nuttx/tools/gdb/memdump.py

313 lines
12 KiB
Python
Raw Normal View History

############################################################################
# tools/gdb/memdump.py
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership. The
# ASF licenses this file to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance with the
# License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
#
############################################################################
import argparse
import gdb
from lists import sq_for_every, sq_queue
from utils import get_symbol_value
MM_ALLOC_BIT = 0x1
MM_PREVFREE_BIT = 0x2
MM_MASK_BIT = MM_ALLOC_BIT | MM_PREVFREE_BIT
MEMPOOL_MAGIC_ALLOC = 0x55555555
PID_MM_FREE = -4
PID_MM_ALLOC = -3
PID_MM_LEAK = -2
PID_MM_MEMPOOL = -1
def align_up(size, align) -> int:
"""Align the size to the specified alignment"""
return (size + (align - 1)) & ~(align - 1)
def mm_nodesize(size) -> int:
"""Return the real size of a memory node"""
return size & ~MM_MASK_BIT
def mm_foreach(heap):
"""Iterate over a heap, yielding each node"""
node = gdb.Value(heap["mm_heapstart"][0]).cast(
gdb.lookup_type("struct mm_allocnode_s").pointer()
)
while 1:
yield node
next = gdb.Value(node).cast(gdb.lookup_type("char").pointer())
next = gdb.Value(next + mm_nodesize(node["size"])).cast(
gdb.lookup_type("struct mm_allocnode_s").pointer()
)
if node >= heap["mm_heapend"].dereference() or next == node:
break
node = next
def mempool_multiple_foreach(mpool):
"""Iterate over all pools in a mempool, yielding each pool"""
i = 0
while i < mpool["npools"]:
pool = mpool["pools"] + i
yield pool
i += 1
def mempool_realblocksize(pool):
"""Return the real block size of a mempool"""
if get_symbol_value("CONFIG_MM_DFAULT_ALIGNMENT") == 0:
mempool_align = 2 * gdb.lookup_type("size_t").sizeof
else:
mempool_align = get_symbol_value("CONFIG_MM_DFAULT_ALIGNMENT")
if get_symbol_value("CONFIG_MM_BACKTRACE") >= 0:
return align_up(
pool["blocksize"] + gdb.lookup_type("struct mempool_backtrace_s").sizeof,
mempool_align,
)
else:
return pool["blocksize"]
def mempool_foreach(pool):
"""Iterate over all block in a mempool"""
blocksize = mempool_realblocksize(pool)
if pool["ibase"] != 0:
nblk = pool["interruptsize"] / blocksize
while nblk > 0:
bufaddr = gdb.Value(pool["ibase"] + nblk * blocksize + pool["blocksize"])
buf = bufaddr.cast(gdb.lookup_type("struct mempool_backtrace_s").pointer())
yield buf
nblk -= 1
entry = sq_queue.get_type().pointer()
for entry in sq_for_every(pool["equeue"], entry):
nblk = (pool["expandsize"] - gdb.lookup_type("sq_entry_t").sizeof) / blocksize
base = (
gdb.Value(entry).cast(gdb.lookup_type("char").pointer()) - nblk * blocksize
)
while nblk > 0:
bufaddr = gdb.Value(base + nblk * blocksize + pool["blocksize"])
buf = bufaddr.cast(gdb.lookup_type("struct mempool_backtrace_s").pointer())
yield buf
nblk -= 1
class Nxmemdump(gdb.Command):
"""Dump the heap and mempool memory"""
def __init__(self):
super(Nxmemdump, self).__init__("memdump", gdb.COMMAND_USER)
def mempool_dump(self, mpool, pid, seqmin, seqmax, address):
"""Dump the mempool memory"""
for pool in mempool_multiple_foreach(mpool):
if pid == PID_MM_FREE:
entry = sq_queue.get_type().pointer()
for entry in sq_for_every(pool["queue"], entry):
gdb.write("%12u%#*x\n" % (pool["blocksize"], self.align, entry))
self.aordblks += 1
self.uordblks += pool["blocksize"]
for entry in sq_for_every(pool["iqueue"], entry):
gdb.write("%12u%#*x\n" % (pool["blocksize"], self.align, entry))
self.aordblks += 1
self.uordblks += pool["blocksize"]
else:
for buf in mempool_foreach(pool):
if (
(pid == buf["pid"] or pid == PID_MM_ALLOC)
and (buf["seqno"] >= seqmin and buf["seqno"] < seqmax)
and buf["magic"] == MEMPOOL_MAGIC_ALLOC
):
charnode = gdb.Value(buf).cast(
gdb.lookup_type("char").pointer()
)
gdb.write(
"%6d%12u%12u%#*x"
