nuttx/drivers/power/bq769x0.c

2223 lines
62 KiB
C
Raw Normal View History

/****************************************************************************
* drivers/power/bq769x0.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/* Lower half driver for BQ769x0 battery monitor */
/* The bq76920/bq76930/bq76940 battery monitor ICs provide voltage, current,
* and temperature monitoring of up to 15-series cells. These ICs also
* provide Coulomb counting for state-of-charge measurement, balance drivers
* for all cells, and drivers for external cell protection switches.
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdint.h>
#include <stdbool.h>
#include <errno.h>
#include <debug.h>
#include <crc8.h>
#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/i2c/i2c_master.h>
#include <nuttx/power/battery_monitor.h>
#include <nuttx/power/battery_ioctl.h>
#include <nuttx/power/bq769x0.h>
/* This driver requires:
*
* CONFIG_BATTERY_MONITOR- Upper half battery driver support
* CONFIG_I2C - I2C support
* CONFIG_I2C_BQ769X0 - And the driver must be explicitly selected.
*/
#if defined(CONFIG_BATTERY_MONITOR) && defined(CONFIG_I2C) && \
defined(CONFIG_I2C_BQ769X0)
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Helpers ******************************************************************/
#ifndef MIN
# define MIN(a,b) ((a) < (b) ? (a) : (b))
#endif
/* The CRC function expects to see address bytes as they appear on the wire */
#define WR_ADDR(a) ((a) << 1)
#define RD_ADDR(a) (((a) << 1) | 1)
/****************************************************************************
* Private
****************************************************************************/
struct bq769x0_dev_s
{
/* The common part of the battery driver visible to the upper-half driver */
struct battery_monitor_dev_s dev; /* Battery monitor device */
/* Data fields specific to the lower half BQ769x0 driver follow */
FAR struct i2c_master_s *i2c; /* I2C interface */
uint8_t addr; /* I2C address */
uint8_t chip; /* Chip Type (e.g. CHIP_76920) */
uint8_t cellcount; /* Number of cells attached to chip */
uint8_t fault_cache; /* Cache of last-read fault bits */
uint32_t frequency; /* I2C frequency */
uint32_t gain; /* ADC gain value in uV */
uint32_t offset; /* ADC offset value in uV */
uint32_t sense_r; /* Current sense resistor, in uOhm */
const uint8_t *mapping; /* Pointer to cell mapping table */
bool crc; /* True if the device has CRC enabled */
};
/* Cell mapping tables
* Some channels are not used depending on how many cells are connected
* to the BQ769X0. These tables map cell number (array index) to physical
* cell channel (array value). See TI datasheet for cell connections table.
*/
static const uint8_t bq76920_3cell_mapping[] =
{
0, 1, 4
};
static const uint8_t bq76920_4cell_mapping[] =
{
0, 1, 2, 4
};
static const uint8_t bq76920_5cell_mapping[] =
{
0, 1, 2, 3, 4
};
static const uint8_t *bq76920_cell_mapping[] =
{
bq76920_3cell_mapping,
bq76920_4cell_mapping,
bq76920_5cell_mapping
};
static const uint8_t bq76930_6cell_mapping[] =
{
0, 1, 4, 5, 6, 9
};
static const uint8_t bq76930_7cell_mapping[] =
{
0, 1, 2, 4, 5, 6, 9
};
static const uint8_t bq76930_8cell_mapping[] =
{
0, 1, 2, 4, 5, 6, 7, 9
};
static const uint8_t bq76930_9cell_mapping[] =
{
0, 1, 2, 3, 4, 5, 6, 7, 9
};
static const uint8_t bq76930_10cell_mapping[] =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
};
static const uint8_t *bq76930_cell_mapping[] =
{
bq76930_6cell_mapping,
bq76930_7cell_mapping,
bq76930_8cell_mapping,
bq76930_9cell_mapping,
bq76930_10cell_mapping
};
static const uint8_t bq76940_9cell_mapping[] =
{
0, 1, 4, 5, 6, 9, 10, 11, 14
};
static const uint8_t bq76940_10cell_mapping[] =
{
0, 1, 2, 4, 5, 6, 9, 10, 11, 14
};
static const uint8_t bq76940_11cell_mapping[] =
{
0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 14
};
static const uint8_t bq76940_12cell_mapping[] =
{
0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14
};
static const uint8_t bq76940_13cell_mapping[] =
{
0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14
};
static const uint8_t bq76940_14cell_mapping[] =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14
};
static const uint8_t bq76940_15cell_mapping[] =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
};
static const uint8_t *bq76940_cell_mapping[] =
{
bq76940_9cell_mapping,
bq76940_10cell_mapping,
bq76940_11cell_mapping,
bq76940_12cell_mapping,
bq76940_13cell_mapping,
bq76940_14cell_mapping,
bq76940_15cell_mapping,
};
/* Current sense limit mapping tables
* Maps a voltage threshold (in mV, array value)
* to a register field value (array index)
* The last values in each list are somewhat arbitrary upper bounds -
* The algorithm rounds down when selecting a register value
*/
static const uint8_t ocd_t_rsns_0_limits[] =
{
8, 11, 14, 17, 19, 22, 25, 28, 31, 33, 36, 39, 42, 44, 47, 50, 53
};
static const uint8_t ocd_t_rsns_1_limits[] =
{
17, 22, 28, 33, 39, 44, 50, 56, 61, 67, 72, 78, 83, 89, 94, 100, 106
};
static const uint8_t scd_t_rsns_0_limits[] =
{
22, 33, 44, 56, 67, 78, 89, 100, 105
};
static const uint8_t scd_t_rsns_1_limits[] =
{
44, 67, 89, 111, 133, 155, 178, 200, 210
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* I2C support functions */
static int bq769x0_getreg8(FAR struct bq769x0_dev_s *priv, uint8_t regaddr,
FAR uint8_t *regval);
static int bq769x0_putreg8(FAR struct bq769x0_dev_s *priv, uint8_t regaddr,
uint8_t regval);
static int bq769x0_getreg16(FAR struct bq769x0_dev_s *priv, uint8_t regaddr,
FAR uint16_t *regval);
static int bq769x0_getnreg16(FAR struct bq769x0_dev_s *priv, uint8_t regaddr,
FAR uint16_t *regvals, unsigned int count);
/* Device functions */
static int bq769x0_getreport(FAR struct bq769x0_dev_s *priv,
FAR uint8_t *report);
static int bq769x0_getvolt(FAR struct bq769x0_dev_s *priv, FAR int *volts);
static int bq769x0_getcurrent(FAR struct bq769x0_dev_s *priv,
FAR struct battery_monitor_current_s *current);
static int bq769x0_getcellvolt(FAR struct bq769x0_dev_s *priv,
FAR struct battery_monitor_voltage_s *voltages);
static int bq769x0_gettemperature(FAR struct bq769x0_dev_s *priv,
FAR struct battery_monitor_temperature_s *temps);
static int bq769x0_setbalance(FAR struct bq769x0_dev_s *priv,
FAR struct battery_monitor_balance_s *bal);
