nuttx/Documentation/platforms/arm/sama5/boards/giant-board/index.rst

626 lines
23 KiB
ReStructuredText
Raw Normal View History

=====================
Groboards Giant Board
=====================
2020-09-14 21:49:19 +02:00
This page file describes the port of NuttX to the Groboards Giant Board
development board. This board features the Atmel SAMA5D27 microprocessor
as a SIP with 128KB on-chip DDR2 RAM (part number `ATSAMA5D27C-D1G`).
See https://groboards.com/giant-board/ for further information.
2020-09-14 21:49:19 +02:00
This was copied from the SAMA5D2-XULT README, and needs updating.
2020-09-14 21:49:19 +02:00
Status
------
2020-09-14 21:49:19 +02:00
1. Most of this document is a partially corrected clone of the SAMA5D2-XULT
README.txt and still contains errors and inconsistencies.
Loading Code into SRAM from SD Card
-----------------------------------
2020-09-14 21:49:19 +02:00
There is no JTAG connector on the Giant Board. There are pads to wire up an SWD
adapter, but this has not been tested.
The way to run NuttX is to boot from an SD Card. You can download an SD Card image
or a zip file of the required files from this page:
https://www.starcat.io/starcat-nuttx/
The SD Card has to be FAT formatted, have an AT91Bootstrap binary called boot.bin,
a U-Boot binary called u-boot.bin as well as a compiled device tree for the
SAMA5D27C-D1G called ``at91-sama5d27_giantboard.dtb`` in the ``dtbs/`` folder. You can
2020-09-14 21:49:19 +02:00
build these yourself using the tools at
https://github.com/Groboards/giantboard-tools
The layout should look like this::
2020-09-14 21:49:19 +02:00
BOOT.BIN
uboot.env
nuttx.bin
u-boot.bin
dtbs/
at91-sama5d27_giantboard.dtb
2020-09-14 21:49:19 +02:00
You only need uboot.env if you want to boot automatically. See the U-Boot
documentation for instructions on how to create this file.
Running NuttX from SDRAM
------------------------
2020-09-14 21:49:19 +02:00
NuttX will be executed from SDRAM, and NuttX binary must reside on SD Card media.
NuttX Configuration
~~~~~~~~~~~~~~~~~~~
2020-09-14 21:49:19 +02:00
In order to run from SDRAM, NuttX must be built at origin 0x20008000 in
SDRAM (skipping over SDRAM memory used by the bootloader). The following
configuration option is required::
2020-09-14 21:49:19 +02:00
CONFIG_SAMA5_BOOT_SDRAM=y
CONFIG_BOOT_RUNFROMSDRAM=y
These options tell the NuttX code that it will be booting and running from
SDRAM. In this case, the start-logic will do to things: (1) it will not
configure the SAMA5D2 clocking. Rather, it will use the clock configuration
as set up by the bootloader. And (2) it will not attempt to configure the
SDRAM. Since NuttX is already running from SDRAM, it must accept the SDRAM
configuration as set up by the bootloader.
Boot sequence
~~~~~~~~~~~~~
2020-09-14 21:49:19 +02:00
Reference: http://www.at91.com/linux4sam/bin/view/Linux4SAM/GettingStarted
Several pieces of software are involved to boot a Nutt5X into SDRAM. First
is the primary bootloader in ROM which is in charge to check if a valid
application is present on supported media (NOR FLASH, Serial DataFlash,
NAND FLASH, SD card).
The boot sequence of linux4SAM is done in several steps :
1. The ROM bootloader checks if a valid application is present in FLASH
and if it is the case downloads it into internal SRAM. This program
is usually a second level bootloader called AT91BootStrap.
2. AT91Bootstrap is the second level bootloader. It is in charge of the
hardware configuration. It downloads U-Boot / Barebox binary from
FLASH to SDRAM / DDRAM and starts the third level bootloader
(U-Boot / Barebox)
(see http://www.at91.com/linux4sam/bin/view/Linux4SAM/AT91Bootstrap).
3. The third level bootloader is either U-Boot or Barebox. The third
level bootloader is in charge of downloading NuttX binary from FLASH,
network, SD card, etc. It then starts NuttX.
4. Then NuttX runs from SDRAM
NAND FLASH Memory Map
~~~~~~~~~~~~~~~~~~~~~
2020-09-14 21:49:19 +02:00
Reference: http://www.at91.com/linux4sam/bin/view/Linux4SAM/GettingStarted ::
2020-09-14 21:49:19 +02:00
0x0000:0000 - 0x0003:ffff: AT91BootStrap
0x0004:0000 - 0x000b:ffff: U-Boot
0x000c:0000 - 0x000f:ffff: U-Boot environment
0x0010:0000 - 0x0017:ffff: U-Boot environment redundant
0x0018:0000 - 0x001f:ffff: Device tree (DTB)
0x0020:0000 - 0x007f:ffff: NuttX
0x0080:0000 - end: Available for use as a NAND file system
Load NuttX with U-Boot on AT91 boards
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2020-09-14 21:49:19 +02:00
Reference http://www.at91.com/linux4sam/bin/view/Linux4SAM/U-Boot
Preparing NuttX image
.....................
