nuttx/drivers/net/e1000.c

1050 lines
32 KiB
C
Raw Normal View History

/****************************************************************************
* drivers/net/e1000.c
*
* Copyright (C) 2011 Yu Qiang. All rights reserved.
* Author: Yu Qiang <yuq825@gmail.com>
*
* This file is a part of NuttX:
*
* Copyright (C) 2011 Gregory Nutt. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/kmalloc.h>
#include <stdint.h>
#include <stdbool.h>
#include <time.h>
#include <debug.h>
#include <wdog.h>
#include <errno.h>
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <net/uip/uip.h>
#include <net/uip/uip-arp.h>
#include <net/uip/uip-arch.h>
#include <rgmp/pmap.h>
#include <rgmp/pci.h>
#include <rgmp/string.h>
#include <rgmp/x86.h>
#include <rgmp/stdio.h>
#include "e1000.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* TX poll deley = 1 seconds. CLK_TCK is the number of clock ticks per second */
#define E1000_WDDELAY (1*CLK_TCK)
#define E1000_POLLHSEC (1*2)
/* TX timeout = 1 minute */
#define E1000_TXTIMEOUT (60*CLK_TCK)
/* This is a helper pointer for accessing the contents of the Ethernet header */
#define BUF ((struct uip_eth_hdr *)e1000->uip_dev.d_buf)
/****************************************************************************
* Private Types
****************************************************************************/
struct tx_ring {
struct tx_desc *desc;
char *buf;
int tail; // where to write desc
};
struct rx_ring {
struct rx_desc *desc;
char *buf;
int head; // where to read
int tail; // where to release free desc
int free; // number of freed desc
};
struct e1000_dev {
uint32_t phy_mem_base;
uint32_t io_mem_base;
uint32_t mem_size;
int pci_dev_id;
unsigned char src_mac[6];
unsigned char dst_mac[6];
int irq;
struct irq_action int_desc;
struct tx_ring tx_ring;
struct rx_ring rx_ring;
struct e1000_dev *next;
// NuttX net data
bool bifup; /* true:ifup false:ifdown */
WDOG_ID txpoll; /* TX poll timer */
WDOG_ID txtimeout; /* TX timeout timer */
/* This holds the information visible to uIP/NuttX */
struct uip_driver_s uip_dev; /* Interface understood by uIP */
};
struct e1000_dev_head {
struct e1000_dev *next;
};
/****************************************************************************
* Private Data
****************************************************************************/
static struct e1000_dev_head e1000_list = {0};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Common TX logic */
static int e1000_transmit(struct e1000_dev *e1000);
static int e1000_uiptxpoll(struct uip_driver_s *dev);
/* Interrupt handling */
static void e1000_receive(struct e1000_dev *e1000);
/* Watchdog timer expirations */
static void e1000_polltimer(int argc, uint32_t arg, ...);
static void e1000_txtimeout(int argc, uint32_t arg, ...);
/* NuttX callback functions */
static int e1000_ifup(struct uip_driver_s *dev);
static int e1000_ifdown(struct uip_driver_s *dev);
static int e1000_txavail(struct uip_driver_s *dev);
#ifdef CONFIG_NET_IGMP
static int e1000_addmac(struct uip_driver_s *dev, const uint8_t *mac);
static int e1000_rmmac(struct uip_driver_s *dev, const uint8_t *mac);
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
static inline void e1000_outl(struct e1000_dev *dev, int reg, uint32_t val)
{
writel(dev->io_mem_base+reg, val);
}
static inline uint32_t e1000_inl(struct e1000_dev *dev, int reg)