static int bq769x0_doshutdown(FAR struct bq769x0_dev_s *priv);
static int bq769x0_setlimits(FAR struct bq769x0_dev_s *priv,
FAR struct battery_monitor_limits_s *limits);
static int bq769x0_setchgdsg(FAR struct bq769x0_dev_s *priv,
FAR struct battery_monitor_switches_s *sw);
static int bq769x0_clear_chipfaults(FAR struct bq769x0_dev_s *priv,
uint8_t faults);
static int bq769x0_updategain(FAR struct bq769x0_dev_s *priv);
static int bq769x0_chip_cellcount(FAR struct bq769x0_dev_s *priv);
/* Battery driver lower half methods */
static int bq769x0_state(struct battery_monitor_dev_s *dev, int *status);
static int bq769x0_health(struct battery_monitor_dev_s *dev, int *health);
static int bq769x0_online(struct battery_monitor_dev_s *dev, bool *status);
static int bq769x0_voltage(struct battery_monitor_dev_s *dev, int *value);
static int bq769x0_cellvoltage(struct battery_monitor_dev_s *dev,
struct battery_monitor_voltage_s *cellv);
static int bq769x0_current(struct battery_monitor_dev_s *dev,
struct battery_monitor_current_s *current);
static int bq769x0_soc(struct battery_monitor_dev_s *dev, b16_t *value);
static int bq769x0_coulombs(struct battery_monitor_dev_s *dev,
int *coulombs);
static int bq769x0_temp(struct battery_monitor_dev_s *dev,
struct battery_monitor_temperature_s *temps);
static int bq769x0_balance(struct battery_monitor_dev_s *dev,
struct battery_monitor_balance_s *bal);
static int bq769x0_shutdown(struct battery_monitor_dev_s *dev,
uintptr_t param);
static int bq769x0_limits(struct battery_monitor_dev_s *dev,
struct battery_monitor_limits_s *limits);
static int bq769x0_chgdsg(struct battery_monitor_dev_s *dev,
struct battery_monitor_switches_s *sw);
static int bq769x0_clearfaults(struct battery_monitor_dev_s *dev,
uintptr_t param);
static int bq769x0_operate(struct battery_monitor_dev_s *dev,
uintptr_t param);
/****************************************************************************
* Private Data
****************************************************************************/
static const struct battery_monitor_operations_s g_bq769x0ops =
{
bq769x0_state,
bq769x0_health,
bq769x0_online,
bq769x0_voltage,
bq769x0_cellvoltage,
bq769x0_current,
bq769x0_soc,
bq769x0_coulombs,
bq769x0_temp,
bq769x0_balance,
bq769x0_shutdown,
bq769x0_limits,
bq769x0_chgdsg,
bq769x0_clearfaults,
bq769x0_operate,
};
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: bq769x0_getreg8
*
* Description:
* Read a 8-bit value from a BQ769x0 register.
*
* START <I2C write address> ACK <Reg address> ACK
* REPEATED-START <I2C read address> ACK Data0 NO-ACK STOP
*
****************************************************************************/
static int bq769x0_getreg8(FAR struct bq769x0_dev_s *priv, uint8_t regaddr,
FAR uint8_t *regval)
{
struct i2c_config_s config;
uint8_t val[2];
int ret;
int datalen;
uint8_t sl_addr;
uint8_t crc;
/* Set up the I2C configuration */
config.frequency = priv->frequency;
config.address = priv->addr;
config.addrlen = 7;
/* Write the register address */
ret = i2c_write(priv->i2c, &config, &regaddr, 1);
if (ret < 0)
{
baterr("ERROR: i2c_write failed: %d\n", ret);
return ret;
}
/* Our expected data length varies depending on whetherCRC is used */
if (priv->crc)
{
datalen = 2;
}
else
{
datalen = 1;
}
/* Restart and read 8-bits from the register */
ret = i2c_read(priv->i2c, &config, val, datalen);
if (ret < 0)
{
baterr("ERROR: i2c_read failed: %d\n", ret);
return ret;
}
/* If CRC is used, verify that it is correct */
if (priv->crc)
{
sl_addr = RD_ADDR(priv->addr);
crc = crc8ccittpart(&sl_addr, 1, 0);
crc = crc8ccittpart(val, 1, crc);
if (crc != val[1])
{
baterr("ERROR: CRC mismatch: Got %02x, Expected %02x\n", val[1],
crc);
return ERROR;
}
}
/* Copy 8-bit value to be returned */
*regval = val[0];
return OK;
}
/****************************************************************************
* Name: bq769x0_putreg8
*
* Description:
* Write a 8-bit value to a BQ769x0 register.
*
* START <I2C write address> ACK <Reg address> ACK Data0 ACK STOP
*
****************************************************************************/
static int bq769x0_putreg8(FAR struct bq769x0_dev_s *priv, uint8_t regaddr,
uint8_t regval)
{
struct i2c_config_s config;
uint8_t buffer[3];
int datalen;
uint8_t sl_addr;
uint8_t crc;
/* Set up the I2C configuration */
config.frequency = priv->frequency;
config.address = priv->addr;
config.addrlen = 7;
batinfo("addr: %02x regval: %02x\n", regaddr, regval);
/* Set up a 3 byte message to send */
buffer[0] = regaddr;
buffer[1] = regval;
/* Our expected data length varies depending on whether CRC is used */
if (priv->crc)
{
datalen = 3;
sl_addr = WR_ADDR(priv->addr);
crc = crc8ccittpart(&sl_addr, 1, 0);
crc = crc8ccittpart(buffer, 2, crc);
buffer[2] = crc;
batinfo("write crc: %02x\n", crc);
}
else
{
datalen = 2;
}
/* Write the register address followed by the data (no RESTART) */
return i2c_write(priv->i2c, &config, buffer, datalen);
}
/****************************************************************************
* Name: bq769x0_getreg16
*
* Description:
* Read a 16-bit value from a BQ769x0 register pair.
*
* START <I2C write address> ACK <Reg address> ACK
* REPEATED-START <I2C read address> ACK Data0 ACK Data1 NO-ACK STOP
*
****************************************************************************/
static int bq769x0_getreg16(FAR struct bq769x0_dev_s *priv, uint8_t regaddr,
FAR uint16_t *regval)
{
return bq769x0_getnreg16(priv, regaddr, regval, 1);
}
/****************************************************************************
* Name: bq769x0_getnreg16
*
* Description:
* Read an array of 16-bit values from BQ769x0 register pairs.
*
* START <I2C write address> ACK <Reg address> ACK
* REPEATED-START <I2C read address> ACK Data0 ACK Data1 NO-ACK STOP
*
* count is number of 16-bit words to read
*
****************************************************************************/
static int bq769x0_getnreg16(FAR struct bq769x0_dev_s *priv, uint8_t regaddr,
FAR uint16_t *regvals, unsigned int count)
{
struct i2c_config_s config;
uint8_t tmp_val[(4 * 22)]; /* Maximum of 22 registers per read with CRC */
int ret;
int datalen;
int byte_count;
uint8_t sl_addr;
uint8_t crc;
int i;
/* Make sure specified number of registers will fit in our buffer.
