2018-11-09 14:56:02 +01:00
|
|
|
README
|
|
|
|
======
|
|
|
|
|
|
|
|
This README file provides information about the port of NuttX to the NXP
|
|
|
|
i.MXRT evaluation kit, MIMXRT1060-EVK. This board features the
|
|
|
|
MIMXRT1062DVL6A MCU. Some of the features of this board include:
|
|
|
|
|
|
|
|
o Processor
|
|
|
|
|
|
|
|
- MIMXRT1062DVL6A processor
|
|
|
|
|
|
|
|
o Memory
|
|
|
|
|
|
|
|
- 1 Mb OCRAM memory
|
|
|
|
- 256 Mb SDRAM memory
|
|
|
|
- 512 Mb Hyper Flash - Populated but 0 ohm DNP
|
|
|
|
- 64 Mb QSPI Flash
|
|
|
|
- TF socket for SD card
|
|
|
|
|
|
|
|
o Display and Audio
|
|
|
|
|
|
|
|
- Parallel LCD connector
|
|
|
|
- Camera connector
|
|
|
|
- Audio CODEC
|
|
|
|
- 4-pole audio headphone jack
|
|
|
|
- External speaker connection
|
|
|
|
- Microphone
|
|
|
|
- SPDIF connector
|
|
|
|
|
|
|
|
o Connectivity
|
|
|
|
|
|
|
|
- Micro USB host and OTG connectors
|
|
|
|
- Ethernet (10/100T) connector
|
|
|
|
- CAN transceivers
|
|
|
|
- Arduino® interface
|
2019-08-12 18:06:40 +02:00
|
|
|
|
2018-11-09 14:56:02 +01:00
|
|
|
o Sensors
|
|
|
|
|
|
|
|
- FXOS8700CQ 6-Axis Ecompass (3-Axis Mag, 3-Axis Accel)
|
|
|
|
|
|
|
|
Contents
|
|
|
|
========
|
|
|
|
|
|
|
|
o Serial Console
|
|
|
|
o LEDs and buttons
|
2019-07-25 16:31:06 +02:00
|
|
|
o J-Link External Debug Probe
|
2018-11-09 14:56:02 +01:00
|
|
|
o Configurations
|
|
|
|
- Configuration sub-directories
|
|
|
|
|
|
|
|
Serial Console
|
|
|
|
==============
|
|
|
|
|
|
|
|
Virtual console port provided by OpenSDA:
|
|
|
|
|
|
|
|
UART1_TXD GPIO_AD_B0_12 LPUART1_TX
|
|
|
|
UART1_RXD GPIO_AD_B0_13 LPUART1_RX
|
|
|
|
|
|
|
|
Arduino RS-232 Shield:
|
|
|
|
|
|
|
|
J22 D0 UART_RX/D0 GPIO_AD_B1_07 LPUART3_RX
|
|
|
|
J22 D1 UART_TX/D1 GPIO_AD_B1_06 LPUART3_TX
|
|
|
|
|
|
|
|
LEDs and buttons
|
|
|
|
================
|
|
|
|
|
|
|
|
LEDs
|
|
|
|
----
|
|
|
|
|
|
|
|
There are four LED status indicators located on the EVK Board. The
|
|
|
|
functions of these LEDs include:
|
|
|
|
|
|
|
|
- Main Power Supply(D3)
|
|
|
|
Green: DC 5V main supply is normal.
|
|
|
|
Red: J2 input voltage is over 5.6V.
|
|
|
|
Off: The board is not powered.