{
return readl(dev->io_mem_base+reg);
}
/****************************** e1000 driver ********************************/
void e1000_reset(struct e1000_dev *dev)
{
uint32_t dev_control;
// Reset the network controller hardware
dev_control = 0;
dev_control |= (1<<0); // FD-bit (Full Duplex)
dev_control |= (0<<2); // GIOMD-bit (GIO Master Disable)
dev_control |= (1<<3); // LRST-bit (Link Reset)
dev_control |= (1<<6); // SLU-bit (Set Link Up)
dev_control |= (2<<8); // SPEED=2 (1000Mbps)
dev_control |= (0<<11); // FRCSPD-bit (Force Speed)
dev_control |= (0<<12); // FRCDPLX-bit (Force Duplex)
dev_control |= (0<<20); // ADVD3WUC-bit (Advertise D3 Wake Up Cap)
dev_control |= (1<<26); // RST-bit (Device Reset)
dev_control |= (1<<27); // RFCE-bit (Receive Flow Control Enable)
dev_control |= (1<<28); // TFCE-bit (Transmit Flow Control Enable)
dev_control |= (0<<30); // VME-bit (VLAN Mode Enable)
dev_control |= (0<<31); // PHY_RST-bit (PHY Reset)
e1000_outl(dev, E1000_IMC, 0xFFFFFFFF);
e1000_outl(dev, E1000_STATUS, 0x00000000);
e1000_outl(dev, E1000_CTRL, dev_control);
dev_control &= ~(1<<26); // clear RST-bit (Device Reset)
e1000_outl(dev, E1000_CTRL, dev_control);
up_mdelay(10);
e1000_outl(dev, E1000_CTRL_EXT, 0x001401C0);
e1000_outl(dev, E1000_IMC, 0xFFFFFFFF);
}
void e1000_turn_on(struct e1000_dev *dev)
{
int tx_control, rx_control;
uint32_t ims = 0;
// turn on the controller's receive engine
rx_control = e1000_inl(dev, E1000_RCTL);
rx_control |= (1<<1);
e1000_outl(dev, E1000_RCTL, rx_control);
// turn on the controller's transmit engine
tx_control = e1000_inl(dev, E1000_TCTL);
tx_control |= (1<<1);
e1000_outl(dev, E1000_TCTL, tx_control);
// enable the controller's interrupts
e1000_outl(dev, E1000_ICR, 0xFFFFFFFF);
e1000_outl(dev, E1000_IMC, 0xFFFFFFFF);
ims |= 1<<0; // TXDW
ims |= 1<<1; // TXQE
ims |= 1<<2; // LSC
ims |= 1<<4; // RXDMT0
ims |= 1<<7; // RXT0
e1000_outl(dev, E1000_IMS, ims);
}
void e1000_turn_off(struct e1000_dev *dev)
{
int tx_control, rx_control;
// turn off the controller's receive engine
rx_control = e1000_inl(dev, E1000_RCTL);
rx_control &= ~(1<<1);
e1000_outl(dev, E1000_RCTL, rx_control);
// turn off the controller's transmit engine
tx_control = e1000_inl(dev, E1000_TCTL);
tx_control &= ~(1<<1);
e1000_outl(dev, E1000_TCTL, tx_control);
// turn off the controller's interrupts
e1000_outl(dev, E1000_IMC, 0xFFFFFFFF);
}
void e1000_init(struct e1000_dev *dev)
{
uint32_t rxd_phys, txd_phys, kmem_phys;
uint32_t rx_control, tx_control;
uint32_t pba;
int i;
e1000_reset(dev);
// configure the controller's 'receive' engine
rx_control = 0;
rx_control |= (0<<1); // EN-bit (Enable)
rx_control |= (0<<2); // SPB-bit (Store Bad Packets)
rx_control |= (0<<3); // UPE-bit (Unicast Promiscuous Mode)
rx_control |= (1<<4); // MPE-bit (Multicast Promiscuous Mode)
rx_control |= (0<<5); // LPE-bit (Long Packet Enable)
rx_control |= (0<<6); // LBM=0 (Loop-Back Mode)
rx_control |= (0<<8); // RDMTS=0 (Rx Descriptor Min Threshold Size)
rx_control |= (0<<10); // DTYPE=0 (Descriptor Type)
rx_control |= (0<<12); // MO=0 (Multicast Offset)
rx_control |= (1<<15); // BAM-bit (Broadcast Address Mode)
rx_control |= (0<<16); // BSIZE=0 (Buffer Size = 2048)
rx_control |= (0<<18); // VLE-bit (VLAN filter Enable)
rx_control |= (0<<19); // CFIEN-bit (Canonical Form Indicator Enable)