* If not, limit read to the available buffer size
*/
if (priv->crc)
{
if (count >= (sizeof(tmp_val) / 4))
{
count = sizeof(tmp_val) / 4;
}
}
else
{
if (count >= (sizeof(tmp_val) / 2))
{
count = sizeof(tmp_val) / 2;
}
}
/* Set up the I2C configuration */
config.frequency = priv->frequency;
config.address = priv->addr;
config.addrlen = 7;
/* Write the register address */
ret = i2c_write(priv->i2c, &config, &regaddr, 1);
if (ret < 0)
{
baterr("ERROR: i2c_write failed: %d\n", ret);
return ret;
}
byte_count = 2 * count;
/* Our expected I2C data length varies depending on whether CRC is used */
if (priv->crc)
{
/* When reading multiple bytes, there is 1 CRC byte per data byte */
datalen = (4 * count);
}
else
{
datalen = byte_count;
}
/* Restart and read 16-bits from the register */
ret = i2c_read(priv->i2c, &config, tmp_val, datalen);
if (ret < 0)
{
baterr("ERROR: i2c_read failed: %d\n", ret);
return ret;
}
/* If CRC is used, verify that it is correct
* We only include the address with the first data byte.
* After that, we compare the CRC of each byte with its following byte
*/
if (priv->crc)
{
sl_addr = RD_ADDR(priv->addr);
crc = crc8ccittpart(&sl_addr, 1, 0);
for (i = 0; i < byte_count; i += 2)
{
crc = crc8ccittpart(&tmp_val[i], 1, crc);
if (crc != tmp_val[i + 1])
{
baterr("ERROR: CRC mismatch: Got %02x, Expected %02x\n",
tmp_val[2], crc);
return ERROR;
}
crc = 0;
}
/* Copy 16-bit values to be returned, skipping CRC bytes */
for (i = 0; i < datalen; i += 4)
{
*regvals = (uint16_t)tmp_val[i] << 8 | (uint16_t)tmp_val[i + 2];
regvals += 1;
}
}
else
{
/* Copy 16-bit values to be returned */
for (i = 0; i < datalen; i += 2)
{
*regvals = (uint16_t)tmp_val[i] << 8 | (uint16_t)tmp_val[i + 1];
regvals += 1;
}
}
return OK;
}
/****************************************************************************
* Name: bq769x0_getreport
*
* Description:
* Read the BQ769X0 SYS_STAT register
*
****************************************************************************/
static int bq769x0_getreport(FAR struct bq769x0_dev_s *priv,
FAR uint8_t *report)
{
uint8_t regval = 0;
int ret;
ret = bq769x0_getreg8(priv, BQ769X0_REG_SYS_STAT, &regval);
if (ret == OK)
{
*report = regval;
}
return ret;
}
/****************************************************************************
* Name: bq769x0_updategain
*
* Description:
* Updates the local copies of the BQ769x0 ADC gain registers.
* These are used when converting ADC values to actual voltages.
*
****************************************************************************/
static int bq769x0_updategain(FAR struct bq769x0_dev_s *priv)
{
int ret;
uint8_t gainreg1;
uint8_t gainreg2;
uint8_t gain;
int8_t offset;
/* Read current register values */
ret = bq769x0_getreg8(priv, BQ769X0_REG_ADCGAIN1, &gainreg1);
if (ret < 0)
{
baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret);
return ret;
}
ret = bq769x0_getreg8(priv, BQ769X0_REG_ADCGAIN2, &gainreg2);
if (ret < 0)
{
baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret);
return ret;
}
ret = bq769x0_getreg8(priv, BQ769X0_REG_ADCOFFSET, (uint8_t *)&offset);
if (ret < 0)
{
baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret);
return ret;
}
/* Calculate actual gain & offset values
* gainreg1 contains gain bits 4-3
* gainreg2 contains gain bits 2-0
*/
gainreg1 &= BQ769X0_ADCGAIN1_MASK;
gainreg2 &= BQ769X0_ADCGAIN2_MASK;
gain = (gainreg1 << 1) | (gainreg2 >> 5);
priv->gain = gain + BQ769X0_BASE_GAIN;
priv->offset = offset * 1000; /* Convert mV to uV */
batinfo("Battery monitor gain: %d uV/LSB, offset: %d uV.\n", priv->gain,
priv->offset);
return OK;
}
/****************************************************************************
* Name: bq769x0_do_shutdown
*
* Description:
* Put the device into a low-power SHIP mode.
* External hardware may be required to wake the device up from this state.
*
****************************************************************************/
static int bq769x0_doshutdown(FAR struct bq769x0_dev_s *priv)
{
int ret;
uint8_t regval;
/* Read current register value */
ret = bq769x0_getreg8(priv, BQ769X0_REG_SYS_CTRL1, &regval);
if (ret < 0)
{
baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret);
return ret;
}
/* Mask off the writeable bits */
regval &= BQ769X0_SYS_CTRL1_WRITE_MASK;
/* Set SHUT_A and SHUT_B to 0 */
regval &= ~BQ769X0_SYS_CTRL1_SHUTDOWN_MASK;
/* Write the shutdown sequence */
ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_CTRL1, regval);
if (ret < 0)
{
baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret);
return ret;
}
/* Set SHUT_A to 0 and SHUT_B to 1 */
regval |= BQ769X0_SHUT_B;
ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_CTRL1, regval);
if (ret < 0)
{
baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret);
return ret;
}
/* Set SHUT_A to 1 and SHUT_B to 0 */
regval &= ~BQ769X0_SYS_CTRL1_SHUTDOWN_MASK;
regval |= BQ769X0_SHUT_A;
ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_CTRL1, regval);
if (ret < 0)
{
baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret);
return ret;
}
batinfo("Device should now be in ship mode\n");
return OK;
}
/****************************************************************************
* Name: bq769x0_setlimits
*
* Description:
* Set the safety cutoff limits of the device.
*
****************************************************************************/
static int bq769x0_setlimits(FAR struct bq769x0_dev_s *priv,
FAR struct battery_monitor_limits_s *limits)
{
int ret;
int i;
uint8_t regval;
uint32_t tripval;
bool rsns_0_scd_found;
bool rsns_1_scd_found;
bool rsns_0_ocd_found;
bool rsns_1_ocd_found;
uint8_t rsns_0_scd_idx;
uint8_t rsns_1_scd_idx;
uint8_t rsns_0_ocd_idx;
uint8_t rsns_1_ocd_idx;
regval = 0;
/* The OCD (Over current in discharge) and SCD
* (Short circuit in discharge) registers are both
* affected by the RSNS bit. We ideally want to find
* a mapping that satisfies both registers for the provided values
* using only a single RSNS value.
*/
/* Compute overcurrent voltage trip point based on provided
* current trip point.
*/
tripval = limits->overcurrent_limit * priv->sense_r;
/* result is in milli-amps * micro-ohms
* e.g. 20A * 5 milli-ohms = 20000 * 5000 = 100000000
* Divide by 1000000 to get millivolts
*/
tripval /= 1000000UL;
batinfo("Overcurrent trip voltage is %d mV\n", tripval);
/* Now look up overcurrent limit value in the OCD_T
* lookup tables. Check both RSNS = 0 and RSNS = 1
* so we can make a decision about which one to use.
* Note that limits lower than the minimum will be set to the
* minimum value.