% (
buf["pid"],
mm_nodesize(pool["blocksize"]),
buf["seqno"],
self.align,
(int)(charnode - pool["blocksize"]),
)
)
if buf.type.has_key("backtrace"):
max = buf["backtrace"].type.range()[1]
for x in range(0, max):
gdb.write(" ")
gdb.write(
buf["backtrace"][x].format_string(
raw=False, symbols=True, address=False
)
)
if address and (
address < int(charnode)
and address >= (int)(charnode - pool["blocksize"])
):
gdb.write(
"\nThe address 0x%x found belongs to"
"the mempool node with base address 0x%x\n"
% (address, charnode)
)
return True
gdb.write("\n")
self.aordblks += 1
self.uordblks += pool["blocksize"]
return False
def memdump(self, pid, seqmin, seqmax, address):
"""Dump the heap memory"""
if pid >= PID_MM_ALLOC:
gdb.write("Dump all used memory node info:\n")
gdb.write(
"%6s%12s%12s%*s %s\n"
% ("PID", "Size", "Sequence", self.align, "Address", "Callstack")
)
else:
gdb.write("Dump all free memory node info:\n")
gdb.write("%12s%*s\n" % ("Size", self.align, "Address"))
heap = gdb.parse_and_eval("g_mmheap")
if heap.type.has_key("mm_mpool"):
if self.mempool_dump(heap["mm_mpool"], pid, seqmin, seqmax, address):
return
for node in mm_foreach(heap):
if node["size"] & MM_ALLOC_BIT != 0:
if (
pid == node["pid"]
or (pid == PID_MM_ALLOC and node["pid"] != PID_MM_MEMPOOL)
) and (node["seqno"] >= seqmin and node["seqno"] < seqmax):
charnode = gdb.Value(node).cast(gdb.lookup_type("char").pointer())
gdb.write(
"%6d%12u%12u%#*x"
% (
node["pid"],
mm_nodesize(node["size"]),
node["seqno"],
self.align,
(int)(
charnode
+ gdb.lookup_type("struct mm_allocnode_s").sizeof
),
)
)
if node.type.has_key("backtrace"):
max = node["backtrace"].type.range()[1]
for x in range(0, max):
gdb.write(" ")
gdb.write(
node["backtrace"][x].format_string(
raw=False, symbols=True, address=False
)
)
gdb.write("\n")
if address and (
address < int(charnode + node["size"])
and address
>= (int)(
charnode + gdb.lookup_type("struct mm_allocnode_s").sizeof
)
):
gdb.write(
"\nThe address 0x%x found belongs to"
"the memory node with base address 0x%x\n"
% (address, charnode)
)
return
self.aordblks += 1
self.uordblks += mm_nodesize(node["size"])
else:
if pid == PID_MM_FREE:
charnode = gdb.Value(node).cast(gdb.lookup_type("char").pointer())
gdb.write(
"%12u%#*x\n"
% (
mm_nodesize(node["size"]),
self.align,
(int)(
charnode
+ gdb.lookup_type("struct mm_allocnode_s").sizeof
),
)
)
self.aordblks += 1
self.uordblks += mm_nodesize(node["size"])
gdb.write("%12s%12s\n" % ("Total Blks", "Total Size"))
gdb.write("%12d%12d\n" % (self.aordblks, self.uordblks))
def complete(self, text, word):
return gdb.COMPLETE_SYMBOL
def parse_arguments(self, argv):
parser = argparse.ArgumentParser(description="memdump command")
parser.add_argument("-p", "--pid", type=str, help="Thread PID")
parser.add_argument("-a", "--addr", type=str, help="Query memory address")
parser.add_argument("-i", "--min", type=str, help="Minimum value")
parser.add_argument("-x", "--max", type=str, help="Maximum value")
parser.add_argument("--used", action="store_true", help="Used flag")
parser.add_argument("--free", action="store_true", help="Free flag")
args = parser.parse_args(args=(None if len(argv) == 1 else argv))
return {
"pid": int(args.pid, 0) if args.pid else None,
"seqmin": int(args.min, 0) if args.min else 0,
"seqmax": int(args.max, 0) if args.max else 0xFFFFFFFF,
"used": args.used,
"free": args.free,
"addr": int(args.addr, 0) if args.addr else None,
}
def invoke(self, args, from_tty):
if gdb.lookup_type("size_t").sizeof == 4:
self.align = 11
else:
self.align = 19
arg = self.parse_arguments(args.split(" "))
pid = PID_MM_ALLOC
if arg["used"]:
pid = PID_MM_ALLOC
elif arg["free"]:
pid = PID_MM_LEAK
elif arg["pid"]:
pid = arg["pid"]
self.aordblks = 0
self.uordblks = 0
self.memdump(pid, arg["seqmin"], arg["seqmax"], arg["addr"])
Nxmemdump()