->paused)
{
priv->paused = false;
/* Enable interrupts to allow sampling data */
wm8994_sendbuffer(priv);
#ifdef WM8994_USE_FFLOCK_INT
WM8994_ENABLE(priv->lower);
#endif
}
return OK;
}
#endif /* CONFIG_AUDIO_EXCLUDE_PAUSE_RESUME */
/* Name: wm8994_enqueuebuffer
*
* Description: Enqueue an Audio Pipeline Buffer for playback/ processing.
*
*/
static int wm8994_enqueuebuffer(FAR struct audio_lowerhalf_s *dev,
FAR struct ap_buffer_s *apb)
{
FAR struct wm8994_dev_s *priv = (FAR struct wm8994_dev_s *)dev;
struct audio_msg_s term_msg;
int ret;
audinfo("Enqueueing: apb=%p curbyte=%d nbytes=%d flags=%04x\n",
apb, apb->curbyte, apb->nbytes, apb->flags);
/* Take a reference on the new audio buffer */
apb_reference(apb);
/* Add the new buffer to the tail of pending audio buffers */
ret = nxmutex_lock(&priv->pendlock);
if (ret < 0)
{
return ret;
}
2020-11-28 10:02:11 +01:00
apb->flags |= AUDIO_APB_OUTPUT_ENQUEUED;
dq_addlast(&apb->dq_entry, &priv->pendq);
nxmutex_unlock(&priv->pendlock);
2020-11-28 10:02:11 +01:00
/* Send a message to the worker thread indicating that a new buffer has
* been enqueued. If mq is NULL, then the playing has not yet started.
* In that case we are just "priming the pump" and we don't need to send
* any message.
2020-11-28 10:02:11 +01:00
*/
ret = OK;
if (priv->mq.f_inode != NULL)
2020-11-28 10:02:11 +01:00
{
term_msg.msg_id = AUDIO_MSG_ENQUEUE;
term_msg.u.data = 0;
ret = file_mq_send(&priv->mq, (FAR const char *)&term_msg,
sizeof(term_msg), CONFIG_WM8994_MSG_PRIO);
2020-11-28 10:02:11 +01:00
if (ret < 0)
{
auderr("ERROR: file_mq_send failed: %d\n", ret);
2020-11-28 10:02:11 +01:00
}
}
return ret;
}
/* Name: wm8994_cancelbuffer
2020-11-28 10:02:11 +01:00
*
* Description: Called when an enqueued buffer is being cancelled.
*
*/
static int wm8994_cancelbuffer(FAR struct audio_lowerhalf_s *dev,
FAR struct ap_buffer_s *apb)
{
audinfo("apb=%p\n", apb);
return OK;
}
/* Name: wm8994_ioctl
*
* Description: Perform a device ioctl
*
*/
static int wm8994_ioctl(FAR struct audio_lowerhalf_s *dev, int cmd,
unsigned long arg)
{
int ret = OK;
2020-11-28 10:02:11 +01:00
#ifdef CONFIG_AUDIO_DRIVER_SPECIFIC_BUFFERS
FAR struct ap_buffer_info_s *bufinfo;
#endif
/* Deal with ioctls passed from the upper-half driver */
switch (cmd)
{
/* Check for AUDIOIOC_HWRESET ioctl. This ioctl is passed straight
* through from the upper-half audio driver.
*/
case AUDIOIOC_HWRESET:
{
/* REVISIT: Should we completely re-initialize the chip? We
* can't just issue a software reset; that would puts all WM8994
* registers back in their default state.
*/
audinfo("AUDIOIOC_HWRESET:\n");
}
break;
/* Report our preferred buffer size and quantity */
#ifdef CONFIG_AUDIO_DRIVER_SPECIFIC_BUFFERS
case AUDIOIOC_GETBUFFERINFO:
{
audinfo("AUDIOIOC_GETBUFFERINFO:\n");
bufinfo = (FAR struct ap_buffer_info_s *) arg;
bufinfo->buffer_size = CONFIG_WM8994_BUFFER_SIZE;
bufinfo->nbuffers = CONFIG_WM8994_NUM_BUFFERS;
}
break;
#endif
default:
ret = -ENOTTY;
2020-11-28 10:02:11 +01:00
audinfo("Ignored\n");
break;
}
return ret;
2020-11-28 10:02:11 +01:00
}
/* Name: wm8994_reserve
*
* Description: Reserves a session (the only one we have).
*
*/
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_reserve(FAR struct audio_lowerhalf_s *dev,
FAR void **session)
#else
static int wm8994_reserve(FAR struct audio_lowerhalf_s *dev)
#endif
{
FAR struct wm8994_dev_s *priv = (FAR struct wm8994_dev_s *) dev;
int ret = OK;
/* Borrow the APBQ mutex for thread sync */
2020-11-28 10:02:11 +01:00
nxmutex_lock(&priv->pendlock);
2020-11-28 10:02:11 +01:00
if (priv->reserved)
{
ret = -EBUSY;
}
else
{
/* Initialize the session context */
#ifdef CONFIG_AUDIO_MULTI_SESSION
*session = NULL;
#endif
priv->inflight = 0;
priv->running = false;
priv->paused = false;
#ifndef CONFIG_AUDIO_EXCLUDE_STOP
priv->terminating = false;
#endif
priv->reserved = true;
}
nxmutex_unlock(&priv->pendlock);
2020-11-28 10:02:11 +01:00
return ret;
}
/* Name: wm8994_release
*
* Description: Releases the session (the only one we have).
*
*/
#ifdef CONFIG_AUDIO_MULTI_SESSION
static int wm8994_release(FAR struct audio_lowerhalf_s *dev,
FAR void *session)
#else
static int wm8994_release(FAR struct audio_lowerhalf_s *dev)
#endif
{
FAR struct wm8994_dev_s *priv = (FAR struct wm8994_dev_s *)dev;
void *value;
/* Join any old worker thread we had created to prevent a memory leak */
if (priv->threadid != 0)
{
pthread_join(priv->threadid, &value);
priv->threadid = 0;
}
/* Borrow the APBQ mutex for thread sync */
2020-11-28 10:02:11 +01:00
nxmutex_lock(&priv->pendlock);
2020-11-28 10:02:11 +01:00
/* Really we should free any queued buffers here */
priv->reserved = false;
nxmutex_unlock(&priv->pendlock);
2020-11-28 10:02:11 +01:00
return OK;
}
/* Name: wm8994_interrupt_work
*
* Description:
* WM8994 interrupt actions cannot be performed in the interrupt handler
* because I2C access is not possible in that context. Instead, all I2C
* operations are deferred to the work queue.