*/
rsns_0_ocd_found = false;
rsns_1_ocd_found = false;
rsns_0_ocd_idx = 0;
rsns_1_ocd_idx = 0;
for (i = 1; i < sizeof(ocd_t_rsns_0_limits) /
sizeof(ocd_t_rsns_0_limits[0]); i += 1)
{
if (tripval <= ocd_t_rsns_0_limits[i])
{
rsns_0_ocd_idx = i - 1; /* round down */
rsns_0_ocd_found = true;
break;
}
}
for (i = 1; i < sizeof(ocd_t_rsns_1_limits) /
sizeof(ocd_t_rsns_1_limits[0]); i += 1)
{
if (tripval <= ocd_t_rsns_1_limits[i])
{
rsns_1_ocd_idx = i - 1; /* round down */
rsns_1_ocd_found = true;
break;
}
}
if (!rsns_0_ocd_found && !rsns_1_ocd_found)
{
baterr("ERROR: Failed to find suitable value for OCD_T\n");
return -EINVAL;
}
/* Compute short circuit voltage trip point based on provided
* current trip point
*/
tripval = limits->shortcircuit_limit * priv->sense_r;
/* result is in milli-amps * micro-ohms
* e.g. 20A * 5 milli-ohms = 20000 * 5000 = 100000000
* Divide by 1000000 to get millivolts
*/
tripval /= 1000000UL;
batinfo("Short circuit trip voltage is %d mV\n", tripval);
/* Now look up the short circuit limit value in the SCD_T
* lookup tables. Check both RSNS = 0 and RSNS = 1
* so we can make a decision about which one to use.
* Note that limits lower than the minimum will be set to the
* minimum value.
*/
rsns_0_scd_found = false;
rsns_1_scd_found = false;
rsns_0_scd_idx = 0;
rsns_1_scd_idx = 0;
/* Don't look at the first element since we're rounding down anyway */
for (i = 1; i < sizeof(scd_t_rsns_0_limits) /
sizeof(scd_t_rsns_0_limits[0]); i += 1)
{
if (tripval < scd_t_rsns_0_limits[i])
{
rsns_0_scd_idx = i - 1; /* round down */
rsns_0_scd_found = true;
break;
}
}
for (i = 1; i < sizeof(scd_t_rsns_1_limits) /
sizeof(scd_t_rsns_1_limits[0]); i += 1)
{
if (tripval < scd_t_rsns_1_limits[i])
{
rsns_1_scd_idx = i - 1; /* round down */
rsns_1_scd_found = true;
break;
}
}
if (!rsns_0_scd_found && !rsns_1_scd_found)
{
baterr("ERROR: Failed to find suitable value for SCD_T\n");
return -EINVAL;
}
/* Now let's figure out RSNS.
* We prefer RSNS = 0 if available, because it gives us finer-grained
* control over the actual trip voltage
*/
if (rsns_0_ocd_found && rsns_0_scd_found)
{
batinfo("Using RSNS = 0\n");
batinfo("Using SCD_T %x\n", rsns_0_scd_idx);
regval |= (rsns_0_scd_idx << BQ769X0_SCD_THRESH_SHIFT) &
BQ769X0_SCD_THRESH_MASK;
}
else if (rsns_1_ocd_found && rsns_1_scd_found)
{
batinfo("Using RSNS = 1\n");
batinfo("Using SCD_T %x\n", rsns_1_scd_idx);
regval |= BQ769X0_RSNS;
regval |= (rsns_1_scd_idx << BQ769X0_SCD_THRESH_SHIFT) &
BQ769X0_SCD_THRESH_MASK;
}
else
{
/* Not possible to meet both trip points with a single RSNS value
* For now, let's call that an error.
*/
limits->overcurrent_limit = 0;
limits->shortcircuit_limit = 0;
baterr("ERROR: OCD_T and SCD_T could not agree on RSNS.\n");
return -EINVAL;
}
/* Configure short circuit delay and threshold.
* Always round down if we are less than the
* next highest value.
* Throw an error if we are out of bounds
* (+/- an arbitrarily-chosen buffer)
*/
if (limits->shortcircuit_delay < 68)
{
limits->shortcircuit_delay = 0;
baterr("ERROR: Short circuit delay is too short\n");
return -EINVAL;
}
else if (limits->shortcircuit_delay < 100)
{
limits->shortcircuit_delay = 70;
regval |= BQ769X0_SCD_DELAY_70US;
batinfo("Short circuit delay set to 70uS\n");
}
else if (limits->shortcircuit_delay < 200)
{
limits->shortcircuit_delay = 100;
regval |= BQ769X0_SCD_DELAY_100US;
batinfo("Short circuit delay set to 100uS\n");
}
else if (limits->shortcircuit_delay < 400)
{
limits->shortcircuit_delay = 200;
regval |= BQ769X0_SCD_DELAY_200US;
batinfo("Short circuit delay set to 200uS\n");
}
else if (limits->shortcircuit_delay < 410)
{
limits->shortcircuit_delay = 400;
regval |= BQ769X0_SCD_DELAY_400US;
batinfo("Short circuit delay set to 400uS\n");
}
else
{
limits->shortcircuit_delay = 0;
baterr("ERROR: Short circuit delay is too long\n");
return -EINVAL;
}
ret = bq769x0_putreg8(priv, BQ769X0_REG_PROTECT1, regval);
if (ret < 0)
{
baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret);
return ret;
}
/* Configure overcurrent delay and threshold
* Always round down if we are less than the
* next highest value.
* Throw an error if we are out of bounds
* (+/- an arbitrarily-chosen buffer)
*/
regval = 0;
if (limits->overcurrent_delay < (7 * USEC_PER_MSEC))
{
limits->overcurrent_delay = 0;
baterr("ERROR: Overcurrent delay is too short\n");
return -EINVAL;
}
else if (limits->overcurrent_delay < (20 * USEC_PER_MSEC))
{
limits->overcurrent_delay = 8 * USEC_PER_MSEC;
regval |= BQ769X0_OCD_DELAY_8MS;
batinfo("Overcurrent delay set to 8mS\n");
}
else if (limits->overcurrent_delay < (40 * USEC_PER_MSEC))
{
limits->overcurrent_delay = 20 * USEC_PER_MSEC;
regval |= BQ769X0_OCD_DELAY_20MS;
batinfo("Overcurrent delay set to 20mS\n");
}
else if (limits->overcurrent_delay < (80 * USEC_PER_MSEC))
{
limits->overcurrent_delay = 40 * USEC_PER_MSEC;
regval |= BQ769X0_OCD_DELAY_40MS;
batinfo("Overcurrent delay set to 40mS\n");
}
else if (limits->overcurrent_delay < (160 * USEC_PER_MSEC))
{
limits->overcurrent_delay = 80 * USEC_PER_MSEC;
regval |= BQ769X0_OCD_DELAY_80MS;
batinfo("Overcurrent delay set to 80mS\n");
}
else if (limits->overcurrent_delay < (320 * USEC_PER_MSEC))
{
limits->overcurrent_delay = 160 * USEC_PER_MSEC;
regval |= BQ769X0_OCD_DELAY_160MS;
batinfo("Overcurrent delay set to 160mS\n");
}
else if (limits->overcurrent_delay < (640 * USEC_PER_MSEC))
{
limits->overcurrent_delay = 320 * USEC_PER_MSEC;
regval |= BQ769X0_OCD_DELAY_320MS;
batinfo("Overcurrent delay set to 320mS\n");
}
else if (limits->overcurrent_delay < (1280 * USEC_PER_MSEC))
{
limits->overcurrent_delay = 640 * USEC_PER_MSEC;
regval |= BQ769X0_OCD_DELAY_640MS;
batinfo("Overcurrent delay set to 640mS\n");
}
else if (limits->overcurrent_delay < 1300 * USEC_PER_MSEC)
{
limits->overcurrent_delay = 1280 * USEC_PER_MSEC;
regval |= BQ769X0_OCD_DELAY_1280MS;
batinfo("Overcurrent delay set to 1280mS\n");
}
else
{
limits->overcurrent_delay = 0;
baterr("ERROR: Overcurrent delay is too long\n");
return -EINVAL;
}
/* If neither rsns_0 or rsns_1 work, we would have
* errored out before this point.