rx_control |= (0<<20); // CFI-bit (Canonical Form Indicator)
rx_control |= (1<<22); // DPF-bit (Discard Pause Frames)
rx_control |= (0<<23); // PMCF-bit (Pass MAC Control Frames)
rx_control |= (0<<25); // BSEX=0 (Buffer Size EXtension)
rx_control |= (1<<26); // SECRC-bit (Strip Ethernet CRC)
rx_control |= (0<<27); // FLEXBUF=0 (Flexible Buffer size)
e1000_outl(dev, E1000_RCTL, rx_control);
// configure the controller's 'transmit' engine
tx_control = 0;
tx_control |= (0<<1); // EN-bit (Enable)
tx_control |= (1<<3); // PSP-bit (Pad Short Packets)
tx_control |= (15<<4); // CT=15 (Collision Threshold)
tx_control |= (63<<12); // COLD=63 (Collision Distance)
tx_control |= (0<<22); // SWXOFF-bit (Software XOFF)
tx_control |= (1<<24); // RTLC-bit (Re-Transmit on Late Collision)
tx_control |= (0<<25); // UNORTX-bit (Underrun No Re-Transmit)
tx_control |= (0<<26); // TXCSCMT=0 (TxDesc Mininum Threshold)
tx_control |= (0<<28); // MULR-bit (Multiple Request Support)
e1000_outl(dev, E1000_TCTL, tx_control);
// hardware flow control
pba = e1000_inl(dev, E1000_PBA);
// get receive FIFO size
pba = (pba & 0x000000ff)<<10;
e1000_outl(dev, E1000_FCAL, 0x00C28001);
e1000_outl(dev, E1000_FCAH, 0x00000100);
e1000_outl(dev, E1000_FCT, 0x00008808);
e1000_outl(dev, E1000_FCTTV, 0x00000680);
e1000_outl(dev, E1000_FCRTL, (pba*8/10)|0x80000000);
e1000_outl(dev, E1000_FCRTH, pba*9/10);
// setup tx rings
txd_phys = PADDR(dev->tx_ring.desc);
kmem_phys = PADDR(dev->tx_ring.buf);
for (i=0; i<CONFIG_E1000_N_TX_DESC; i++,kmem_phys+=CONFIG_E1000_BUFF_SIZE) {
dev->tx_ring.desc[i].base_address = kmem_phys;
dev->tx_ring.desc[i].packet_length = 0;
dev->tx_ring.desc[i].cksum_offset = 0;
dev->tx_ring.desc[i].cksum_origin = 0;
dev->tx_ring.desc[i].desc_status = 1;
dev->tx_ring.desc[i].desc_command = (1<<0)|(1<<1)|(1<<3);
dev->tx_ring.desc[i].special_info = 0;
}
dev->tx_ring.tail = 0;
e1000_outl(dev, E1000_TDT, 0);
e1000_outl(dev, E1000_TDH, 0);
// tell controller the location, size, and fetch-policy for Tx queue
e1000_outl(dev, E1000_TDBAL, txd_phys);
e1000_outl(dev, E1000_TDBAH, 0x00000000);
e1000_outl(dev, E1000_TDLEN, CONFIG_E1000_N_TX_DESC*16);
e1000_outl(dev, E1000_TXDCTL, 0x01010000);
// setup rx rings
rxd_phys = PADDR(dev->rx_ring.desc);
kmem_phys = PADDR(dev->rx_ring.buf);
for (i=0; i<CONFIG_E1000_N_RX_DESC; i++,kmem_phys+=CONFIG_E1000_BUFF_SIZE) {
dev->rx_ring.desc[i].base_address = kmem_phys;
dev->rx_ring.desc[i].packet_length = 0;
dev->rx_ring.desc[i].packet_cksum = 0;
dev->rx_ring.desc[i].desc_status = 0;
dev->rx_ring.desc[i].desc_errors = 0;
dev->rx_ring.desc[i].vlan_tag = 0;
}
dev->rx_ring.head = 0;
dev->rx_ring.tail = CONFIG_E1000_N_RX_DESC-1;
dev->rx_ring.free = 0;
// give the controller ownership of all receive descriptors
e1000_outl(dev, E1000_RDH, 0);
e1000_outl(dev, E1000_RDT, CONFIG_E1000_N_RX_DESC-1);
// tell controller the location, size, and fetch-policy for RX queue
e1000_outl(dev, E1000_RDBAL, rxd_phys);
e1000_outl(dev, E1000_RDBAH, 0x00000000);
e1000_outl(dev, E1000_RDLEN, CONFIG_E1000_N_RX_DESC*16);
e1000_outl(dev, E1000_RXDCTL, 0x01010000);
e1000_turn_on(dev);
}
/****************************************************************************
* Function: e1000_transmit
*
* Description:
* Start hardware transmission. Called either from the txdone interrupt
* handling or from watchdog based polling.
