nuttx/arch/arm/src/stm32/stm32_rtc.c

315 lines
9.3 KiB
C
Raw Normal View History

/************************************************************************************
* arch/arm/src/stm32/stm32_rtc.c
*
* Copyright (C) 2011 Uros Platise. All rights reserved.
* Author: Uros Platise <uros.platise@isotel.eu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
/** \file
* \author Uros Platise
* \brief STM32 Real-Time Clock
*
* \addtogroup STM32_RTC
* \{
*
* The STM32 RTC Driver offers standard precision of 1 Hz or High Resolution
* operating at rate up to 16384 Hz. It provides UTC time and alarm interface
* with external output pin (for wake-up).
*
* RTC is based on hardware RTC module which is located in a separate power
* domain. The 32-bit counter is extended by 16-bit registers in BKP domain
* STM32_BKP_DR1 to provide system equiv. function to the: time_t time(time_t *).
*
* Notation:
* - clock refers to 32-bit hardware counter
* - time is a combination of clock and upper bits stored in backuped domain
* with unit of 1 [s]
*
* \todo Error Handling in case LSE fails during start-up or during operation.
*/
#include <nuttx/config.h>
#include <nuttx/arch.h>
#include <nuttx/irq.h>
#include <nuttx/ptimer.h>
#include <arch/board/board.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include "up_arch.h"
#include "stm32_pwr.h"
#include "stm32_rcc.h"
#include "stm32_rtc.h"
#include "stm32_waste.h"
#if defined(CONFIG_STM32_BKP)
/************************************************************************************
* Configuration of the RTC Backup Register (16-bit)
************************************************************************************/
#define RTC_TIMEMSB_REG STM32_BKP_DR1
/************************************************************************************
* Private Data
************************************************************************************/
/** Variable determines the state of the LSE oscilator.
* Possible errors:
* - on start-up
* - during operation, reported by LSE interrupt
*/
volatile bool g_rtc_enabled = false;
/************************************************************************************
* Private Functions
************************************************************************************/
static inline void stm32_rtc_beginwr(void)
{
/* Previous write is done? */
while( (getreg16(STM32_RTC_CRL) & RTC_CRL_RTOFF)==0 ) up_waste();
/* Enter Config mode, Set Value and Exit */
modifyreg16(STM32_RTC_CRL, 0, RTC_CRL_CNF);
}
static inline void stm32_rtc_endwr(void)
{
modifyreg16(STM32_RTC_CRL, RTC_CRL_CNF, 0);
}
/** Wait for registerred to synchronise with RTC module, call after power-up only */
static inline void stm32_rtc_wait4rsf(void)
{
modifyreg16(STM32_RTC_CRL, RTC_CRL_RSF, 0);
while( !(getreg16(STM32_RTC_CRL) & RTC_CRL_RSF) ) up_waste();
}
/************************************************************************************
* Interrupt Service Routines
************************************************************************************/
static int stm32_rtc_overflow_isr(int irq, void *context)
{
uint16_t source = getreg16( STM32_RTC_CRL );
if (source & RTC_CRL_OWF) {
putreg16( getreg16(RTC_TIMEMSB_REG) + 1, RTC_TIMEMSB_REG );
}
if (source & RTC_CRL_ALRF) {
/* Alarm */
}
/* Clear pending flags, leave RSF high */
putreg16( RTC_CRL_RSF, STM32_RTC_CRL );
return 0;
}
/************************************************************************************
* Public Function - Initialization
************************************************************************************/
/** Power-up RTC
*
* \param prescaler A 20-bit value determines the time base, and is defined as:
* f = 32768 / (prescaler + 1)
*
* \return State of the RTC unit
*
* \retval OK If RTC has been successfully configured.
* \retval ERROR On error, if LSE does not start.