|
|
|
|
- Reset RED LED(D21)
|
|
|
|
- OpenSDA LED(D20)
|
|
|
|
- USER LED(D18)
|
|
|
|
|
|
|
|
Only a single LED, D18, is under software control. It connects to
|
|
|
|
GPIO_AD_B0_09 which is shared with JTAG_TDI and ENET_RST
|
|
|
|
|
|
|
|
This LED is not used by the board port unless CONFIG_ARCH_LEDS is
|
|
|
|
defined. In that case, the usage by the board port is defined in
|
|
|
|
include/board.h and src/imxrt_autoleds.c. The LED is used to encode
|
|
|
|
OS-related events as follows:
|
|
|
|
|
|
|
|
------------------- ----------------------- ------
|
|
|
|
SYMBOL Meaning LED
|
|
|
|
------------------- ----------------------- ------
|
|
|
|
LED_STARTED NuttX has been started OFF
|
|
|
|
LED_HEAPALLOCATE Heap has been allocated OFF
|
|
|
|
LED_IRQSENABLED Interrupts enabled OFF
|
|
|
|
LED_STACKCREATED Idle stack created ON
|
|
|
|
LED_INIRQ In an interrupt N/C
|
|
|
|
LED_SIGNAL In a signal handler N/C
|
|
|
|
LED_ASSERTION An assertion failed N/C
|
|
|
|
LED_PANIC The system has crashed FLASH
|
|
|
|
|
|
|
|
Thus if the LED is statically on, NuttX has successfully booted and is,
|
|
|
|
apparently, running normally. If the LED is flashing at approximately
|
|
|
|
2Hz, then a fatal error has been detected and the system has halted.
|
|
|
|
|
|
|
|
Buttons
|
|
|
|
-------
|
|
|
|
|
|
|
|
There are four user interface switches on the MIMXRT1050 EVK Board:
|
|
|
|
|
|
|
|
- SW1: Power Switch (slide switch fir power from J2)
|
|
|
|
- SW2: ON/OFF Button
|
|
|
|
- SW3: Power-on Reset button state forces to reset the system power except
|
|
|
|
SNVS domain
|
|
|
|
- SW9: Reset button
|
|
|
|
- SW8: User button GPIO5-00
|
|
|
|
|
|
|
|
Only the user button is available to the software. It is sensed on the
|
|
|
|
WAKEUP pin which will be pulled low when the button is pressed.
|
|
|
|
|
2019-07-25 16:31:06 +02:00
|
|
|
|
|
|
|
J-Link External Debug Probe
|
|
|
|
===========================
|
|
|
|
|
|
|
|
Install the J-Link Debug Host Tools and make sure they are in your search path.
|
|
|
|
|
|
|
|
Attach a J-Link 20-pin connector to J21. Check that jumpers J47 and J48 are
|
|
|
|
off (they are on by default when boards ship from the factory) to ensure SWD
|
|
|
|
signals are disconnected from the OpenSDA microcontroller.
|
|
|
|
|
2018-11-09 14:56:02 +01:00
|
|
|
Configurations
|
|
|
|
==============
|
|
|
|
|
|
|
|
Information Common to All Configurations
|
|
|
|
----------------------------------------
|
|
|
|
Each i.MX RT 1060 configuration is maintained in a sub-directory and
|
|
|
|
can be selected as follow:
|
|
|
|
|
2019-08-06 00:53:39 +02:00
|
|
|
tools/configure.sh [OPTIONS] imxrt1060-evk:<subdir>
|
2018-11-09 14:56:02 +01:00
|
|
|
|
|
|
|
Where typical options are -l to configure to build on Linux or -c to
|
|
|
|
configure for Cygwin under Linux. 'tools/configure.sh -h' will show
|
|
|
|
you all of the options.
|
|
|
|
|
|
|
|
Before building, make sure the PATH environment variable include the
|
|
|
|
correct path to the directory than holds your toolchain binaries.
|
|
|
|
|
|
|
|
And then build NuttX by simply typing the following. At the conclusion of
|
|
|
|
the make, the nuttx binary will reside in an ELF file called, simply, nuttx.
|
|
|
|
|
|
|
|
make
|
|
|
|
|
|
|
|
The <subdir> that is provided above as an argument to the tools/configure.sh
|
|
|
|
must be is one of the following.
|
|
|
|
|
|
|
|
NOTES:
|
|
|
|
|
|
|
|
1. These configurations use the mconf-based configuration tool. To
|
|
|
|
change any of these configurations using that tool, you should:
|
|
|
|
|
|
|
|
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
|
|
|
|
see additional README.txt files in the NuttX tools repository.
|
|
|
|
|
|
|
|
b. Execute 'make menuconfig' in nuttx/ in order to start the
|
|
|
|
reconfiguration process.