*
* Assumptions:
* WM8994 interrupts were disabled in the interrupt handler.
*
*/
#ifdef WM8994_USE_FFLOCK_INT
static void wm8994_interrupt_work(FAR void *arg)
{
FAR struct wm8994_dev_s *priv = (FAR struct wm8994_dev_s *)arg;
uint16_t regval;
DEBUGASSERT(priv && priv->lower);
/* Sample the interrupt status */
/* regval = wm8994_readreg(priv, WM8994_INT_STATUS); */
audinfo("INT_STATUS: %04x\n", regval);
/* Check for the FLL lock interrupt. We are sloppy here since at
* present, only the FLL lock interrupt is used.
*/
DEBUGASSERT((regval & WM8994_FLL_LOCK_INT) != 0 && !priv->locked);
UNUSED(regval);
priv->locked = true;
/* Clear all pending interrupts by write 1's to the interrupt status
* register.
*
* REVISIT: Since I2C is slow and not atomic with respect to WM8994 event,
* could this not cause the lost of interrupts?
*/
/* wm8994_writereg(priv, WM8994_INT_STATUS, WM8994_ALL_INTS); */
/* Disable further FLL lock interrupts. We are sloppy here since at
* present, only the FLL lock interrupt is used.
*/
/* wm8994_writereg(priv, WM8994_INT_MASK, WM8994_ALL_INTS); */
#ifdef WM8994_USE_FFLOCK_INT
/* Re-enable WM8994 interrupts */
WM8994_ENABLE(priv->lower);
#endif
}
#endif
/* Name: wm8994_interrupt
*
* Description:
* This is the ISR that services the GPIO1/IRQ pin from the WM8994. It
* signals WM8994 events such FLL lock.
*
*/
#ifdef WM8994_USE_FFLOCK_INT
static int wm8994_interrupt(FAR const struct wm8994_lower_s *lower,
FAR void *arg)
{
FAR struct wm8994_dev_s *priv = (FAR struct wm8994_dev_s *)arg;
int ret;
DEBUGASSERT(lower && priv);
/* Disable further interrupts and perform all interrupt related activities
* on the work thread. There is nothing that we can do from the interrupt
* handler because we cannot perform I2C operations here.
*/
WM8994_DISABLE(priv->lower);
DEBUGASSERT(work_available(&priv->work));
ret = work_queue(LPWORK, &priv->work, wm8994_interrupt_work, priv, 0);
if (ret < 0)
{
auderr("ERROR: Failed to schedule work\n");
}
return OK;
}
#endif
/* Name: wm8994_workerthread
*
* This is the thread that feeds data to the chip and keeps the audio
* stream going.
*
*/
static void *wm8994_workerthread(pthread_addr_t pvarg)
{
FAR struct wm8994_dev_s *priv = (struct wm8994_dev_s *) pvarg;
struct audio_msg_s msg;
FAR struct ap_buffer_s *apb;
int msglen;
unsigned int prio;
audinfo("Entry\n");
#ifndef CONFIG_AUDIO_EXCLUDE_STOP
priv->terminating = false;
#endif
/* Mark ourself as running and make sure that WM8994 interrupts are
* enabled.
*/
priv->running = true;
#ifdef WM8994_USE_FFLOCK_INT
WM8994_ENABLE(priv->lower);
#endif
wm8994_setvolume(priv, priv->volume, false);
2020-11-28 10:02:11 +01:00
/* Loop as long as we are supposed to be running and as long as we have
* buffers in-flight.
*/
while (priv->running || priv->inflight > 0)
{
/* Check if we have been asked to terminate. e have to check if we
* still have buffers in-flight. If we do, then we can't stop until
* birds come back to roost.
*/
if (priv->terminating && priv->inflight <= 0)
{
/* We are IDLE. Break out of the loop and exit. */
break;
}
else
{
/* Check if we can send more audio buffers to the WM8994 */
wm8994_sendbuffer(priv);
}
/* Wait for messages from our message queue */
msglen = file_mq_receive(&priv->mq, (FAR char *)&msg,
sizeof(msg), &prio);
2020-11-28 10:02:11 +01:00
/* Handle the case when we return with no message */
if (msglen < sizeof(struct audio_msg_s))
{
auderr("ERROR: Message too small: %d\n", msglen);
continue;
}
/* Process the message */
switch (msg.msg_id)
{
/* The ISR has requested more data. We will catch this case at
* the top of the loop.
*/
case AUDIO_MSG_DATA_REQUEST:
audinfo("AUDIO_MSG_DATA_REQUEST\n");
break;
/* Stop the playback */
#ifndef CONFIG_AUDIO_EXCLUDE_STOP
case AUDIO_MSG_STOP:
/* Indicate that we are terminating */
audinfo("AUDIO_MSG_STOP: Terminating\n");
priv->terminating = true;
break;
#endif
/* We have a new buffer to send. We will catch this case at
* the top of the loop.
