nuttx/lib/math/lib_exp.c

254 lines
5.0 KiB
C
Raw Normal View History

/*
* Copyright (C) 2009-2011 Nick Johnson <nickbjohnson4224 at gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <apps/math.h>
#include <float.h>
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#define M_E2 (M_E * M_E)
#define M_E4 (M_E2 * M_E2)
#define M_E8 (M_E4 * M_E4)
#define M_E16 (M_E8 * M_E8)
#define M_E32 (M_E16 * M_E16)
#define M_E64 (M_E32 * M_E32)
#define M_E128 (M_E64 * M_E64)
#define M_E256 (M_E128 * M_E128)
#define M_E512 (M_E256 * M_E256)
#define M_E1024 (M_E512 * M_E512)
static double _expi_square_tbl[11] = {
M_E, // e^1
M_E2, // e^2
M_E4, // e^4
M_E8, // e^8
M_E16, // e^16
M_E32, // e^32
M_E64, // e^64
M_E128, // e^128
M_E256, // e^256
M_E512, // e^512
M_E1024, // e^1024
};
static double _expi(size_t n) {
size_t i;
double val;
if (n > 1024) {
return INFINITY;
}
val = 1.0;
for (i = 0; n; i++) {
if (n & (1 << i)) {
n &= ~(1 << i);
val *= _expi_square_tbl[i];
}
}
return val;
}
static float _flt_inv_fact[] = {
1.0 / 1.0, // 1/0!
1.0 / 1.0, // 1/1!
1.0 / 2.0, // 1/2!
1.0 / 6.0, // 1/3!
1.0 / 24.0, // 1/4!
1.0 / 120.0, // 1/5!
1.0 / 720.0, // 1/6!
1.0 / 5040.0, // 1/7!
1.0 / 40320.0, // 1/8!
1.0 / 362880.0, // 1/9!
1.0 / 3628800.0, // 1/10!
};
float expf(float x) {
size_t int_part;
bool invert;
float value;
float x0;
size_t i;
if (x == 0) {
return 1;
}
else if (x < 0) {
invert = true;
x = -x;
}
else {
invert = false;
}
/* extract integer component */
int_part = (size_t) x;
/* set x to fractional component */
x -= (float) int_part;
/* perform Taylor series approximation with eleven terms */
value = 0.0;
x0 = 1.0;
for (i = 0; i < 10; i++) {
value += x0 * _flt_inv_fact[i];
x0 *= x;
}
/* multiply by exp of the integer component */
value *= _expi(int_part);
if (invert) {
return (1.0 / value);
}
else {
return value;
}
}
static double _dbl_inv_fact[] = {
1.0 / 1.0, // 1 / 0!
1.0 / 1.0, // 1 / 1!
1.0 / 2.0, // 1 / 2!
1.0 / 6.0, // 1 / 3!
1.0 / 24.0, // 1 / 4!
1.0 / 120.0, // 1 / 5!
1.0 / 720.0, // 1 / 6!
1.0 / 5040.0, // 1 / 7!
1.0 / 40320.0, // 1 / 8!
1.0 / 362880.0, // 1 / 9!
1.0 / 3628800.0, // 1 / 10!
1.0 / 39916800.0, // 1 / 11!
1.0 / 479001600.0, // 1 / 12!
1.0 / 6227020800.0, // 1 / 13!
1.0 / 87178291200.0, // 1 / 14!
1.0 / 1307674368000.0, // 1 / 15!
1.0 / 20922789888000.0, // 1 / 16!
1.0 / 355687428096000.0, // 1 / 17!
1.0 / 6402373705728000.0, // 1 / 18!
};
double exp(double x) {
size_t int_part;
bool invert;
double value;
double x0;
size_t i;
if (x == 0) {
return 1;
}
else if (x < 0) {
invert = true;
x = -x;
}
else {
invert = false;
}
/* extract integer component */
int_part = (size_t) x;
/* set x to fractional component */
x -= (double) int_part;
/* perform Taylor series approximation with nineteen terms */
value = 0.0;
x0 = 1.0;
for (i = 0; i < 19; i++) {
value += x0 * _dbl_inv_fact[i];
x0 *= x;
}
/* multiply by exp of the integer component */
value *= _expi(int_part);
if (invert) {
return (1.0 / value);
}
else {
return value;
}
}
static long double _ldbl_inv_fact[] = {
1.0 / 1.0, // 1 / 0!
1.0 / 1.0, // 1 / 1!
1.0 / 2.0, // 1 / 2!
1.0 / 6.0, // 1 / 3!
1.0 / 24.0, // 1 / 4!
1.0 / 120.0, // 1 / 5!
1.0 / 720.0, // 1 / 6!
1.0 / 5040.0, // 1 / 7!
1.0 / 40320.0, // 1 / 8!
1.0 / 362880.0, // 1 / 9!
1.0 / 3628800.0, // 1 / 10!
1.0 / 39916800.0, // 1 / 11!
1.0 / 479001600.0, // 1 / 12!
1.0 / 6227020800.0, // 1 / 13!
1.0 / 87178291200.0, // 1 / 14!
1.0 / 1307674368000.0, // 1 / 15!
1.0 / 20922789888000.0, // 1 / 16!
1.0 / 355687428096000.0, // 1 / 17!
1.0 / 6402373705728000.0, // 1 / 18!
};
long double expl(long double x) {
size_t int_part;
bool invert;
long double value;
long double x0;
size_t i;
if (x == 0) {
return 1;
}
else if (x < 0) {
invert = true;
x = -x;
}
else {
invert = false;
}
/* extract integer component */
int_part = (size_t) x;
/* set x to fractional component */
x -= (long double) int_part;
/* perform Taylor series approximation with nineteen terms */
value = 0.0;
x0 = 1.0;
for (i = 0; i < 19; i++) {
value += x0 * _ldbl_inv_fact[i];
x0 *= x;
}
/* multiply by exp of the integer component */
value *= _expi(int_part);
if (invert) {
return (1.0 / value);
}
else {
return value;
}
}