254 lines
5.0 KiB
C
254 lines
5.0 KiB
C
|
/*
|
||
|
* Copyright (C) 2009-2011 Nick Johnson <nickbjohnson4224 at gmail.com>
|
||
|
*
|
||
|
* Permission to use, copy, modify, and distribute this software for any
|
||
|
* purpose with or without fee is hereby granted, provided that the above
|
||
|
* copyright notice and this permission notice appear in all copies.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#include <apps/math.h>
|
||
|
#include <float.h>
|
||
|
#include <stdint.h>
|
||
|
#include <stdbool.h>
|
||
|
#include <unistd.h>
|
||
|
|
||
|
#define M_E2 (M_E * M_E)
|
||
|
#define M_E4 (M_E2 * M_E2)
|
||
|
#define M_E8 (M_E4 * M_E4)
|
||
|
#define M_E16 (M_E8 * M_E8)
|
||
|
#define M_E32 (M_E16 * M_E16)
|
||
|
#define M_E64 (M_E32 * M_E32)
|
||
|
#define M_E128 (M_E64 * M_E64)
|
||
|
#define M_E256 (M_E128 * M_E128)
|
||
|
#define M_E512 (M_E256 * M_E256)
|
||
|
#define M_E1024 (M_E512 * M_E512)
|
||
|
|
||
|
static double _expi_square_tbl[11] = {
|
||
|
M_E, // e^1
|
||
|
M_E2, // e^2
|
||
|
M_E4, // e^4
|
||
|
M_E8, // e^8
|
||
|
M_E16, // e^16
|
||
|
M_E32, // e^32
|
||
|
M_E64, // e^64
|
||
|
M_E128, // e^128
|
||
|
M_E256, // e^256
|
||
|
M_E512, // e^512
|
||
|
M_E1024, // e^1024
|
||
|
};
|
||
|
|
||
|
static double _expi(size_t n) {
|
||
|
size_t i;
|
||
|
double val;
|
||
|
|
||
|
if (n > 1024) {
|
||
|
return INFINITY;
|
||
|
}
|
||
|
|
||
|
val = 1.0;
|
||
|
|
||
|
for (i = 0; n; i++) {
|
||
|
if (n & (1 << i)) {
|
||
|
n &= ~(1 << i);
|
||
|
val *= _expi_square_tbl[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
static float _flt_inv_fact[] = {
|
||
|
1.0 / 1.0, // 1/0!
|
||
|
1.0 / 1.0, // 1/1!
|
||
|
1.0 / 2.0, // 1/2!
|
||
|
1.0 / 6.0, // 1/3!
|
||
|
1.0 / 24.0, // 1/4!
|
||
|
1.0 / 120.0, // 1/5!
|
||
|
1.0 / 720.0, // 1/6!
|
||
|
1.0 / 5040.0, // 1/7!
|
||
|
1.0 / 40320.0, // 1/8!
|
||
|
1.0 / 362880.0, // 1/9!
|
||
|
1.0 / 3628800.0, // 1/10!
|
||
|
};
|
||
|
|
||
|
float expf(float x) {
|
||
|
size_t int_part;
|
||
|
bool invert;
|
||
|
float value;
|
||
|
float x0;
|
||
|
size_t i;
|
||
|
|
||
|
if (x == 0) {
|
||
|
return 1;
|
||
|
}
|
||
|
else if (x < 0) {
|
||
|
invert = true;
|
||
|
x = -x;
|
||
|
}
|
||
|
else {
|
||
|
invert = false;
|
||
|
}
|
||
|
|
||
|
/* extract integer component */
|
||
|
int_part = (size_t) x;
|
||
|
|
||
|
/* set x to fractional component */
|
||
|
x -= (float) int_part;
|
||
|
|
||
|
/* perform Taylor series approximation with eleven terms */
|
||
|
value = 0.0;
|
||
|
x0 = 1.0;
|
||
|
for (i = 0; i < 10; i++) {
|
||
|
value += x0 * _flt_inv_fact[i];
|
||
|
x0 *= x;
|
||
|
}
|
||
|
|
||
|
/* multiply by exp of the integer component */
|
||
|
value *= _expi(int_part);
|
||
|
|
||
|
if (invert) {
|
||
|
return (1.0 / value);
|
||
|
}
|
||
|
else {
|
||
|
return value;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static double _dbl_inv_fact[] = {
|
||
|
1.0 / 1.0, // 1 / 0!
|
||
|
1.0 / 1.0, // 1 / 1!
|
||
|
1.0 / 2.0, // 1 / 2!
|
||
|
1.0 / 6.0, // 1 / 3!
|
||
|
1.0 / 24.0, // 1 / 4!
|
||
|
1.0 / 120.0, // 1 / 5!
|
||
|
1.0 / 720.0, // 1 / 6!