*/
case AUDIO_MSG_ENQUEUE:
audinfo("AUDIO_MSG_ENQUEUE\n");
break;
/* We will wake up from the I2S callback with this message */
case AUDIO_MSG_COMPLETE:
audinfo("AUDIO_MSG_COMPLETE\n");
wm8994_returnbuffers(priv);
break;
default:
auderr("ERROR: Ignoring message ID %d\n", msg.msg_id);
break;
}
}
/* Reset the WM8994 hardware */
wm8994_hw_reset(priv);
/* Return any pending buffers in our pending queue */
nxmutex_lock(&priv->pendlock);
2020-11-28 10:02:11 +01:00
while ((apb = (FAR struct ap_buffer_s *)dq_remfirst(&priv->pendq)) != NULL)
{
/* Release our reference to the buffer */
apb_free(apb);
/* Send the buffer back up to the previous level. */
#ifdef CONFIG_AUDIO_MULTI_SESSION
priv->dev.upper(priv->dev.priv, AUDIO_CALLBACK_DEQUEUE, apb, OK, NULL);
#else
priv->dev.upper(priv->dev.priv, AUDIO_CALLBACK_DEQUEUE, apb, OK);
#endif
}
nxmutex_unlock(&priv->pendlock);
2020-11-28 10:02:11 +01:00
/* Return any pending buffers in our done queue */
wm8994_returnbuffers(priv);
/* Close the message queue */
file_mq_close(&priv->mq);
file_mq_unlink(priv->mqname);
2020-11-28 10:02:11 +01:00
/* Send an AUDIO_MSG_COMPLETE message to the client */
#ifdef CONFIG_AUDIO_MULTI_SESSION
priv->dev.upper(priv->dev.priv, AUDIO_CALLBACK_COMPLETE, NULL, OK, NULL);
#else
priv->dev.upper(priv->dev.priv, AUDIO_CALLBACK_COMPLETE, NULL, OK);
#endif
audinfo("Exit\n");
return NULL;
}
/* Name: wm8994_audio_output
*
* Description:
* Initialize and configure the WM8994 device as an audio output device.
*
* Input Parameters:
* priv - A reference to the driver state structure
*
* Returned Value:
* None. No failures are detected.
*
*/
static void wm8994_audio_output(FAR struct wm8994_dev_s *priv)
{
uint16_t regval;
uint16_t cold_startup = 1;
2020-11-28 10:02:11 +01:00
/* Do not change! Currently only headphones are supported! */
2020-11-28 10:02:11 +01:00
uint16_t hp_out = 1;
uint16_t spk_out = 0;
/* Bias Control.
*/
regval = WM8994_STARTUP_BIAS_ENA |
WM8994_VMID_BUF_ENA |
WM8994_VMID_RAMP_SOFT_FAST_START;
wm8994_writereg(priv, WM8994_ANTI_POP2, regval);
/* VMID Control */
regval = WM8994_BIAS_ENA |
WM8994_VMID_SEL_2X40K;
wm8994_writereg(priv, WM8994_PM1, regval);
up_mdelay(40);
/* Path configuration for output
*
* Currently the DAC1 is used and configured for AIF1 Timeslot 0
* DAC2 and AIF1 Timeslot 1 remain unused
*/
/* Enable DAC1 (Left), Enable DAC1 (Right)
* Enable AIF1DAC1L (Left) input path (AIF1, TS0)
* Enable AIF1DAC1R (Right) input path (AIF1, TS0)
*/
regval = WM8994_AIF1DAC1L_ENA |
WM8994_AIF1DAC1R_ENA |
WM8994_DAC1L_ENA |
WM8994_DAC1R_ENA;
wm8994_writereg(priv, WM8994_PM5, regval);
/* Enable the AIF1 Timeslot 0 (Left) to DAC 1 (Left) mixer path */
regval = WM8994_AIF1DAC1L_TO_DAC1L_ENA;
wm8994_writereg(priv, WM8994_DAC1_LEFT_MIXER_ROUTING, regval);
/* Enable the AIF1 Timeslot 0 (Right) to DAC 1 (Right) mixer path */
regval = WM8994_AIF1DAC1R_TO_DAC1R_ENA;
wm8994_writereg(priv, WM8994_DAC1_RIGHT_MIXER_ROUTING, regval);
/* Disable the AIF1 Timeslot 1 (Left) to DAC 2 (Left) mixer path */
regval = 0x0000;
wm8994_writereg(priv, WM8994_DAC2_LEFT_MIXER_ROUTING, regval);
/* Disable the AIF1 Timeslot 1 (Right) to DAC 2 (Right) mixer path */
regval = 0x0000;
wm8994_writereg(priv, WM8994_DAC2_RIGHT_MIXER_ROUTING, regval);
/* Clock Rates 1.
*
* Contains settings the control the sample rate.
*
* Note:
* The AIF clock is directly related to the MCLK signal
* which is set to fs*256.
* As long as DAC_OSR128 is left off, according to
* Table 48, a constant AIFnCLK / Fs ratio of
* 256 works from 8kHz to 48kHz.
*/
wm8994_setbitrate(priv);
/* AIF1 Word Length = 16-bits, AIF1 Format = I2S (Default Register Value) */
regval = WM8994_AIF1ADCR_SRC |
WM8994_AIF1_FMT_I2S;
wm8994_writereg(priv, WM8994_AIF1_CTL1, regval);
/* Slave mode */
regval = 0x0000;
wm8994_writereg(priv, WM8994_AIF1_MASTER_SLAVE, regval);
/* Enable the DSP processing clock for AIF1, Enable the core clock */
regval = WM8994_SYSDSPCLK_ENA |
WM8994_AIF1DSPCLK_ENA;
wm8994_writereg(priv, WM8994_CLK1, regval);
/* Enable AIF1 Clock, AIF1 Clock Source = MCLK1 pin */
regval = WM8994_AIF1CLK_ENA;
wm8994_writereg(priv, WM8994_AIF1_CLK1, regval);
/* Select DAC1 (Left) to Left Headphone Output */