*
* Parameters:
* e1000 - Reference to the driver state structure
*
* Returned Value:
* OK on success; a negated errno on failure
*
* Assumptions:
* May or may not be called from an interrupt handler. In either case,
* global interrupts are disabled, either explicitly or indirectly through
* interrupt handling logic.
*
****************************************************************************/
static int e1000_transmit(struct e1000_dev *e1000)
{
int tail = e1000->tx_ring.tail;
unsigned char *cp = (unsigned char *)
(e1000->tx_ring.buf + tail * CONFIG_E1000_BUFF_SIZE);
int count = e1000->uip_dev.d_len;
/* Verify that the hardware is ready to send another packet. If we get
* here, then we are committed to sending a packet; Higher level logic
* must have assured that there is not transmission in progress.
*/
if (!e1000->tx_ring.desc[tail].desc_status)
return -1;
/* Increment statistics */
/* Send the packet: address=skel->sk_dev.d_buf, length=skel->sk_dev.d_len */
memcpy(cp, e1000->uip_dev.d_buf, e1000->uip_dev.d_len);
// prepare the transmit-descriptor
e1000->tx_ring.desc[tail].packet_length = count<60 ? 60:count;
e1000->tx_ring.desc[tail].desc_status = 0;
// give ownership of this descriptor to the network controller
tail = (tail + 1) % CONFIG_E1000_N_TX_DESC;
e1000->tx_ring.tail = tail;
e1000_outl(e1000, E1000_TDT, tail);
/* Enable Tx interrupts */
/* Setup the TX timeout watchdog (perhaps restarting the timer) */
wd_start(e1000->txtimeout, E1000_TXTIMEOUT, e1000_txtimeout, 1, (uint32_t)e1000);
return OK;
}
/****************************************************************************
* Function: e1000_uiptxpoll
*
* Description:
* The transmitter is available, check if uIP has any outgoing packets ready
* to send. This is a callback from uip_poll(). uip_poll() may be called:
*
* 1. When the preceding TX packet send is complete,
* 2. When the preceding TX packet send timesout and the interface is reset
* 3. During normal TX polling
*
* Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* OK on success; a negated errno on failure
*
* Assumptions:
* May or may not be called from an interrupt handler. In either case,
* global interrupts are disabled, either explicitly or indirectly through
* interrupt handling logic.
*
****************************************************************************/
static int e1000_uiptxpoll(struct uip_driver_s *dev)
{
struct e1000_dev *e1000 = (struct e1000_dev *)dev->d_private;
int tail = e1000->tx_ring.tail;
/* If the polling resulted in data that should be sent out on the network,
* the field d_len is set to a value > 0.
*/
if (e1000->uip_dev.d_len > 0) {
uip_arp_out(&e1000->uip_dev);
e1000_transmit(e1000);
/* Check if there is room in the device to hold another packet. If not,
* return a non-zero value to terminate the poll.
*/
if (!e1000->tx_ring.desc[tail].desc_status)
return -1;
}
/* If zero is returned, the polling will continue until all connections have
* been examined.
*/
return 0;
}
/****************************************************************************
* Function: e1000_receive
*
* Description:
* An interrupt was received indicating the availability of a new RX packet
*
* Parameters:
* e1000 - Reference to the driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Global interrupts are disabled by interrupt handling logic.