*/
if (rsns_0_ocd_found)
{
batinfo("Using OCD_T %x\n", rsns_0_ocd_idx);
regval |= (rsns_0_ocd_idx << BQ769X0_OCD_THRESH_SHIFT) &
BQ769X0_OCD_THRESH_MASK;
}
else if (rsns_1_ocd_found)
{
batinfo("Using OCD_T %x\n", rsns_1_ocd_idx);
regval |= (rsns_1_ocd_idx << BQ769X0_OCD_THRESH_SHIFT) &
BQ769X0_OCD_THRESH_MASK;
}
ret = bq769x0_putreg8(priv, BQ769X0_REG_PROTECT2, regval);
if (ret < 0)
{
baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret);
return ret;
}
/* Configure overvoltage and undervoltage delays
* Throw an error if we are out of bounds
* (+/- an arbitrarily-chosen buffer)
*/
regval = 0;
if (limits->overvoltage_delay < (1 * USEC_PER_SEC))
{
limits->overvoltage_delay = 0;
baterr("ERROR: overvoltage delay is too short\n");
return -EINVAL;
}
else if (limits->overvoltage_delay < (2 * USEC_PER_SEC))
{
limits->overvoltage_delay = 1 * USEC_PER_SEC;
regval |= BQ769X0_OV_DELAY_1S;
batinfo("Overvoltage delay set to 1S\n");
}
else if (limits->overvoltage_delay < (4 * USEC_PER_SEC))
{
limits->overvoltage_delay = 2 * USEC_PER_SEC;
regval |= BQ769X0_OV_DELAY_2S;
batinfo("Overvoltage delay set to 2S\n");
}
else if (limits->overvoltage_delay < (8 * USEC_PER_SEC))
{
limits->overvoltage_delay = 4 * USEC_PER_SEC;
regval |= BQ769X0_OV_DELAY_4S;
batinfo("Overvoltage delay set to 4S\n");
}
else if (limits->overvoltage_delay < (10 * USEC_PER_SEC))
{
limits->overvoltage_delay = 8 * USEC_PER_SEC;
regval |= BQ769X0_OV_DELAY_8S;
batinfo("Overvoltage delay set to 8S\n");
}
else
{
limits->overvoltage_delay = 0;
baterr("ERROR: overvoltage delay is too long\n");
return -EINVAL;
}
if (limits->undervoltage_delay < (1 * USEC_PER_SEC))
{
limits->undervoltage_delay = 0;
baterr("ERROR: undervoltage delay is too short\n");
return -EINVAL;
}
else if (limits->undervoltage_delay < (4 * USEC_PER_SEC))
{
limits->undervoltage_delay = 1 * USEC_PER_SEC;
regval |= BQ769X0_UV_DELAY_1S;
batinfo("Undervoltage delay set to 1S\n");
}
else if (limits->undervoltage_delay < (8 * USEC_PER_SEC))
{
limits->undervoltage_delay = 4 * USEC_PER_SEC;
regval |= BQ769X0_UV_DELAY_4S;
batinfo("Undervoltage delay set to 4S\n");
}
else if (limits->undervoltage_delay < (16 * USEC_PER_SEC))
{
limits->undervoltage_delay = 8 * USEC_PER_SEC;
regval |= BQ769X0_UV_DELAY_8S;
batinfo("Undervoltage delay set to 8S\n");
}
else if (limits->undervoltage_delay < (20 * USEC_PER_SEC))
{
limits->undervoltage_delay = 16 * USEC_PER_SEC;
regval |= BQ769X0_UV_DELAY_16S;
batinfo("Undervoltage delay set to 16S\n");
}
else
{
limits->undervoltage_delay = 0;
baterr("ERROR: undervoltage delay is too long\n");
return -EINVAL;
}
ret = bq769x0_putreg8(priv, BQ769X0_REG_PROTECT3, regval);
if (ret < 0)
{
baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret);
return ret;
}
/* Calculate OV_TRIP register value based on provided limit.
* Note that the register format limits the trip range to
* approximately 3.15V to 4.7V
*/
tripval = (limits->overvoltage_limit - priv->offset) / priv->gain;
tripval >>= 4;
regval = (uint8_t)(tripval & 0xff);
ret = bq769x0_putreg8(priv, BQ769X0_REG_OV_TRIP, regval);
if (ret < 0)
{
baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret);
return ret;
}
/* Calculate UV_TRIP register value based on provided limit.
* Note that the register format limits the trip range to
* approximately 1.58V to 3.1V
*/
tripval = (limits->undervoltage_limit - priv->offset) / priv->gain;
tripval >>= 4;
regval = (uint8_t)(tripval & 0xff);
ret = bq769x0_putreg8(priv, BQ769X0_REG_UV_TRIP, regval);
if (ret < 0)
{
baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret);
return ret;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_setlimits
*
* Description:
* Set the device's charge/discharge switches
*
****************************************************************************/
static int bq769x0_setchgdsg(FAR struct bq769x0_dev_s *priv,
FAR struct battery_monitor_switches_s *sw)
{
int ret;
uint8_t regval;
/* Read current register value */
ret = bq769x0_getreg8(priv, BQ769X0_REG_SYS_CTRL2, &regval);
if (ret < 0)
{
baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret);
return ret;
}
/* Mask off the writeable bits */
regval &= BQ769X0_SYS_CTRL2_WRITE_MASK;
/* Set CHG_ON and DSG_ON */
regval &= ~BQ769X0_SYS_CTRL2_CHGDSG_MASK;
if (sw->charge)
{
regval |= BQ769X0_CHG_ON;
batinfo("Turned on charge switch\n");
}
if (sw->discharge)
{
regval |= BQ769X0_DSG_ON;
batinfo("Turned on discharge switch\n");
}
/* Write the new register value */
ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_CTRL2, regval);
if (ret < 0)
{
baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret);
return ret;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_clear_chip_faults
*
* Description:
* Clear the specified chip faults
*
****************************************************************************/
static int bq769x0_clear_chipfaults(FAR struct bq769x0_dev_s *priv,
uint8_t faults)
{
int ret;
batinfo("Clearing battery faults: %02x\n", faults);
/* Write the new register value */
ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_STAT, faults);
if (ret < 0)
{
baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret);
return ret;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_state
*
* Description:
* Return the current battery state
*
****************************************************************************/
static int bq769x0_state(struct battery_monitor_dev_s *dev, int *status)
{
FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev;
uint8_t regval = 0;
int ret;
ret = bq769x0_getreport(priv, &regval);
if (ret < 0)
{
*status = BATTERY_UNKNOWN;
return ret;
}
if (regval & BQ769X0_FAULT_MASK)
{
*status = BATTERY_FAULT;
}
else
{
*status = BATTERY_IDLE;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_health
*
* Description:
* Return the current battery health state
*
* Note: if more than one fault happened the user will need to
* clear the fault and call this ioctl again to read a new fault,
* repeat until receive a BATTERY_HEALTH_GOOD.