|
|
|
|
|
|
|
|
2. Unless stated otherwise, all configurations generate console
|
|
|
|
output on UART3 (i.e., for the Arduino serial shield).
|
|
|
|
|
|
|
|
3. All of these configurations are set up to build under Windows using the
|
|
|
|
"GNU Tools for ARM Embedded Processors" that is maintained by ARM
|
|
|
|
(unless stated otherwise in the description of the configuration).
|
|
|
|
|
|
|
|
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
|
|
|
|
|
|
|
|
That toolchain selection can easily be reconfigured using
|
|
|
|
'make menuconfig'. Here are the relevant current settings:
|
|
|
|
|
|
|
|
Build Setup:
|
|
|
|
CONFIG_HOST_WINDOWS=y : Window environment
|
|
|
|
CONFIG_WINDOWS_CYGWIN=y : Cywin under Windows
|
|
|
|
|
|
|
|
System Type -> Toolchain:
|
|
|
|
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIW=y : GNU ARM EABI toolchain
|
|
|
|
|
|
|
|
Configuration sub-directories
|
|
|
|
-----------------------------
|
|
|
|
|
|
|
|
knsh:
|
|
|
|
|
|
|
|
This is identical to the nsh configuration below except that NuttX
|
|
|
|
is built as a protected mode, monolithic module and the user applications
|
|
|
|
are built separately. It is recommends to use a special make command;
|
|
|
|
not just 'make' but make with the following two arguments:
|
|
|
|
|
|
|
|
make pass1 pass2
|
|
|
|
|
|
|
|
In the normal case (just 'make'), make will attempt to build both user-
|
|
|
|
and kernel-mode blobs more or less interleaved. This actual works!
|
|
|
|
However, for me it is very confusing so I prefer the above make command:
|
|
|
|
Make the user-space binaries first (pass1), then make the kernel-space
|
|
|
|
binaries (pass2)
|
|
|
|
|
|
|
|
NOTES:
|
|
|
|
|
|
|
|
1. At the end of the build, there will be several files in the top-level
|
|
|
|
NuttX build directory:
|
|
|
|
|
|
|
|
PASS1:
|
|
|
|
nuttx_user.elf - The pass1 user-space ELF file
|
|
|
|
nuttx_user.hex - The pass1 Intel HEX format file (selected in defconfig)
|
|
|
|
User.map - Symbols in the user-space ELF file
|
|
|
|
|
|
|
|
PASS2:
|
|
|
|
nuttx - The pass2 kernel-space ELF file
|
|
|
|
nuttx.hex - The pass2 Intel HEX file (selected in defconfig)
|
|
|
|
System.map - Symbols in the kernel-space ELF file
|
|
|
|
|
|
|
|
The J-Link programmer will except files in .hex, .mot, .srec, and .bin
|
|
|
|
formats.
|
|
|
|
|
|
|
|
2. Combining .hex files. If you plan to use the .hex files with your
|
|
|
|
debugger or FLASH utility, then you may need to combine the two hex
|
|
|
|
files into a single .hex file. Here is how you can do that.
|
|
|
|
|
2019-08-05 18:16:02 +02:00
|
|
|
a. The 'tail' of the nuttx.hex file should look something like this
|
2018-11-09 14:56:02 +01:00
|
|
|
(with my comments added beginning with #):
|
|
|
|
|
|
|
|
$ tail nuttx.hex
|
|
|
|
#xx xxxx 00 data records
|
|
|
|
...
|
|
|
|
:10 C93C 00 000000000040184000C2010000000000 90
|
|
|
|
:10 C94C 00 2400080000801B4000C01B4000001C40 5D
|
|
|
|
:10 C95C 00 00401C4000000C4050BF0060FF000100 74
|
|
|
|
#xx xxxx 05 Start Linear Address Record
|
|
|
|
:04 0000 05 6000 02C1 D4
|
|
|
|
#xx xxxx 01 End Of File record
|
|
|
|
:00 0000 01 FF
|
|
|
|
|
|
|
|
Use an editor such as vi to remove the 05 and 01 records.