*
****************************************************************************/
static void e1000_receive(struct e1000_dev *e1000)
{
int head = e1000->rx_ring.head;
unsigned char *cp = (unsigned char *)
(e1000->rx_ring.buf + head * CONFIG_E1000_BUFF_SIZE);
int cnt;
while (e1000->rx_ring.desc[head].desc_status) {
/* Check for errors and update statistics */
// Here we do not handle packets that exceed packet-buffer size
if ((e1000->rx_ring.desc[head].desc_status & 3) == 1) {
cprintf("NIC READ: Oversized packet\n");
goto next;
}
/* Check if the packet is a valid size for the uIP buffer configuration */
// get the number of actual data-bytes in this packet
cnt = e1000->rx_ring.desc[head].packet_length;
if (cnt > CONFIG_NET_BUFSIZE || cnt < 14) {
cprintf("NIC READ: invalid package size\n");
goto next;
}
/* Copy the data data from the hardware to e1000->uip_dev.d_buf. Set
* amount of data in e1000->uip_dev.d_len
*/
// now we try to copy these data-bytes to the UIP buffer
memcpy(e1000->uip_dev.d_buf, cp, cnt);
e1000->uip_dev.d_len = cnt;
/* We only accept IP packets of the configured type and ARP packets */
#ifdef CONFIG_NET_IPv6
if (BUF->type == HTONS(UIP_ETHTYPE_IP6))
#else
if (BUF->type == HTONS(UIP_ETHTYPE_IP))
#endif
{
uip_arp_ipin(&e1000->uip_dev);
uip_input(&e1000->uip_dev);
/* If the above function invocation resulted in data that should be
* sent out on the network, the field d_len will set to a value > 0.
*/
if (e1000->uip_dev.d_len > 0) {
uip_arp_out(&e1000->uip_dev);
e1000_transmit(e1000);
}
}
else if (BUF->type == htons(UIP_ETHTYPE_ARP)) {
uip_arp_arpin(&e1000->uip_dev);
/* If the above function invocation resulted in data that should be
* sent out on the network, the field d_len will set to a value > 0.
*/
if (e1000->uip_dev.d_len > 0) {
e1000_transmit(e1000);
}
}
next:
e1000->rx_ring.desc[head].desc_status = 0;
e1000->rx_ring.head = (head + 1) % CONFIG_E1000_N_RX_DESC;
e1000->rx_ring.free++;
head = e1000->rx_ring.head;
cp = (unsigned char *)(e1000->rx_ring.buf + head * CONFIG_E1000_BUFF_SIZE);
}
}
/****************************************************************************
* Function: e1000_txtimeout
*
* Description:
* Our TX watchdog timed out. Called from the timer interrupt handler.
* The last TX never completed. Reset the hardware and start again.
*
* Parameters:
* argc - The number of available arguments
* arg - The first argument
*
* Returned Value:
* None
*
* Assumptions:
* Global interrupts are disabled by the watchdog logic.
*
****************************************************************************/
static void e1000_txtimeout(int argc, uint32_t arg, ...)
{
struct e1000_dev *e1000 = (struct e1000_dev *)arg;
/* Increment statistics and dump debug info */
/* Then reset the hardware */
e1000_init(e1000);
/* Then poll uIP for new XMIT data */
(void)uip_poll(&e1000->uip_dev, e1000_uiptxpoll);
}
/****************************************************************************
* Function: e1000_polltimer
*
* Description:
* Periodic timer handler. Called from the timer interrupt handler.
*
* Parameters:
* argc - The number of available arguments
* arg - The first argument
*
* Returned Value:
* None
*
* Assumptions:
* Global interrupts are disabled by the watchdog logic.
*
****************************************************************************/
static void e1000_polltimer(int argc, uint32_t arg, ...)
{
struct e1000_dev *e1000 = (struct e1000_dev *)arg;
int tail = e1000->tx_ring.tail;
/* Check if there is room in the send another TX packet. We cannot perform
* the TX poll if he are unable to accept another packet for transmission.
*/
if (!e1000->tx_ring.desc[tail].desc_status)
return;
/* If so, update TCP timing states and poll uIP for new XMIT data. Hmmm..
* might be bug here. Does this mean if there is a transmit in progress,
* we will missing TCP time state updates?