regval = WM8994_DAC1L_TO_HPOUT1L;
wm8994_writereg(priv, WM8994_OUTPUT_MIXER1, regval);
/* Select DAC1 (Right) to Right Headphone Output */
regval = WM8994_DAC1R_TO_HPOUT1R;
wm8994_writereg(priv, WM8994_OUTPUT_MIXER2, regval);
/* Startup sequence for Headphone */
if (cold_startup)
{
regval = WM8994_WSEQ_ENA |
WM8994_WSEQ_START |
(0x0 << WM8994_WSEQ_START_INDEX_SHIFT); /* Start Index = 0 */
wm8994_writereg(priv, WM8994_WR_CTL_SEQ1, regval);
up_mdelay(20);
/* Wait until sequencer indicates that sequence is completed */
regval = wm8994_readreg(priv, WM8994_WR_CTL_SEQ2);
while (regval & WM8994_WSEQ_BUSY)
{
regval = wm8994_readreg(priv, WM8994_WR_CTL_SEQ2);
up_mdelay(20);
}
/* TODO: Manage cold/warm start correctly */
cold_startup = 0;
}
else /* Headphone Warm Start-Up */
{
regval = WM8994_WSEQ_ENA |
WM8994_WSEQ_START |
(0x8 << WM8994_WSEQ_START_INDEX_SHIFT); /* Start Index = 8 */
wm8994_writereg(priv, WM8994_WR_CTL_SEQ1, regval);
up_mdelay(20);
/* Wait until sequencer indicates that sequence is completed */
regval = wm8994_readreg(priv, WM8994_WR_CTL_SEQ2);
while (regval & WM8994_WSEQ_BUSY)
{
regval = wm8994_readreg(priv, WM8994_WR_CTL_SEQ2);
up_mdelay(20);
}
}
/* Soft un-Mute the AIF1 Timeslot 0 DAC1 path L&R */
regval = 0x0000;
wm8994_writereg(priv, WM8994_AIF1_DAC1_FILTERS1, regval);
/* Enable SPKRVOL PGA, Enable SPKMIXR, Enable SPKLVOL PGA, Enable SPKMIXL */
regval = WM8994_SPKRVOL_ENA |
WM8994_SPKLVOL_ENA;
wm8994_writereg(priv, WM8994_PM3, regval);
/* Left Speaker Mixer Volume = 0dB */
regval = 0x0000;
wm8994_writereg(priv, WM8994_SPKMIXL_ATT, regval);
/* Speaker output mode = Class D,
* Right Speaker Mixer Volume = 0dB
*/
regval = 0x0000;
wm8994_writereg(priv, WM8994_SPKMIXR_ATT, regval);
if (spk_out)
{
/* Unmute DAC2 (Left) to Left Speaker Mixer (SPKMIXL) path,
* Unmute DAC2 (Right) to Right Speaker Mixer (SPKMIXR) path
*/
regval = WM8994_DAC2L_TO_SPKMIXL |
WM8994_DAC2R_TO_SPKMIXR;
wm8994_writereg(priv, WM8994_SPEAKER_MIXER, regval);
/* Enable bias generator, Enable VMID, Enable SPKOUTL, Enable SPKOUTR */
regval = WM8994_SPKOUTR_ENA |
WM8994_SPKOUTL_ENA |
WM8994_BIAS_ENA |
WM8994_VMID_SEL_2X40K;
wm8994_writereg(priv, WM8994_PM1, regval);
/* Enable Class W, Class W Envelope Tracking = AIF1 Timeslot 0 */
regval = wm8994_readreg(priv, WM8994_CLASS_W_1);
regval |= WM8994_CP_DYN_PWR;
wm8994_writereg(priv, WM8994_CLASS_W_1, regval);
}
/* Enable normal bias generator, Enable VMID */
regval = WM8994_BIAS_ENA |
WM8994_VMID_SEL_2X40K;
/* Enable speaker */
if (spk_out)
{
regval |= WM8994_SPKOUTR_ENA |
WM8994_SPKOUTL_ENA;
}
/* Enable HPOUT1 (Left) and
* Enable HPOUT1 (Right) input stages
*/
if (hp_out)
{
regval |= WM8994_HPOUT1L_ENA |
WM8994_HPOUT1R_ENA;
}
wm8994_writereg(priv, WM8994_PM1, regval);
/* Enable HPOUT1 (Left) and HPOUT1 (Right) intermediate stages */
regval = WM8994_HPOUT1L_DLY |
WM8994_HPOUT1R_DLY;
wm8994_writereg(priv, WM8994_ANA_HP1, regval);
/* Enable Charge Pump
* Note: The STM32Cube_FW_F7_V1.16.0 BSP driver included the
* number 9F25h as write value for this register. This is the
* default value + CP_ENA set.
*/
regval = wm8994_readreg(priv, WM8994_CHARGE_PUMP1);
regval |= WM8994_CP_ENA;
wm8994_writereg(priv, WM8994_CHARGE_PUMP1, regval);
/* Add Delay */
up_mdelay(15);
/* Select DAC1 (Left) to Left Headphone Output PGA (HPOUT1LVOL) path */
regval = WM8994_DAC1L_TO_MIXOUTL;
wm8994_writereg(priv, WM8994_OUTPUT_MIXER1, regval);
/* Select DAC1 (Right) to Right Headphone Output PGA (HPOUT1RVOL) path */
regval = WM8994_DAC1R_TO_MIXOUTR;
wm8994_writereg(priv, WM8994_OUTPUT_MIXER2, regval);
/* Enable Left Output Mixer (MIXOUTL),
* Enable Right Output Mixer (MIXOUTR),
* Enable SPKOUTL and SPKOUTR
*/
regval =
WM8994_MIXOUTL_ENA |
WM8994_MIXOUTR_ENA;
if (spk_out)
{
regval |= WM8994_SPKLVOL_ENA |
WM8994_SPKRVOL_ENA;
}
wm8994_writereg(priv, WM8994_PM3, regval);
/* Enable DC Servo and trigger start-up mode on left and right channels */
regval = WM8994_DCS_TRIG_STARTUP_1 |
WM8994_DCS_TRIG_STARTUP_0 |
WM8994_DCS_ENA_CHAN_1 |
WM8994_DCS_ENA_CHAN_0;
wm8994_writereg(priv, WM8994_DC_SERVO1, regval);
/* Add Delay */
up_mdelay(257);
/* Enable HPOUT1 (Left) and HPOUT1 (Right) intermediate and output stages.
