nuttx/arch/avr/include/avr32/irq.h

246 lines
6.4 KiB
C
Raw Normal View History

/****************************************************************************
* arch/avr/include/avr32/irq.h
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/* This file should never be included directly but, rather, only indirectly
* through nuttx/irq.h
*/
#ifndef __ARCH_AVR_INCLUDE_AVR32_IRQ_H
#define __ARCH_AVR_INCLUDE_AVR32_IRQ_H
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/irq.h>
#include <arch/avr32/avr32.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* General notes about the AVR32 ABI:
*
* Scratch/Volatile Registers: r8-r12
* Preserved/Static Registers: r0-r7
* Parameter Passing: r12-R8 (in that order)
*/
/* Register state save array indices.
*
* The following registers are saved by the AVR32 hardware (for the case of
* interrupts only). Note the registers are order in the opposite order the
* they appear in memory (i.e., in the order of increasing address) because
* this makes it easier to following the ordering of pushing on a push-down
* stack.
*/
2014-04-14 00:22:22 +02:00
#define REG_R8 16
#define REG_R9 15
#define REG_R10 14
#define REG_R11 13
#define REG_R12 12
#define REG_R14 11
#define REG_R15 10
#define REG_SR 9
#define REG_LR REG_R14
#define REG_PC REG_R15
/* Additional registers saved in order have the full CPU context */
#define REG_R13 8
#define REG_SP REG_R13
#define REG_R0 7
#define REG_R1 6
#define REG_R2 5
#define REG_R3 4
#define REG_R4 3
#define REG_R5 2
#define REG_R6 1
#define REG_R7 0
/* Size of the register state save array (in 32-bit words) */
#define INTCONTEXT_REGS 8 /* r8-r12, lr, pc, sr */
#define XCPTCONTEXT_REGS 17 /* Plus r0-r7, sp */
/****************************************************************************
* Public Types
****************************************************************************/
/* This struct defines the way the registers are stored. */
#ifndef __ASSEMBLY__
struct xcptcontext
{
/* The following function pointer is non-zero if there are pending signals
* to be processed.
*/
void *sigdeliver; /* Actual type is sig_deliver_t */
/* These are saved copies of PC and SR used during signal processing.
*
* REVISIT: Because there is only one copy of these save areas,
* only a single signal handler can be active. This precludes
* queuing of signal actions. As a result, signals received while
* another signal handler is executing will be ignored!
*/
uint32_t saved_pc;
uint32_t saved_sr;
/* Register save area */
uint32_t regs[XCPTCONTEXT_REGS];
};
#endif
/****************************************************************************
* Inline functions
****************************************************************************/
#ifndef __ASSEMBLY__
/* Name: up_irq_save, up_irq_restore, and friends.
*
* NOTE: This function should never be called from application code and,
* as a general rule unless you really know what you are doing, this
* function should not be called directly from operation system code either:
* Typically, the wrapper functions, enter_critical_section() and
* leave_critical section(), are probably what you really want.
*/
/* Read the AVR32 status register */
static inline uint32_t avr32_sr(void)
{
uint32_t sr;
__asm__ __volatile__ (
"mfsr\t%0,%1\n\t"
: "=r" (sr)
: "i" (AVR32_SR)
);
return sr;
}
/* Read the interrupt vector base address */
static inline uint32_t avr32_evba(void)
{
uint32_t evba;
__asm__ __volatile__ (
"mfsr\t%0,%1\n\t"
: "=r" (evba)
: "i" (AVR32_EVBA)
);
return evba;
}
/* Return the current value of the stack pointer */
static inline uint32_t up_getsp(void)
{
uint32_t retval;
__asm__ __volatile__
(
"mov\t%0,sp\n\t"
: "=r" (retval)
:
);
return retval;
}
/* Return the current interrupt enable state and disable all interrupts */
static inline irqstate_t up_irq_save(void)
{
irqstate_t sr = (irqstate_t)avr32_sr();
__asm__ __volatile__ (
"ssrf\t%0\n\t"
"nop\n\t"
"nop"
:
: "i" (AVR32_SR_GM_SHIFT)
);
return sr;
}
/* Restore saved interrupt state */
static inline void up_irq_restore(irqstate_t flags)
{
if ((flags & AVR32_SR_GM_MASK) == 0)
{
__asm__ __volatile__ (
"csrf\t%0\n\t"
"nop\n\t"
"nop"
:
: "i" (AVR32_SR_GM_SHIFT)
);
}
}
/* Return the current interrupt enable state and enable all interrupts */
static inline irqstate_t up_irq_enable(void)
{
irqstate_t sr = (irqstate_t)avr32_sr();
__asm__ __volatile__ (
"csrf\t%0\n\t"
"nop\n\t"
"nop"
:
: "i" (AVR32_SR_GM_SHIFT)
);
return sr;
}
#endif /* __ASSEMBLY__ */
/****************************************************************************
* Public Data
****************************************************************************/
/****************************************************************************
* Public Function Prototypes
****************************************************************************/
#ifndef __ASSEMBLY__
#ifdef __cplusplus
#define EXTERN extern "C"
extern "C"
{
#else
#define EXTERN extern
#endif
#undef EXTERN
#ifdef __cplusplus
}
#endif
#endif
#endif /* __ARCH_AVR_INCLUDE_AVR32_IRQ_H */