*
****************************************************************************/
static int bq769x0_health(struct battery_monitor_dev_s *dev, int *health)
{
FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev;
uint8_t regval = 0;
int ret;
ret = bq769x0_getreport(priv, &regval);
if (ret < 0)
{
*health = BATTERY_HEALTH_UNKNOWN;
return ret;
}
priv->fault_cache = regval;
if (regval & BQ769X0_DEVICE_XREADY)
{
*health = BATTERY_HEALTH_WD_TMR_EXP;
}
else if (regval & BQ769X0_SCD)
{
*health = BATTERY_HEALTH_SHORT_CIRCUIT;
}
else if (regval & BQ769X0_OCD)
{
*health = BATTERY_HEALTH_OVERCURRENT;
}
else if (regval & BQ769X0_OV)
{
*health = BATTERY_HEALTH_OVERVOLTAGE;
}
else if (regval & BQ769X0_UV)
{
*health = BATTERY_HEALTH_UNDERVOLTAGE;
}
else if (regval & BQ769X0_OVRD_ALERT)
{
*health = BATTERY_HEALTH_UNSPEC_FAIL;
}
else
{
*health = BATTERY_HEALTH_GOOD;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_online
*
* Description:
* Return true if the battery is online
*
****************************************************************************/
static int bq769x0_online(struct battery_monitor_dev_s *dev, bool *status)
{
/* There is no concept of online/offline in this driver */
*status = true;
return OK;
}
/****************************************************************************
* Name: bq769x0_getvolt
*
* Description:
* Gets the battery stack voltage in uV.
*
****************************************************************************/
static int bq769x0_getvolt(FAR struct bq769x0_dev_s *priv, int *volts)
{
uint16_t regval;
int ret;
ret = bq769x0_getreg16(priv, BQ769X0_REG_BAT_HI, &regval);
if (ret < 0)
{
baterr("ERROR: Error reading voltage from BQ769X0! Error = %d\n", ret);
return ret;
}
/* Voltage is returned from the chip in units of <gain>uV/LSB
* An offset also needs to be added.
* Reading the two bytes in a single operation guarantees atomic access.
* The pack voltage is divided by 4 in order to fit in a 16-bit register
* Multiply gain by 4, and offset by number of channels on the chip, since
* it is cumulative. See TI appnote SLUUB41.
*/
*volts = ((uint32_t) regval * priv->gain * 4) +
(priv->offset * bq769x0_chip_cellcount(priv));
return OK;
}
/****************************************************************************
* Name: bq769x0_getvolt
*
* Description:
* Gets one or more battery cell voltages from the monitor.
*
****************************************************************************/
static int bq769x0_getcellvolt(FAR struct bq769x0_dev_s *priv,
FAR struct battery_monitor_voltage_s *voltages)
{
uint16_t regvals[BQ769X0_MAX_CELLS];
int ret;
int i;
int cellsread;
if (voltages)
{
/* Check how many cells were requested. If more than available,
* overwrite with the number available.
*/
if (voltages->cell_count > priv->cellcount)
{
voltages->cell_count = priv->cellcount;
}
}
/* Due to gaps in cell voltages when the whole stack is not filled,
* We'll read the maximum number of cells supported by the chip
* and discard what we don't need.
*/
cellsread = bq769x0_chip_cellcount(priv);
ret = bq769x0_getnreg16(priv, BQ769X0_REG_VC1_HI, regvals, cellsread);
if (ret < 0)
{
baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret);
return ret;
}
for (i = 0; i < voltages->cell_count; i += 1)
{
/* Voltage is returned from the chip in units of <gain>uV/LSB
* An offset also needs to be added.
* We use the mapping table to determine mapping between cell number
* and ADC channel
*/
voltages->cell_voltages[i] = ((uint32_t) regvals[priv->mapping[i]] *
priv->gain) + priv->offset;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_gettemperature
*
* Description:
* Gets the voltage(s) at the temperature sensor input(s) of the chip
* It is up to the user to convert these voltage values into temperature
* values, as many types of temperature sensors exist.
*
****************************************************************************/
static int bq769x0_gettemperature(FAR struct bq769x0_dev_s *priv,
FAR struct battery_monitor_temperature_s *temps)
{
int chip_sensors;
int ret;
int i;
uint16_t regvals[3];
/* The number of temperature registers varies depending on the
* chip variant
*/
switch (priv->chip)
{
case CHIP_BQ76920:
chip_sensors = BQ76920_TEMP_COUNT;
break;
case CHIP_BQ76930:
chip_sensors = BQ76930_TEMP_COUNT;
break;
default:
case CHIP_BQ76940:
chip_sensors = BQ76940_TEMP_COUNT;
break;
}
/* Read the number of sensors requested or available, whichever is smaller
* We replace the requested count with the number of channels actually read
*/
temps->sensor_count = MIN(chip_sensors, temps->sensor_count);
ret = bq769x0_getnreg16(priv, BQ769X0_REG_TS1_HI, regvals,
temps->sensor_count);
if (ret < 0)
{
baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret);
return ret;
}
/* Convert temp sensor ADC values to microvolts */
for (i = 0; i < temps->sensor_count; i += 1)
{
temps->temperatures[i] = ((uint32_t) regvals[i] * priv->gain) +
priv->offset;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_chip_cellcount
*
* Description:
* Returns the number of cell channels on the specified device
*
****************************************************************************/
static int bq769x0_chip_cellcount(FAR struct bq769x0_dev_s *priv)
{
switch (priv->chip)
{
case CHIP_BQ76920:
return BQ76920_MAX_CELL_COUNT;
break;
case CHIP_BQ76930:
return BQ76930_MAX_CELL_COUNT;
break;
default:
case CHIP_BQ76940:
return BQ76940_MAX_CELL_COUNT;
break;
}
}
/****************************************************************************
* Name: bq769x0_getcurrent
*
* Description:
* Gets the value of the battery current as measured by the BQ769X0
*
****************************************************************************/
static int bq769x0_getcurrent(FAR struct bq769x0_dev_s *priv,
FAR struct battery_monitor_current_s *current)
{
/* The BQ769X0's "coulomb counter" reports average current over a 250ms
* period. This can be integrated by the user application to measure
* amp-hours.
*/
int i;
uint8_t regval;
int16_t ccval;
int32_t ccvolts;
int32_t ccamps;
int ret;
/* Poll SYS_STAT register until a new Coulomb counter value is ready
* or until we time out
*/
for (i = 0; i < 6; i += 1)
{
ret = bq769x0_getreg8(priv, BQ769X0_REG_SYS_STAT, &regval);
if (ret < 0)
{
baterr("ERROR: Failed to read BQ769X0 Status! Error = %d\n", ret);
return ret;
}
if (regval & BQ769X0_CC_READY)
{
/* Clear the CC_ready flag */
ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_STAT,
BQ769X0_CC_READY);
if (ret < 0)
{
baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret);
return ret;
}
/* Get the CC register data (a signed value) */
ret = bq769x0_getreg16(priv, BQ769X0_REG_CC_HI,
(uint16_t *)&ccval);
if (ret < 0)
{
baterr("ERROR: Error reading from BQ769X0! Error = %d\n", ret);
return ret;
}
batinfo("Coulomb counter raw value: %d\n", ccval);
/* Convert coulomb counter to real units
* Multiply by 4 for some extra resolution
*/
ccvolts = (int32_t)ccval * (int32_t)BQ769X0_CC_SCALE * (int32_t)4;
/* ccvolts is nV, sense_r is uOhm. Result is in mA
* convert to uA, and don't forget to divide the 4 back out
*/
ccamps = ccvolts / ((int32_t)priv->sense_r);
ccamps *= (int32_t)1000;
ccamps /= (int32_t)4;
current->current = ccamps;
/* Acquisition time is constant with this device */
current->time = (BQ769X0_CC_TIME * USEC_PER_MSEC);
return OK;
}
/* Sample is not complete, wait and try again */
nxsig_usleep(BQ769X0_CC_POLL_INTERVAL * USEC_PER_MSEC);
}
/* CC value didn't become available in the expected amount of time */
return -ETIMEDOUT;
}
/****************************************************************************
* Name: bq769x0_setbalance
*
* Description:
* Sets the values of the BQ769X0 balance switches
*
****************************************************************************/
static int bq769x0_setbalance(FAR struct bq769x0_dev_s *priv,
FAR struct battery_monitor_balance_s *bal)
{
int i;
int j;
int ret;
uint8_t regval;
uint16_t balancebits;
bool currentbit;
bool lastbit;
int currentindex;
/* Check how many balance switches were requested. If more than available,
* overwrite with the number available.