|
|
|
|
|
|
|
|
b. The 'head' of the nuttx_user.hex file should look something like
|
|
|
|
this (again with my comments added beginning with #):
|
|
|
|
|
|
|
|
$ head nuttx_user.hex
|
|
|
|
#xx xxxx 04 Extended Linear Address Record
|
|
|
|
:02 0000 04 6020 7A
|
|
|
|
#xx xxxx 00 data records
|
|
|
|
:10 0000 00 8905206030002060F2622060FC622060 80
|
|
|
|
:10 0010 00 0000242008002420080024205C012420 63
|
|
|
|
:10 0020 00 140024203D0020603100206071052060 14
|
|
|
|
...
|
|
|
|
|
|
|
|
Nothing needs to be done here. The nuttx_user.hex file should
|
|
|
|
be fine.
|
|
|
|
|
|
|
|
c. Combine the edited nuttx.hex and un-edited nuttx_user.hex
|
|
|
|
file to produce a single combined hex file:
|
|
|
|
|
|
|
|
$ cat nuttx.hex nuttx_user.hex >combined.hex
|
|
|
|
|
|
|
|
Then use the combined.hex file with the to write the FLASH image.
|
|
|
|
If you do this a lot, you will probably want to invest a little time
|
|
|
|
to develop a tool to automate these steps.
|
|
|
|
|
|
|
|
STATUS: This configuration was added on 8 June 2018 primarily to assure
|
|
|
|
that all of the components are in place to support the PROTECTED mode
|
|
|
|
build. This configuration, however, has not been verified as of this
|
|
|
|
writing.
|
|
|
|
|
|
|
|
netnsh:
|
|
|
|
|
|
|
|
This configuration is similar to the nsh configuration except that is
|
|
|
|
has networking enabled, both IPv4 and IPv6. This NSH configuration is
|
|
|
|
focused on network-related testing.
|
|
|
|
|
|
|
|
NOTES:
|
|
|
|
|
|
|
|
1. LED support is disabled because there is a conflict between the LED
|
|
|
|
GPIO and PHY pin usage.
|
|
|
|
|
|
|
|
2. Telnet is enabled. But since both IPv4 and IPv6 are enabled, it
|
|
|
|
will default to IPv6. That means that to connect a Telnet session
|
|
|
|
from a PC, you will need to use the IPv6 address which by defaault
|
|
|
|
is:
|
|
|
|
|
|
|
|
telnet fc00::2
|
|
|
|
|
|
|
|
Or, disable IPv4 support so that only IPv4 addressing is used.
|
|
|
|
|
|
|
|
3. The network monitor is not enabled in this configuration. As a
|
|
|
|
result, the Ethernet cable must be connected when the board is
|
|
|
|
powered up. Otherwise, it will stall for a long period of time
|
|
|
|
before the NSH prompt appears and you will not be able to used
|
|
|
|
the board.
|
|
|
|
|
|
|
|
The following configuration options should be added to your
|
|
|
|
configuration in order to use the network monitor:
|
|
|
|
|
|
|
|
CONFIG_IMXRT_ENET_PHYINIT=y
|
|
|
|
CONFIG_IMXRT_GPIO1_0_15_IRQ=y
|
|
|
|
CONFIG_IMXRT_GPIO_IRQ=y
|
|
|
|
CONFIG_NETDEV_IOCTL=y
|
|
|
|
CONFIG_NETDEV_PHY_IOCTL=y
|
|
|
|
CONFIG_NSH_NETINIT_MONITOR=y
|
|
|
|
CONFIG_NSH_NETINIT_RETRYMSEC=2000
|
|
|
|
CONFIG_NSH_NETINIT_SIGNO=18
|
|
|
|
CONFIG_NSH_NETINIT_THREAD=y
|
|
|
|
CONFIG_NSH_NETINIT_THREAD_PRIORITY=80
|
|
|
|
CONFIG_NSH_NETINIT_THREAD_STACKSIZE=1568
|
|
|
|
|
|
|
|
nsh:
|
|
|
|
|
|
|
|
Configures the NuttShell (nsh) located at examples/nsh. This NSH
|
|
|
|
configuration is focused on low level, command-line driver testing.
|
|
|
|
Built-in applications are supported, but none are enabled. This
|
|
|
|
configuration does not support a network.
|