* Remove clamps
*/
regval = WM8994_HPOUT1L_RMV_SHORT |
WM8994_HPOUT1L_OUTP |
WM8994_HPOUT1L_DLY |
WM8994_HPOUT1R_RMV_SHORT |
WM8994_HPOUT1R_OUTP |
WM8994_HPOUT1R_DLY;
wm8994_writereg(priv, WM8994_ANA_HP1, regval);
/* Set DAC 1 (Left) to volume 0xC0 */
if (hp_out)
{
regval = (0xc0 << WM8994_DAC1L_VOL_SHIFT);
wm8994_writereg(priv, WM8994_DAC1_LEFT_VOL, regval);
/* Set DAC 1 (Right) to volume 0xC0 */
regval = (0xc0 << WM8994_DAC1R_VOL_SHIFT);
wm8994_writereg(priv, WM8994_DAC1_RIGHT_VOL, regval);
/* Unmute the AIF1 Timeslot 0 DAC path */
regval = WM8994_AIF1DAC1_UNMUTE_RAMP;
wm8994_writereg(priv, WM8994_AIF1_DAC1_FILTERS1, regval);
}
if (spk_out)
{
/* Set DAC 2 (Left) to volume 0xC0 */
regval = (0xc0 << WM8994_DAC2L_VOL_SHIFT);
wm8994_writereg(priv, WM8994_DAC2_LEFT_VOL, regval);
/* Set DAC 2 (Right) to volume 0xC0 */
regval = (0xc0 << WM8994_DAC2R_VOL_SHIFT);
wm8994_writereg(priv, WM8994_DAC2_RIGHT_VOL, regval);
/* Unmute the AIF1 Timeslot 1 DAC2 path */
regval = WM8994_AIF1DAC2_UNMUTE_RAMP;
wm8994_writereg(priv, WM8994_AIF1_DAC2_FILTERS1, regval);
}
/* Volume Control */
wm8994_setvolume(priv, CONFIG_WM8994_INITVOLUME, true);
2020-11-28 10:02:11 +01:00
}
/* Name: wm8994_audio_input
*
* Description:
* Initialize and configure the WM8994 device as an audio output device
* (Right input only). wm8994_audio_output() must be called first, this
* function then modifies the configuration to support audio input.
*
* Input Parameters:
* priv - A reference to the driver state structure
*
* Returned Value:
* None. No failures are detected.
*
*/
#if 0 /* Not used */
static void wm8994_audio_input(FAR struct wm8994_dev_s *priv)
{
/* Analogue Left Input 0 */
wm8994_writereg(priv, WM8994_ANA_LEFT_IN0, WM8994_INMUTE);
/* Analogue Right Input 0 */
wm8994_writereg(priv, WM8994_ANA_RIGHT_IN0, WM8994_IN_VOL(5));
/* Analogue Left Input 1 */
wm8994_writereg(priv, WM8994_ANA_LEFT_IN1, 0);
/* Analogue Right Input 1 */
wm8994_writereg(priv, WM8994_ANA_RIGHT_IN1, WM8994_IP_SEL_N_IN2L);
}
#endif
/* Name: wm8994_configure_ints
*
* Description:
* Configure the GPIO/IRQ interrupt
*
* Input Parameters:
* priv - A reference to the driver state structure
*
* Returned Value:
* None
*
*/
#ifdef WM8994_USE_FFLOCK_INT
static void wm8994_configure_ints(FAR struct wm8994_dev_s *priv)
{
uint16_t regval;
/* Configure GPIO1 as an IRQ
*
* WM8994_GPIO1_PU=0 : No pull-up
* WM8994_GPIO1_PD=1 : Pulled-down
* WM8994_GPIO1_SEL_IRQ : Configured as IRQ
*/
/* Attach our handler to the GPIO1/IRQ interrupt */
WM8994_ATTACH(lower, wm8994_interrupt, priv);
/* Configure interrupts. wm8994_setbitrate() depends on FLL interrupts. */
}
#endif
/* Name: wm8994_hw_reset
*
* Description:
* Reset and re-initialize the WM8994
*
* Input Parameters:
* priv - A reference to the driver state structure
*
* Returned Value:
* None
*
*/
static void wm8994_hw_reset(FAR struct wm8994_dev_s *priv)
{
/* Put audio output back to its initial configuration */
priv->samprate = WM8994_DEFAULT_SAMPRATE;
priv->nchannels = WM8994_DEFAULT_NCHANNELS;
priv->bpsamp = WM8994_DEFAULT_BPSAMP;
#if !defined(CONFIG_AUDIO_EXCLUDE_VOLUME) && !defined(CONFIG_AUDIO_EXCLUDE_BALANCE)
priv->balance = b16HALF - 1; /* Center balance */
2020-11-28 10:02:11 +01:00
#endif
/* Software reset. This puts all WM8994 registers back in their
* default state.
*/
/* 0x0000 = 0 */
wm8994_writereg(priv, WM8994_SWRST, 0);
/* wm8994 Errata Work-Arounds */
/* Note: Initially from STM32Cube_FW_F7_V1.15.0.
* The write to 0x56 comes from Linux (drivers/mfd/wm8994-core.c),
* where it is found for wm8994_revc_patch. Neither
* register 0x56 nor 0x817 is documented.
*/
2020-11-28 10:02:11 +01:00
wm8994_writereg(priv, 0x102, 0x0003);
wm8994_writereg(priv, 0x56, 0x0003);
2020-11-28 10:02:11 +01:00
wm8994_writereg(priv, 0x817, 0x0000);
wm8994_writereg(priv, 0x102, 0x0000);
/* TODO: This code was left in here as reference for
* enabling input functionality and multiple outputs
* Currently not used
*/
#if 0
2020-11-28 10:02:11 +01:00
/* regval=0x006c */
regval = WM8994_VMID_RAMP_SOFT_FAST_START | WM8994_VMID_BUF_ENA
| WM8994_STARTUP_BIAS_ENA;
/* 0x39 = 0x006c */
wm8994_writereg(priv, WM8994_ANTI_POP2, regval);
if (WM8994_DEFAULT_INPUT_DEVICE > 0)