*/
if (bal->balance_count > priv->cellcount)
{
bal->balance_count = priv->cellcount;
}
/* Scan through the input and look for adjacent cells in each group.
* This is not allowed by the chip, so we will remove them.
* At the same time, copy the balance inputs into a single bit field.
* This allows us to get cell remapping out of the way.
* We will never have more than 15 cells, so we can store the
* result in a 16-bit int.
*/
balancebits = 0;
for (i = 0; i < BQ769X0_BAL_REG_COUNT; i += 1)
{
lastbit = false;
for (j = 0; j < BQ769X0_BAL_BITS_PER_REG; j += 1)
{
currentindex = i * BQ769X0_BAL_BITS_PER_REG + j;
if (currentindex >= bal->balance_count)
{
break;
}
currentbit = bal->balance[currentindex];
if (currentbit && lastbit)
{
bal->balance[currentindex] = false;
batinfo("Skipping cell %d because balance is set and previous "
"cell balance is set\n", currentindex);
}
else
{
balancebits |= (currentbit ? 1 : 0) <<
priv->mapping[currentindex];
batinfo("Setting cell balance %d to %d\n", currentindex,
currentbit);
batinfo("Balance bits are %02x\n", balancebits);
}
lastbit = currentbit;
}
}
/* Now split the result into 3 groups of 5 and send */
for (i = 0; i < BQ769X0_BAL_REG_COUNT; i += 1)
{
regval = (balancebits >> (i * 5)) & BQ769X0_CELLBAL_MASK;
ret = bq769x0_putreg8(priv, BQ769X0_REG_CELLBAL1 + i, regval);
if (ret < 0)
{
baterr("ERROR: Error writing to BQ769X0! Error = %d\n", ret);
return ret;
}
}
return OK;
}
/****************************************************************************
* Name: bq769x0_voltage
*
* Description:
* Get the pack voltage
*
****************************************************************************/
static int bq769x0_voltage(struct battery_monitor_dev_s *dev, int *value)
{
FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev;
int ret;
/* Get pack voltage from battery monitor */
ret = bq769x0_getvolt(priv, value);
if (ret < 0)
{
baterr("ERROR: Error getting voltage from BQ769X0! Error = %d\n", ret);
return ret;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_voltage
*
* Description:
* Get 1 or more cell voltages
*
****************************************************************************/
static int bq769x0_cellvoltage(struct battery_monitor_dev_s *dev,
struct battery_monitor_voltage_s *cellv)
{
FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev;
int ret;
/* Get cell voltages from battery monitor */
ret = bq769x0_getcellvolt(priv, cellv);
if (ret < 0)
{
baterr("ERROR: Error getting voltage from BQ769X0! Error = %d\n", ret);
return ret;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_current
*
* Description:
* Get the pack current
*
****************************************************************************/
static int bq769x0_current(struct battery_monitor_dev_s *dev,
struct battery_monitor_current_s *current)
{
FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev;
int ret;
/* Get current from battery monitor */
ret = bq769x0_getcurrent(priv, current);
if (ret < 0)
{
baterr("ERROR: Error getting current from BQ769X0! Error = %d\n", ret);
return ret;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_soc
*
* Description:
* Get the pack state of charge (in percent)
*
****************************************************************************/
static int bq769x0_soc(struct battery_monitor_dev_s *dev, b16_t *value)
{
/* The BQ769X0 does not support directly reporting pack state of charge.
* You should be able to come up with a state-of-charge value by knowing an
* initial value and looking at the Coulomb counter. This is out of scope
* for this driver, though.
*/
return -ENOSYS;
}
/****************************************************************************
* Name: bq769x0_coulombs
*
* Description:
* Get the raw value of the coulomb counter
*
****************************************************************************/
static int bq769x0_coulombs(struct battery_monitor_dev_s *dev, int *coulombs)
{
/* The data from the coulomb counter on this part can be accessed via
* the "get current" command.
*/
return -ENOSYS;
}
/****************************************************************************
* Name: bq769x0_temp
*
* Description:
* Get the pack temperature(s)
*
****************************************************************************/
static int bq769x0_temp(struct battery_monitor_dev_s *dev,
struct battery_monitor_temperature_s *temps)
{
FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev;
int ret;
ret = bq769x0_gettemperature(priv, temps);
if (ret < 0)
{
baterr("ERROR: Error getting temperature from BQ769X0! Error = %d\n",
ret);
return ret;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_balance
*
* Description:
* Set the specified cell balance switches
*
****************************************************************************/
static int bq769x0_balance(struct battery_monitor_dev_s *dev,
struct battery_monitor_balance_s *bal)
{
FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev;
int ret;
ret = bq769x0_setbalance(priv, bal);
if (ret < 0)
{
baterr("ERROR: Error getting temperature from BQ769X0! Error = %d\n",
ret);
return ret;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_shutdown
*
* Description:
* Put the battery in a low-power state
*
****************************************************************************/
static int bq769x0_shutdown(struct battery_monitor_dev_s *dev,
uintptr_t param)
{
FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev;
int ret;
ret = bq769x0_doshutdown(priv);
if (ret < 0)
{
baterr("ERROR: putting BQ769X0 into low-power state! Error = %d\n",
ret);
return ret;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_limits
*
* Description:
* Set the built-in safety limit values for the battery
*
****************************************************************************/
static int bq769x0_limits(struct battery_monitor_dev_s *dev,
struct battery_monitor_limits_s *limits)
{
FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev;
int ret;
ret = bq769x0_setlimits(priv, limits);
if (ret < 0)
{
baterr("ERROR: Error updating BQ769X0 safety limits! Error = %d\n",
ret);
return ret;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_chgdsg
*
* Description:
* Set the battery charge/discharge switches in order to
* accept/provide current
*
****************************************************************************/
static int bq769x0_chgdsg(struct battery_monitor_dev_s *dev,
struct battery_monitor_switches_s *sw)
{
FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev;
int ret;
ret = bq769x0_setchgdsg(priv, sw);
if (ret < 0)
{
baterr("ERROR: Error setting BQ769X0 switches! Error = %d\n", ret);
return ret;
}
return OK;
}
/****************************************************************************
* Name: bq769x0_clearfaults
*
* Description:
* Clear the battery monitor faults one at a time in order of priority
* Uses the most recent fault register read in order to avoid
* race conditions.