**/
int up_rtcinitialize(void)
{
/* For this initial version we use predefined value */
uint32_t prescaler = STM32_RTC_PRESCALER_MIN;
/* Set access to the peripheral, enable power and LSE */
stm32_pwr_enablebkp();
stm32_rcc_enablelse();
// \todo Get state from this function, if everything is
// okay and whether it is already enabled (if it was disabled
// reset upper time register
g_rtc_enabled = true;
// \todo Possible stall? should we set the timeout period? and return with -1
stm32_rtc_wait4rsf();
/* Configure prescaler, note that this are write-only registers */
stm32_rtc_beginwr();
putreg16(prescaler >> 16, STM32_RTC_PRLH);
putreg16(prescaler & 0xFFFF, STM32_RTC_PRLL);
stm32_rtc_endwr();
/* Configure Overflow Interrupt */
irq_attach(STM32_IRQ_RTC, stm32_rtc_overflow_isr);
up_enable_irq(STM32_IRQ_RTC);
/* Previous write is done? This is required prior writing into CRH */
while( (getreg16(STM32_RTC_CRL) & RTC_CRL_RTOFF)==0 ) up_waste();
modifyreg16(STM32_RTC_CRH, 0, RTC_CRH_OWIE);
/* Alarm Int via EXTI Line */
// STM32_IRQ_RTCALR /* 41: RTC alarm through EXTI line interrupt */
return OK;
}
/** Get time (counter) value
*
* \return time, where the unit depends on the prescaler value
**/
clock_t up_rtc_getclock(void)
{
return ( (uint32_t)getreg16(STM32_RTC_CNTH) << 16) |
(uint32_t)getreg16(STM32_RTC_CNTL);
}
/** Set time (counter) value
*
* \param time The unit depends on the prescaler value
**/
void up_rtc_setclock(clock_t clock)
{
stm32_rtc_beginwr();
putreg16(clock >> 16, STM32_RTC_CNTH);
putreg16(clock & 0xFFFF, STM32_RTC_CNTL);
stm32_rtc_endwr();
}
time_t up_rtc_gettime(void)
{
/* Fetch time from LSB (hardware counter) and MSB (backup domain)
* Take care on overflow of the LSB:
* - it may overflow just after reading the up_rtc_getclock, transition
* from 0xFF...FF -> 0x000000
* - ISR would be generated to increment the RTC_TIMEMSB_REG
* - Wrong result would when: DR+1 and LSB is old, resulting in ~DR+2
* instead of just DR+1
*/
irqstate_t irqs = irqsave();
uint32_t time_lsb = up_rtc_getclock();
uint32_t time_msb = getreg16(RTC_TIMEMSB_REG);
irqrestore( irqs );
/* Use the upper bits of the LSB and lower bits of the MSB
* structured as:
* time = time[31:18] from MSB[13:0] | time[17:0] from time_lsb[31:14]
*/
time_lsb >>= RTC_CLOCKS_SHIFT;
time_msb <<= (32-RTC_CLOCKS_SHIFT);
time_msb &= ~((1<<(32-RTC_CLOCKS_SHIFT))-1);
return time_msb | time_lsb;
}
void up_rtc_settime(time_t time)
{
/* Do reverse compared to gettime above */
uint32_t time_lsb = time << RTC_CLOCKS_SHIFT |
(up_rtc_getclock() & ((1<<RTC_CLOCKS_SHIFT)-1));
uint32_t time_msb = time >> (32-RTC_CLOCKS_SHIFT);
irqstate_t irqs = irqsave();
up_rtc_setclock(time_lsb);
putreg16( time_msb, RTC_TIMEMSB_REG );
irqrestore( irqs );
}
/** Set ALARM at which time ALARM callback is going to be generated
*
* The function sets the alarm and return present time at the time
* of setting the alarm.
*
* Note that If actual time has already passed callback will not be
* generated and it is up to the higher level code to compare the
* returned (actual) time and desired time of alarm.
*
* \param attime The unit depends on the prescaler value
* \return presenttime, where the unit depends on the prescaler value
**/
clock_t up_rtc_setalarm(clock_t atclock)
{
stm32_rtc_beginwr();
putreg16(atclock >> 16, STM32_RTC_ALRH);
putreg16(atclock & 0xFFFF, STM32_RTC_ALRL);
stm32_rtc_endwr();
return up_rtc_getclock();
}
/** Set alarm output pin */
void stm32_rtc_settalarmpin(bool activate)
{
}
#endif // defined(CONFIG_STM32_BKP)
/** \} */