regval = 0x0013;
else
regval = 0x0003;
/* 0x01 = 0x0013 */
wm8994_writereg(priv, WM8994_PM1, regval);
up_mdelay(50);
/* Configure the WM8994 hardware as an audio output device */
wm8994_audio_output(priv);
{
switch (WM8994_DEFAULT_OUTPUT_DEVICE)
{
case WM8994_OUTPUT_DEVICE_SPEAKER:
/* regval = 0x0c0c */
/* regval = WM8994_AIF1_DAC2L_ENA | WM8994_AIF1_DAC2R_ENA
* | WM8994_DAC2L_ENA | WM8994_DAC2R_ENA;
*/
regval = 0x0c0c;
wm8994_writereg(priv, WM8994_PM5, regval); /* 0x05 */
/* regval = 0x0000 */
regval = 0;
/* 0x601 = 0x0000 */
wm8994_writereg(priv, WM8994_DAC1_LEFT_MIXER_ROUTING, regval);
regval = 0; /* regval = 0x0000 */
/* 0x602 = 0x0000 */
wm8994_writereg(priv, WM8994_DAC1_RIGHT_MIXER_ROUTING, regval);
regval = WM8994_AIF1DAC2L_TO_DAC2L_ENA; /* regval = 0x0002 */
/* 0x604=0x0002 */
wm8994_writereg(priv, WM8994_DAC2_LEFT_MIXER_ROUTING, regval);
regval = WM8994_AIF1DAC2R_TO_DAC2R_ENA; /* regval = 0x0002 */
/* 0x605=0x0002 */
wm8994_writereg(priv, WM8994_DAC2_RIGHT_MIXER_ROUTING, regval);
break;
case WM8994_OUTPUT_DEVICE_HEADPHONE:
/* regval = WM8994_AIF1_DAC1L_ENA | WM8994_AIF1_DAC1R_ENA
* | WM8994_DAC1L_ENA | WM8994_DAC1R_ENA;
*/
regval = 0x0303;
wm8994_writereg(priv, WM8994_PM5, regval); /* 0x05 = 0x0303 */
regval = WM8994_AIF1DAC1L_TO_DAC1L_ENA;
wm8994_writereg(priv, WM8994_DAC1_LEFT_MIXER_ROUTING, regval); /* 0x601=0x0001 */
regval = WM8994_AIF1DAC1R_TO_DAC1R_ENA;
wm8994_writereg(priv, WM8994_DAC1_RIGHT_MIXER_ROUTING, regval); /* 0x602=0x0001 */
regval = 0;
wm8994_writereg(priv, WM8994_DAC2_LEFT_MIXER_ROUTING, regval); /* 0x604=0x0000 */
regval = 0;
/* 0x605=0x0000 */
wm8994_writereg(priv, WM8994_DAC2_RIGHT_MIXER_ROUTING, regval);
break;
case WM8994_OUTPUT_DEVICE_BOTH:
if (WM8994_DEFAULT_INPUT_DEVICE ==
WM8994_INPUT_DEVICE_DIGITAL_MIC1_MIC2)
2020-11-28 10:02:11 +01:00
{
wm8994_writereg(priv, 0x005, 0x0303 | 0x0c0c);
wm8994_writereg(priv, 0x601, 0x0003);
wm8994_writereg(priv, 0x602, 0x0003);
wm8994_writereg(priv, 0x604, 0x0003);
wm8994_writereg(priv, 0x605, 0x0003);
}
else
{
wm8994_writereg(priv, 0x005, 0x0303 | 0x0c0c);
wm8994_writereg(priv, 0x601, 0x0001);
wm8994_writereg(priv, 0x602, 0x0001);
wm8994_writereg(priv, 0x604, 0x0002);
wm8994_writereg(priv, 0x605, 0x0002);
}
break;
case WM8994_OUTPUT_DEVICE_AUTO:
wm8994_writereg(priv, 0x005, 0x0303);
wm8994_writereg(priv, 0x601, 0x0001);
wm8994_writereg(priv, 0x602, 0x0001);
wm8994_writereg(priv, 0x604, 0x0000);
wm8994_writereg(priv, 0x605, 0x0000);
break;
default:
break;
}
}
/* Configure the WM8994 hardware as an audio input device */
wm8994_audio_input(priv);
switch (WM8994_DEFAULT_INPUT_DEVICE)
{
case WM8994_INPUT_DEVICE_DIGITAL_MICROPHONE_2:
wm8994_writereg(priv, 0x004, 0x0c30);
wm8994_writereg(priv, 0x450, 0x00db);
wm8994_writereg(priv, 0x002, 0x6000);
wm8994_writereg(priv, 0x608, 0x0002);
wm8994_writereg(priv, 0x700, 0x000b);
break;
case WM8994_INPUT_DEVICE_INPUT_LINE_1:
wm8994_writereg(priv, 0x028, 0x0011);
wm8994_writereg(priv, 0x029, 0x0035);
wm8994_writereg(priv, 0x02a, 0x0035);
wm8994_writereg(priv, 0x004, 0x0303);
wm8994_writereg(priv, 0x440, 0x00db);
wm8994_writereg(priv, 0x002, 0x6350);
wm8994_writereg(priv, 0x606, 0x0002);
wm8994_writereg(priv, 0x607, 0x0002);
wm8994_writereg(priv, 0x700, 0x000d);
break;
case WM8994_INPUT_DEVICE_DIGITAL_MICROPHONE_1:
wm8994_writereg(priv, 0x004, 0x030c);
wm8994_writereg(priv, 0x440, 0x00db);
wm8994_writereg(priv, 0x002, 0x6350);
wm8994_writereg(priv, 0x606, 0x0002);
wm8994_writereg(priv, 0x607, 0x0002);
wm8994_writereg(priv, 0x700, 0x000d);
break;
case WM8994_INPUT_DEVICE_DIGITAL_MIC1_MIC2:
wm8994_writereg(priv, 0x004, 0x0f3c);
wm8994_writereg(priv, 0x450, 0x00db);
wm8994_writereg(priv, 0x440, 0x00db);
wm8994_writereg(priv, 0x002, 0x63a0);
wm8994_writereg(priv, 0x606, 0x0002);
wm8994_writereg(priv, 0x607, 0x0002);
wm8994_writereg(priv, 0x608, 0x0002);
wm8994_writereg(priv, 0x609, 0x0002);
wm8994_writereg(priv, 0x700, 0x000d);
break;
case WM8994_INPUT_DEVICE_INPUT_LINE_2:
default:
break;
}
{
switch (WM8994_DEFAULT_SAMPRATE)
{
case WM8994_AUDIO_FREQUENCY_8K:
regval = WM8994_AIF1CLK_RATE_2 | WM8994_AIF1_SR_8K;
/* 0x210 = 0x0003 */
wm8994_writereg(priv, WM8994_AIF1_RATE, regval);
break;