*
****************************************************************************/
static int bq769x0_clearfaults(struct battery_monitor_dev_s *dev,
uintptr_t param)
{
FAR struct bq769x0_dev_s *priv = (FAR struct bq769x0_dev_s *)dev;
int ret;
uint8_t faults = priv->fault_cache;
uint8_t to_clear = 0;
if (faults & BQ769X0_DEVICE_XREADY)
{
to_clear = BQ769X0_DEVICE_XREADY;
}
else if (faults & BQ769X0_SCD)
{
to_clear = BQ769X0_SCD;
}
else if (faults & BQ769X0_OCD)
{
to_clear = BQ769X0_OCD;
}
else if (faults & BQ769X0_OV)
{
to_clear = BQ769X0_OV;
}
else if (faults & BQ769X0_UV)
{
to_clear = BQ769X0_UV;
}
else if (faults & BQ769X0_OVRD_ALERT)
{
to_clear = BQ769X0_OVRD_ALERT;
}
if (to_clear)
{
ret = bq769x0_clear_chipfaults(priv, to_clear);
if (ret < 0)
{
baterr("ERROR: Error clearing faults! Error = %d\n", ret);
return ret;
}
}
return OK;
}
/****************************************************************************
* Name: bq769x0_operate
*
* Description:
* Do miscellaneous battery ioctl()
*
****************************************************************************/
static int bq769x0_operate(struct battery_monitor_dev_s *dev,
uintptr_t param)
{
return -ENOSYS;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: bq769x0_initialize
*
* Description:
* Initialize the BQ769x0 battery driver and return an instance of the
* lower_half interface that may be used with battery_monitor_register();
*
* This driver requires:
*
* CONFIG_BATTERY_MONITOR - Upper half battery driver support
* CONFIG_I2C - I2C support
* CONFIG_I2C_BQ769X0 - And the driver must be explicitly selected.
*
* Input Parameters:
* i2c - An instance of the I2C interface to use to communicate with
* the BQ769x0
* addr - The I2C address of the BQ769X0 (Can be 0x08 or 0x18).
* frequency - The I2C frequency
* crc - True if the device has CRC enabled (see TI datasheet)
* cellcount - The number of battery cells attached to the BQ769X0. The
* mapping of the cells changes based on count - see datasheet.
* chip - The chip type (either CHIP_BQ76920, CHIP_BQ76930, or
* CHIP_BQ76940). This is used to map cell numbers when the
* full capacity of the chip is not used. See the TI datasheet
* for cell wiring information.
* sense_r - The value of the current sense resistor, in micro ohms.
* This value is used to calculate reported current, and when
* setting overcurrent thresholds.
*
* Returned Value:
* A pointer to the initialized lower-half driver instance. A NULL pointer
* is returned on a failure to initialize the BQ769x0 lower half.
*
****************************************************************************/
FAR struct battery_monitor_dev_s *
bq769x0_initialize(FAR struct i2c_master_s *i2c, uint8_t addr,
uint32_t frequency, bool crc, uint8_t cellcount,
uint8_t chip, uint32_t sense_r)
{
FAR struct bq769x0_dev_s *priv;
int ret;
uint8_t regval;
/* Initialize the BQ769x0 device structure */
priv = kmm_zalloc(sizeof(struct bq769x0_dev_s));
if (priv)
{
/* Initialize the BQ769x0 device structure */
priv->dev.ops = &g_bq769x0ops;
priv->i2c = i2c;
priv->addr = addr;
priv->frequency = frequency;
priv->crc = crc;
priv->chip = chip;
priv->cellcount = cellcount;
priv->sense_r = sense_r;
priv->fault_cache = 0;
/* Sanity check the device setup and assign cell mapping table */
switch (chip)
{
case CHIP_BQ76920:
if (cellcount < BQ76920_MIN_CELL_COUNT ||
cellcount > BQ76920_MAX_CELL_COUNT)
{
berr("ERROR: Invalid number of cells (%d) for BQ76920\n",
cellcount);
kmm_free(priv);
return NULL;
}
else
{
priv->mapping = bq76920_cell_mapping[cellcount -
BQ76920_MIN_CELL_COUNT];
}
break;
case CHIP_BQ76930:
if (cellcount < BQ76930_MIN_CELL_COUNT ||
cellcount > BQ76930_MAX_CELL_COUNT)
{
berr("ERROR: Invalid number of cells (%d) for BQ76930\n",
cellcount);
kmm_free(priv);
return NULL;
}
else
{
priv->mapping = bq76930_cell_mapping[cellcount -
BQ76930_MIN_CELL_COUNT];
}
break;
case CHIP_BQ76940:
if (cellcount < BQ76940_MIN_CELL_COUNT ||
cellcount > BQ76940_MAX_CELL_COUNT)
{
berr("ERROR: Invalid number of cells (%d) for BQ76940\n",
cellcount);
kmm_free(priv);
return NULL;
}
else
{
priv->mapping = bq76940_cell_mapping[cellcount -
BQ76940_MIN_CELL_COUNT];
}
break;
default:
berr("ERROR: Unrecognized chip type: %d\n", chip);
kmm_free(priv);
return NULL;
break;
}
/* Configure the BQ769x0
* Set default CC_CFG register (required per datasheet)
*/
ret = bq769x0_putreg8(priv, BQ769X0_REG_CC_CFG,
BQ769X0_CC_CFG_DEFAULT_VAL);
if (ret < 0)
{
baterr("ERROR: Failed to configure the BQ769x0: %d\n", ret);
kmm_free(priv);
return NULL;
}
/* Set up DELAY_DIS, CC_EN, and CC_ONESHOT bits,
* making sure not to modify existing DSG_ON/CHG_ON state
*/
ret = bq769x0_getreg8(priv, BQ769X0_REG_SYS_CTRL2, &regval);
if (ret < 0)
{
baterr("ERROR: Failed to configure the BQ769x0: %d\n", ret);
kmm_free(priv);
return NULL;
}
/* Keep the existing DSG_ON/CHG_ON bits and set CC_EN */
regval &= BQ769X0_SYS_CTRL2_CHGDSG_MASK;
regval |= BQ769X0_CC_EN;
ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_CTRL2, regval);
if (ret < 0)
{
baterr("ERROR: Failed to configure the BQ769x0: %d\n", ret);
kmm_free(priv);
return NULL;
}
/* Set ADC_EN and TEMP_SEL bit */
regval = BQ769X0_ADC_EN;
#ifndef CONFIG_BQ769X0_USE_INTERNAL_TS
regval |= BQ769X0_TEMP_SEL;
#endif
ret = bq769x0_putreg8(priv, BQ769X0_REG_SYS_CTRL1, regval);
if (ret < 0)
{
baterr("ERROR: Failed to configure the BQ769x0: %d\n", ret);
kmm_free(priv);
return NULL;
}
/* Pull the factory-calibrated gain and offset values from the chip. */
ret = bq769x0_updategain(priv);
if (ret < 0)
{
baterr("ERROR: Failed to get gain/offset values from the BQ769x0: "
"%d\n", ret);
kmm_free(priv);
return NULL;
}
}
return (FAR struct battery_monitor_dev_s *)priv;
}
#endif /* CONFIG_BATTERY_MONITOR && CONFIG_I2C && CONFIG_I2C_BQ769X0 */