*/
(void)uip_timer(&e1000->uip_dev, e1000_uiptxpoll, E1000_POLLHSEC);
/* Setup the watchdog poll timer again */
(void)wd_start(e1000->txpoll, E1000_WDDELAY, e1000_polltimer, 1, arg);
}
/****************************************************************************
* Function: e1000_ifup
*
* Description:
* NuttX Callback: Bring up the Ethernet interface when an IP address is
* provided
*
* Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static int e1000_ifup(struct uip_driver_s *dev)
{
struct e1000_dev *e1000 = (struct e1000_dev *)dev->d_private;
ndbg("Bringing up: %d.%d.%d.%d\n",
dev->d_ipaddr & 0xff, (dev->d_ipaddr >> 8) & 0xff,
(dev->d_ipaddr >> 16) & 0xff, dev->d_ipaddr >> 24 );
/* Initialize PHYs, the Ethernet interface, and setup up Ethernet interrupts */
e1000_init(e1000);
/* Set and activate a timer process */
(void)wd_start(e1000->txpoll, E1000_WDDELAY, e1000_polltimer, 1, (uint32_t)e1000);
if (e1000_inl(e1000, E1000_STATUS) & 2)
e1000->bifup = true;
else
e1000->bifup = false;
return OK;
}
/****************************************************************************
* Function: e1000_ifdown
*
* Description:
* NuttX Callback: Stop the interface.
*
* Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
static int e1000_ifdown(struct uip_driver_s *dev)
{
struct e1000_dev *e1000 = (struct e1000_dev *)dev->d_private;
irqstate_t flags;
/* Disable the Ethernet interrupt */
flags = irqsave();
e1000_turn_off(e1000);
/* Cancel the TX poll timer and TX timeout timers */
wd_cancel(e1000->txpoll);
wd_cancel(e1000->txtimeout);
/* Put the the EMAC is its reset, non-operational state. This should be
* a known configuration that will guarantee the skel_ifup() always
* successfully brings the interface back up.
*/
//e1000_reset(e1000);
/* Mark the device "down" */
e1000->bifup = false;
irqrestore(flags);
return OK;
}
/****************************************************************************
* Function: e1000_txavail
*
* Description:
* Driver callback invoked when new TX data is available. This is a
* stimulus perform an out-of-cycle poll and, thereby, reduce the TX
* latency.
*
* Parameters:
* dev - Reference to the NuttX driver state structure
*
* Returned Value:
* None
*
* Assumptions:
* Called in normal user mode
*
****************************************************************************/
static int e1000_txavail(struct uip_driver_s *dev)
{
struct e1000_dev *e1000 = (struct e1000_dev *)dev->d_private;
int tail = e1000->tx_ring.tail;
irqstate_t flags;
/* Disable interrupts because this function may be called from interrupt
* level processing.
*/
flags = irqsave();
/* Ignore the notification if the interface is not yet up */
if (e1000->bifup) {
/* Check if there is room in the hardware to hold another outgoing packet. */
if (e1000->tx_ring.desc[tail].desc_status)
(void)uip_poll(&e1000->uip_dev, e1000_uiptxpoll);
}
irqrestore(flags);
return OK;
}
/****************************************************************************
* Function: e1000_addmac
*
* Description:
* NuttX Callback: Add the specified MAC address to the hardware multicast
* address filtering
*
* Parameters:
* dev - Reference to the NuttX driver state structure
* mac - The MAC address to be added
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
#ifdef CONFIG_NET_IGMP
static int e1000_addmac(struct uip_driver_s *dev, const uint8_t *mac)
{
struct e1000_dev *e1000 = (struct e1000_dev *)dev->d_private;
/* Add the MAC address to the hardware multicast routing table */
return OK;
}
#endif
/****************************************************************************
* Function: e1000_rmmac
*
* Description:
* NuttX Callback: Remove the specified MAC address from the hardware multicast
* address filtering
*
* Parameters:
* dev - Reference to the NuttX driver state structure
* mac - The MAC address to be removed
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
#ifdef CONFIG_NET_IGMP
static int e1000_rmmac(struct uip_driver_s *dev, const uint8_t *mac)
{
struct e1000_dev *e1000 = (struct e1000_dev *)dev->d_private;
/* Add the MAC address to the hardware multicast routing table */
return OK;
}
#endif
irqreturn_t e1000_interrupt_handler(struct Trapframe *tf, void *dev_id)
{
struct e1000_dev *e1000 = (struct e1000_dev *)dev_id;
/* Get and clear interrupt status bits */
int intr_cause = e1000_inl(e1000, E1000_ICR);
e1000_outl(e1000, E1000_ICR, intr_cause);
// not for me
if (intr_cause == 0)
return IRQ_NONE;
/* Handle interrupts according to status bit settings */
// Link status change
if (intr_cause & (1<<2)) {
if (e1000_inl(e1000, E1000_STATUS) & 2)
e1000->bifup = true;
else
e1000->bifup = false;
}
/* Check if we received an incoming packet, if so, call skel_receive() */
// Rx-descriptor Timer expired
if (intr_cause & (1<<7))
e1000_receive(e1000);
// Tx queue empty
if (intr_cause & (1<<1))
wd_cancel(e1000->txtimeout);
/* Check is a packet transmission just completed. If so, call skel_txdone.