case WM8994_AUDIO_FREQUENCY_16K:
regval = WM8994_AIF1CLK_RATE_2 | WM8994_AIF1_SR_16K;
/* 0x210 = 0x0033 */
wm8994_writereg(priv, WM8994_AIF1_RATE, regval);
break;
case WM8994_AUDIO_FREQUENCY_22_050K:
regval = WM8994_AIF1CLK_RATE_2 | WM8994_AIF1_SR_22K;
/* 0x210 = 0x0063 */
wm8994_writereg(priv, WM8994_AIF1_RATE, regval);
break;
#if 0
case WM8994_AUDIO_FREQUENCY_48K:
regval = WM8994_AIF1CLK_RATE_2 | WM8994_AIF1_SR_24K;
wm8994_writereg(priv, WM8994_AIF1_RATE, regval); /* 0x210 = 0x0083 */
break;
#endif
case WM8994_AUDIO_FREQUENCY_32K:
regval = WM8994_AIF1CLK_RATE_2 | WM8994_AIF1_SR_32K;
wm8994_writereg(priv, WM8994_AIF1_RATE, regval); /* 0x210 = 0x00a3 */
break;
case WM8994_AUDIO_FREQUENCY_44_100K:
regval = WM8994_AIF1CLK_RATE_2 | WM8994_AIF1_SR_44K;
wm8994_writereg(priv, WM8994_AIF1_RATE, regval); /* 0x210 = 0x0013 */
break;
case WM8994_AUDIO_FREQUENCY_48K:
regval = WM8994_AIF1CLK_RATE_2 | WM8994_AIF1_SR_48K;
wm8994_writereg(priv, WM8994_AIF1_RATE, regval); /* 0x210 = 0x0043 */
break;
#if 0
case WM8994_AUDIO_FREQUENCY_44_100K:
regval = WM8994_AIF1CLK_RATE_2 | WM8994_AIF1_SR_88K;
wm8994_writereg(priv, WM8994_AIF1_RATE, regval); /* 0x210 = 0x0073 */
break;
#endif
case WM8994_AUDIO_FREQUENCY_96K:
regval = WM8994_AIF1CLK_RATE_2 | WM8994_AIF1_SR_96K;
/* 0x210 = 0x00a3 */
wm8994_writereg(priv, WM8994_AIF1_RATE, regval);
break;
default:
regval = WM8994_AIF1CLK_RATE_2 | WM8994_AIF1_SR_48K;
/* 0x210 = 0x0083 */
wm8994_writereg(priv, WM8994_AIF1_RATE, regval);
break;
}
if (WM8994_DEFAULT_INPUT_DEVICE == WM8994_INPUT_DEVICE_DIGITAL_MIC1_MIC2)
/* regval = 0x4018 */
regval = WM8994_AIF1ADCR_RIGHT_ADC | WM8994_AIF1_WL_16BITS
| WM8994_AIF1_FMT_I2S;
else
/* regval = 0x4010 */
regval = WM8994_AIF1ADCR_RIGHT_ADC | WM8994_AIF1_WL_16BITS
| WM8994_AIF1_FMT_DSP;
/* 0x300 = */
wm8994_writereg(priv, WM8994_AIF1_CTL1, regval);
regval = WM8994_AIF1_TRI_NORMAL | WM8994_AIF1_MSTR_SLAVE_MODE
| WM8994_AIF1_CLK_FRC_NORMAL | WM8994_AIF1_LRCLK_FRC_NORMAL;
/* 0x302 = 0x0000 */
wm8994_writereg(priv, WM8994_AIF1_MASTER_SLAVE, regval);
regval = WM8994_AIF1DSPCLK_ENA | WM8994_SYSDSPCLK_ENA
| WM8994_SYSCLK_SRC_AIF1CLK;
/* 0x208 = 0x000a */
wm8994_writereg(priv, WM8994_CLK1, regval);
regval = WM8994_AIF1CLK_ENA;
/* 0x200 = 0x0001 */
wm8994_writereg(priv, WM8994_AIF1_CLK1, regval);
if (WM8994_DEFAULT_OUTPUT_DEVICE == WM8994_OUTPUT_DEVICE_HEADPHONE)
{
regval = WM8994_DAC1L_TO_HPOUT1L_DAC1L;
/* 0x2d = 0x0100 */
wm8994_writereg(priv, WM8994_OUTPUT_MIXER1, regval);
regval = 0;
wm8994_writereg(priv, WM8994_OUTPUT_MIXER2, regval); /* 0x2e = 0x0100 */
if (WM8994_STARTUP_MODE_COLD)
{
regval = 0x8100;
wm8994_writereg(priv, WM8994_WR_CTL_SEQ1, regval);
/* 0x110 = regval */
up_mdelay(300);
}
else
{
regval = 0x8108;
wm8994_writereg(priv, WM8994_WR_CTL_SEQ1, regval); /* 0x110 = regval */
up_mdelay(50);
}
regval = 0;
wm8994_writereg(priv, WM8994_AIF1_DAC1_FILTERS1, regval); /* 0x420 = 0x0000 */
}
regval = 0;
wm8994_writereg(priv, WM8994_PM3, regval); /* 0x03 = 0x0300 */
regval = 0;
wm8994_writereg(priv, WM8994_SPKMIXL_ATT, regval); /* 0x22 = 0x0000 */
regval = 0;
wm8994_writereg(priv, WM8994_SPKMIXR_ATT, regval); /* 0x23 = 0x0000 */
regval = 0;
wm8994_writereg(priv, WM8994_SPEAKER_MIXER, regval); /* 0x36 = 0x0300 */
regval = 0;
wm8994_writereg(priv, WM8994_PM1, regval); /* 0x01 = 0x3003 */
if (WM8994_DEFAULT_INPUT_DEVICE == WM8994_INPUT_DEVICE_DIGITAL_MIC1_MIC2)
regval = 0x0205;
else
regval = 0x0005;
wm8994_writereg(priv, WM8994_CLASS_W_1, regval); /* 0x51 = regval */
priv->power_mgnt_reg_1 |= 0x0303 | 0x3003;
regval = priv->power_mgnt_reg_1;
wm8994_writereg(priv, WM8994_PM1, regval); /* 0x01 = power_mgnt_reg_1 */
regval = 0;
wm8994_writereg(priv, WM8994_ANA_HP1, regval); /* 0x60 = 0x0022 */
regval = 0;
wm8994_writereg(priv, WM8994_CHARGE_PUMP1, regval); /* 0x4c = 0x9F25 */
up_mdelay(15);
regval = 0;
wm8994_writereg(priv, WM8994_OUTPUT_MIXER1, regval); /* 0x2d = 0x0001 */
regval = 0;
wm8994_writereg(priv, 0x2e, regval); /* 0x2e = 0x0001 */
regval = 0;
wm8994_writereg(priv, 0x03, regval); /* 0x03 = 0x0030 | 0x0300 */
regval = 0x0033;
wm8994_writereg(priv, 0x54, regval); /* 0x54 = 0x0033 */
up_mdelay(257);
regval = 0x00ee;
wm8994_writereg(priv, 0x60, 0x00ee); /* 0x60 = 0x00ee */