|
||
|
1.0 / 5040.0, // 1 / 7!
|
||
|
1.0 / 40320.0, // 1 / 8!
|
||
|
1.0 / 362880.0, // 1 / 9!
|
||
|
1.0 / 3628800.0, // 1 / 10!
|
||
|
1.0 / 39916800.0, // 1 / 11!
|
||
|
1.0 / 479001600.0, // 1 / 12!
|
||
|
1.0 / 6227020800.0, // 1 / 13!
|
||
|
1.0 / 87178291200.0, // 1 / 14!
|
||
|
1.0 / 1307674368000.0, // 1 / 15!
|
||
|
1.0 / 20922789888000.0, // 1 / 16!
|
||
|
1.0 / 355687428096000.0, // 1 / 17!
|
||
|
1.0 / 6402373705728000.0, // 1 / 18!
|
||
|
};
|
||
|
|
||
|
double exp(double x) {
|
||
|
size_t int_part;
|
||
|
bool invert;
|
||
|
double value;
|
||
|
double x0;
|
||
|
size_t i;
|
||
|
|
||
|
if (x == 0) {
|
||
|
return 1;
|
||
|
}
|
||
|
else if (x < 0) {
|
||
|
invert = true;
|
||
|
x = -x;
|
||
|
}
|
||
|
else {
|
||
|
invert = false;
|
||
|
}
|
||
|
|
||
|
/* extract integer component */
|
||
|
int_part = (size_t) x;
|
||
|
|
||
|
/* set x to fractional component */
|
||
|
x -= (double) int_part;
|
||
|
|
||
|
/* perform Taylor series approximation with nineteen terms */
|
||
|
value = 0.0;
|
||
|
x0 = 1.0;
|
||
|
for (i = 0; i < 19; i++) {
|
||
|
value += x0 * _dbl_inv_fact[i];
|
||
|
x0 *= x;
|
||
|
}
|
||
|
|
||
|
/* multiply by exp of the integer component */
|
||
|
value *= _expi(int_part);
|
||
|
|
||
|
if (invert) {
|
||
|
return (1.0 / value);
|
||
|
}
|
||
|
else {
|
||
|
return value;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static long double _ldbl_inv_fact[] = {
|
||
|
1.0 / 1.0, // 1 / 0!
|
||
|
1.0 / 1.0, // 1 / 1!
|
||
|
1.0 / 2.0, // 1 / 2!
|
||
|
1.0 / 6.0, // 1 / 3!
|
||
|
1.0 / 24.0, // 1 / 4!
|
||
|
1.0 / 120.0, // 1 / 5!
|
||
|
1.0 / 720.0, // 1 / 6!
|
||
|
1.0 / 5040.0, // 1 / 7!
|
||
|
1.0 / 40320.0, // 1 / 8!
|
||
|
1.0 / 362880.0, // 1 / 9!
|
||
|
1.0 / 3628800.0, // 1 / 10!
|
||
|
1.0 / 39916800.0, // 1 / 11!
|
||
|
1.0 / 479001600.0, // 1 / 12!
|
||
|
1.0 / 6227020800.0, // 1 / 13!
|
||
|
1.0 / 87178291200.0, // 1 / 14!
|
||
|
1.0 / 1307674368000.0, // 1 / 15!
|
||
|
1.0 / 20922789888000.0, // 1 / 16!
|
||
|
1.0 / 355687428096000.0, // 1 / 17!
|
||
|
1.0 / 6402373705728000.0, // 1 / 18!
|
||
|
};
|
||
|
|
||
|
long double expl(long double x) {
|
||
|
size_t int_part;
|
||
|
bool invert;
|
||
|
long double value;
|
||
|
long double x0;
|
||
|
size_t i;
|
||
|
|
||
|
if (x == 0) {
|
||
|
return 1;
|
||
|
}
|
||
|
else if (x < 0) {
|
||
|
invert = true;
|
||
|
x = -x;
|
||
|
}
|
||
|
else {
|
||
|
invert = false;
|
||
|
}
|
||
|
|
||
|
/* extract integer component */
|
||
|
int_part = (size_t) x;
|
||
|
|
||
|
/* set x to fractional component */
|
||
|
x -= (long double) int_part;
|
||
|
|
||
|
/* perform Taylor series approximation with nineteen terms */
|
||
|
value = 0.0;
|
||
|
x0 = 1.0;
|
||
|
for (i = 0; i < 19; i++) {
|
||
|
value += x0 * _ldbl_inv_fact[i];
|
||
|
x0 *= x;
|
||
|
}
|
||
|
|
||
|
/* multiply by exp of the integer component */
|
||
|
value *= _expi(int_part);
|
||
|
|
||
|
if (invert) {
|
||
|
return (1.0 / value);
|
||
|
}
|
||
|
else {
|
||
|
return value;
|
||
|
}
|
||
|
}
|