* This may disable further Tx interrupts if there are no pending
* tansmissions.
*/
// Tx-descriptor Written back
if (intr_cause & (1<<0))
uip_poll(&e1000->uip_dev, e1000_uiptxpoll);
// Rx-Descriptors Low
if (intr_cause & (1<<4)) {
int tail;
tail = e1000->rx_ring.tail + e1000->rx_ring.free;
tail %= CONFIG_E1000_N_RX_DESC;
e1000->rx_ring.tail = tail;
e1000->rx_ring.free = 0;
e1000_outl(e1000, E1000_RDT, tail);
}
return IRQ_HANDLED;
}
/******************************* PCI driver *********************************/
static pci_id_t e1000_id_table[] = {
{.sep = {INTEL_VENDERID, E1000_82573L}},
{.sep = {INTEL_VENDERID, E1000_82540EM}},
{.sep = {INTEL_VENDERID, E1000_82574L}},
{.sep = {INTEL_VENDERID, E1000_82567LM}},
{.sep = {INTEL_VENDERID, E1000_82541PI}},
{.sep = {0,0}}
};
static int e1000_probe(uint16_t addr, pci_id_t id)
{
uint32_t mmio_base, mmio_size;
uint32_t pci_cmd, size;
int err, irq, flags;
void *kmem, *omem;
struct e1000_dev *dev;
// alloc e1000_dev memory
dev = kzalloc(sizeof(struct e1000_dev));
if (dev == NULL)
return -1;
// enable device
err = pci_enable_device(addr, PCI_RESOURCE_MEM);
if (err)
goto error;
// get e1000 device type
dev->pci_dev_id = id.join;
// remap the controller's i/o-memory into kernel's address-space
mmio_base = pci_resource_start(addr, 0);
mmio_size = pci_resource_len(addr, 0);
err = rgmp_memmap_nocache(mmio_base, mmio_size, mmio_base);
if (err)
goto error;
dev->phy_mem_base = mmio_base;
dev->io_mem_base = mmio_base;
dev->mem_size = mmio_size;
// make sure the controller's Bus Master capability is enabled
pci_cmd = pci_config_readl(addr, PCI_COMMAND);
pci_cmd |= (1<<2);
pci_config_writel(addr, PCI_COMMAND, pci_cmd);
// MAC address
memset(dev->dst_mac, 0xFF, 6);
memcpy(dev->src_mac, (void *)(dev->io_mem_base+E1000_RA), 6);
// get e1000 IRQ
flags = 0;
irq = pci_enable_msi(addr);
if (irq == 0) {
irq = pci_read_irq(addr);
flags |= IDC_SHARE;
}
dev->irq = irq;
dev->int_desc.handler = e1000_interrupt_handler;
dev->int_desc.dev_id = dev;
err = rgmp_request_irq(irq, &dev->int_desc, flags);
if (err)
goto err0;
// Here we alloc a big block of memory once and make it
// aligned to page boundary and multiple of page size. This
// is because the memory can be modified by E1000 DMA and
// should be mapped no-cache which will hugely reduce memory
// access performance. The page size alloc will restrict
// this bad effect only within the memory we alloc here.