regval = 0x00c0;
wm8994_writereg(priv, 0x610, regval); /* 0x610 = 0x00c0 */
regval = 0x00c0;
wm8994_writereg(priv, 0x611, regval); /* 0x611 = 0x00c0 */
regval = 0x0010;
wm8994_writereg(priv, 0x420, regval); /* 0x420 = 0x0010 */
regval = 0x00c0;
wm8994_writereg(priv, 0x612, regval); /* 0x612 = 0x00c0 */
regval = 0x00c0;
wm8994_writereg(priv, 0x613, regval); /* 0x613 = 0x00c0 */
regval = 0x0010;
wm8994_writereg(priv, 0x422, regval); /* 0x422 = 0x0010 */
if ((WM8994_DEFAULT_INPUT_DEVICE ==
WM8994_INPUT_DEVICE_DIGITAL_MICROPHONE_1)
|| (WM8994_DEFAULT_INPUT_DEVICE ==
WM8994_INPUT_DEVICE_DIGITAL_MICROPHONE_2))
{
priv->power_mgnt_reg_1 |= 0x0013;
wm8994_writereg(priv, 0x01, priv->power_mgnt_reg_1); /* 0x01 = power_mgnt_reg_1 */
regval = 0x0002;
wm8994_writereg(priv, 0x620, 0x0002); /* 0x620 = 0x0002 */
regval = 0x3800;
wm8994_writereg(priv, 0x411, 0x3800); /* 0x411 = 0x3800 */
}
else if (WM8994_DEFAULT_INPUT_DEVICE ==
WM8994_INPUT_DEVICE_DIGITAL_MIC1_MIC2)
{
priv->power_mgnt_reg_1 |= 0x0013;
wm8994_writereg(priv, 0x01, priv->power_mgnt_reg_1); /* 0x01 = power_mgnt_reg_1 */
regval = 0x0002;
wm8994_writereg(priv, 0x620, regval); /* 0x620 = 0x0002; */
regval = 0x1800;
wm8994_writereg(priv, 0x410, regval); /* 0x410 = 0x1800 */
regval = 0x1800;
wm8994_writereg(priv, 0x411, regval); /* 0x411 = 0x1800 */
}
else if ((WM8994_DEFAULT_INPUT_DEVICE ==
WM8994_INPUT_DEVICE_INPUT_LINE_1)
|| (WM8994_DEFAULT_INPUT_DEVICE ==
WM8994_INPUT_DEVICE_INPUT_LINE_2))
{
regval = 0x000b;
wm8994_writereg(priv, 0x18, regval); /* 0x18 = 0x000b */
regval = 0x000b;
wm8994_writereg(priv, 0x1a, regval); /* 0x1A = 0x000B */
regval = 0x1800;
wm8994_writereg(priv, 0x410, regval); /* 0x410 = 0x1800 */
}
}
#endif
/* Configure the WM8994 hardware as an audio output device */
wm8994_audio_output(priv);
2020-11-28 10:02:11 +01:00
/* Configure interrupts */
wm8994_configure_ints(priv);
/* Configure the FLL and the LRCLK */
wm8994_setbitrate(priv);
/* Dump some information and return the device instance */
wm8994_dump_registers(&priv->dev, "After configuration");
wm8994_clock_analysis(&priv->dev, "After configuration");
}
/****************************************************************************
2020-11-28 10:02:11 +01:00
* Public Functions
****************************************************************************/
2020-11-28 10:02:11 +01:00
/* Name: wm8994_initialize
*
* Description:
* Initialize the WM8994 device.
*
* Input Parameters:
* i2c - An I2C driver instance
* i2s - An I2S driver instance
* lower - Persistent board configuration data
*
* Returned Value:
* A new lower half audio interface for the WM8994 device is returned on
* success; NULL is returned on failure.
*
*/
FAR struct audio_lowerhalf_s *
wm8994_initialize(FAR struct i2c_master_s *i2c, FAR struct i2s_dev_s *i2s,
FAR const struct wm8994_lower_s *lower)
{
FAR struct wm8994_dev_s *priv;
uint16_t regval;
/* Sanity check */
DEBUGASSERT(i2c && i2s && lower);
/* Allocate a WM8994 device structure */
priv = (FAR struct wm8994_dev_s *)kmm_zalloc(sizeof(struct wm8994_dev_s));
if (priv)
{
/* Initialize the WM8994 device structure. Since we used kmm_zalloc,
* only the non-zero elements of the structure need to be initialized.
*/
priv->dev.ops = &g_audioops;
priv->lower = lower;
priv->i2c = i2c;
priv->i2s = i2s;
nxmutex_init(&priv->pendlock);
2020-11-28 10:02:11 +01:00
dq_init(&priv->pendq);
dq_init(&priv->doneq);
/* Verify that WM8994 is present and available on this I2C */
regval = wm8994_readreg(priv, WM8994_ID);
if (regval != WM8994_SW_RST_DEV_ID1)
{
auderr("ERROR: WM8994 not found: ID=%04x\n", regval);
goto errout_with_dev;
}
/* Software reset. This puts all WM8994 registers back in their
* default state.
*/
wm8994_writereg(priv, WM8994_SWRST, 0);
wm8994_dump_registers(&priv->dev, "After reset");
/* chip revision */
2020-11-28 10:02:11 +01:00
audinfo("wm8994 chip revision: %d\n",
2020-11-28 10:02:11 +01:00
wm8994_readreg(priv, WM8994_CHIP_REV));
/* Reset and reconfigure the WM8994 hardwaqre */
wm8994_hw_reset(priv);
return &priv->dev;
}
return NULL;
errout_with_dev:
nxmutex_destroy(&priv->pendlock);
2020-11-28 10:02:11 +01:00
kmm_free(priv);
return NULL;
}