size = CONFIG_E1000_N_TX_DESC * sizeof(struct tx_desc) +
CONFIG_E1000_N_TX_DESC * CONFIG_E1000_BUFF_SIZE +
CONFIG_E1000_N_RX_DESC * sizeof(struct rx_desc) +
CONFIG_E1000_N_RX_DESC * CONFIG_E1000_BUFF_SIZE;
size = ROUNDUP(size, PGSIZE);
omem = kmem = memalign(PGSIZE, size);
if (kmem == NULL) {
err = -ENOMEM;
goto err1;
}
rgmp_memremap_nocache((uintptr_t)kmem, size);
// alloc memory for tx ring
dev->tx_ring.desc = (struct tx_desc*)kmem;
kmem += CONFIG_E1000_N_TX_DESC * sizeof(struct tx_desc);
dev->tx_ring.buf = kmem;
kmem += CONFIG_E1000_N_TX_DESC * CONFIG_E1000_BUFF_SIZE;
// alloc memory for rx rings
dev->rx_ring.desc = (struct rx_desc*)kmem;
kmem += CONFIG_E1000_N_RX_DESC * sizeof(struct rx_desc);
dev->rx_ring.buf = kmem;
/* Initialize the driver structure */
dev->uip_dev.d_ifup = e1000_ifup; /* I/F up (new IP address) callback */
dev->uip_dev.d_ifdown = e1000_ifdown; /* I/F down callback */
dev->uip_dev.d_txavail = e1000_txavail; /* New TX data callback */
#ifdef CONFIG_NET_IGMP
dev->uip_dev.d_addmac = e1000_addmac; /* Add multicast MAC address */
dev->uip_dev.d_rmmac = e1000_rmmac; /* Remove multicast MAC address */
#endif
dev->uip_dev.d_private = dev; /* Used to recover private state from dev */
/* Create a watchdog for timing polling for and timing of transmisstions */
dev->txpoll = wd_create(); /* Create periodic poll timer */
dev->txtimeout = wd_create(); /* Create TX timeout timer */
// Put the interface in the down state.
// e1000 reset
e1000_reset(dev);
/* Read the MAC address from the hardware */
memcpy(dev->uip_dev.d_mac.ether_addr_octet, (void *)(dev->io_mem_base+E1000_RA), 6);
/* Register the device with the OS so that socket IOCTLs can be performed */
err = netdev_register(&dev->uip_dev);
if (err)
goto err2;
// insert into e1000_list
dev->next = e1000_list.next;
e1000_list.next = dev;
cprintf("bring up e1000 device: %04x %08x\n", addr, id.join);
return 0;
err2:
rgmp_memremap((uintptr_t)omem, size);
free(omem);
err1:
rgmp_free_irq(irq, &dev->int_desc);
err0:
rgmp_memunmap(mmio_base, mmio_size);
error:
kfree(dev);
cprintf("e1000 device probe fail: %d\n", err);
return err;
}
/****************************************************************************
* Public Functions
****************************************************************************/
void e1000_mod_init(void)
{
pci_probe_device(e1000_id_table, e1000_probe);
}
void e1000_mod_exit(void)
{
uint32_t size;
struct e1000_dev *dev;
size = CONFIG_E1000_N_TX_DESC * sizeof(struct tx_desc) +
CONFIG_E1000_N_TX_DESC * CONFIG_E1000_BUFF_SIZE +
CONFIG_E1000_N_RX_DESC * sizeof(struct rx_desc) +
CONFIG_E1000_N_RX_DESC * CONFIG_E1000_BUFF_SIZE;
size = ROUNDUP(size, PGSIZE);
for (dev=e1000_list.next; dev!=NULL; dev=dev->next) {
netdev_unregister(&dev->uip_dev);
e1000_reset(dev);
wd_delete(dev->txpoll);
wd_delete(dev->txtimeout);
rgmp_memremap((uintptr_t)dev->tx_ring.desc, size);
free(dev->tx_ring.desc);
rgmp_free_irq(dev->irq, &dev->int_desc);
rgmp_memunmap((uintptr_t)dev->io_mem_base, dev->mem_size);
kfree(dev);
}
e1000_list.next = NULL;
}