2020-09-14 21:49:19 +02:00
U-Boot does not support normal binary images. Instead you have to
create an nuttx.bin file. The NuttX build generates this file
automatically. Copy it to the root of the SD Card that you made,
and boot the card. The SD Card image above will automatically boot
using the nuttx.bin file. If you are using another image (the
Giant Board linux image for instance), you can hit space to enter
U-Boot, and then from the U-Boot prompt do the following::
2020-09-14 21:49:19 +02:00
U-Boot> fatload mmc 0 0x20008000 nuttx.bin
mci: setting clock 257812 Hz, block size 512
mci: setting clock 257812 Hz, block size 512
mci: setting clock 257812 Hz, block size 512
gen_atmel_mci: CMDR 00001048 ( 8) ARGR 000001aa (SR: 0c100025) Command Time Out
mci: setting clock 257812 Hz, block size 512
mci: setting clock 22000000 Hz, block size 512
reading nuttx.bin
108076 bytes read in 23 ms (4.5 MiB/s)
U-Boot> go 0x20008040
## Starting application at 0x20008040 ...
NuttShell (NSH) NuttX-7.2
nsh>
Buttons and LEDs
----------------
2020-09-14 21:49:19 +02:00
Buttons
~~~~~~~
2020-09-14 21:49:19 +02:00
A single button, PB1, is available on the Giant Board. This is connected to the
Power Management Integrated Circuit (PMIC). It is not available to the user.
This appears to have no affect under NuttX.
You can add your own buttons, support for pollable buttons is enabled with::
2020-09-14 21:49:19 +02:00
CONFIG_ARCH_BUTTONS=y
For interrupt driven buttons, add::
2020-09-14 21:49:19 +02:00
CONFIG_ARCH_IRQBUTTONS=y
Program interfaces for button access are described in ``nuttx/include/nuttx/arch.h``
2020-09-14 21:49:19 +02:00
There is an example that can be enabled to test button interrupts. That
example is enabled like::
2020-09-14 21:49:19 +02:00
CONFIG_EXAMPLES_BUTTONS=y
CONFIG_EXAMPLES_BUTTONS_MAX=0
CONFIG_EXAMPLES_BUTTONS_MIN=0
CONFIG_EXAMPLES_BUTTONS_NAME0="PB_USER"
CONFIG_EXAMPLES_IRQBUTTONS_MAX=0
CONFIG_EXAMPLES_IRQBUTTONS_MIN=0
LEDs
~~~~
2020-09-14 21:49:19 +02:00
There is an Orange LED on the Giant Board, driven by pin (PA6) labeled STATUS.
Bringing the pin high will illuminate the LED::
2020-09-14 21:49:19 +02:00
------------------------------ ------------------- -------------------------
SAMA5D2 PIO SIGNAL USAGE
------------------------------ ------------------- -------------------------
PA6 STATUS_LED Orange LED
------------------------------ ------------------- -------------------------
When CONFIG_ARCH_LEDS is defined in the NuttX configuration, NuttX will
control the Orange LED as follows::
2020-09-14 21:49:19 +02:00
SYMBOL Meaning Orange LED
------------------- ----------------------- ---------
LED_STARTED NuttX has been started OFF
LED_HEAPALLOCATE Heap has been allocated OFF
LED_IRQSENABLED Interrupts enabled OFF
LED_STACKCREATED Idle stack created ON
LED_INIRQ In an interrupt N/C
LED_SIGNAL In a signal handler N/C
LED_ASSERTION An assertion failed N/C
LED_PANIC The system has crashed FLASH
Thus if the Orange LED is statically on, NuttX has successfully booted and
is, apparently, running normally. If LED is flashing at approximately
2Hz, then a fatal error has been detected and the system has halted.
Serial Console
--------------
2020-09-14 21:49:19 +02:00
The default serial console is UART1 (TX and RX on the pin connectors).
There is a TTL serial connection available on pins 14 and 15 of the J1
connector::
2020-09-14 21:49:19 +02:00
---- ------------------------ -------------
J1 SCHEMATIC SAMA5D2
PIN NAME(s) PIO FUNCTION
---- ------------------------ -------------
15 UART1_RX DBGU_UTXD1_PD3 PD3 UTXD1
14 UART1_TX DBGU_URXD1_PD2 PD2 URXD1
---- ------------------------ -------------
The other UART on the connectors (J1 and J1) is FLEXCOM4.
Terminology: FLEXCOM is the same as USART in previous SAMA5D versions::
2020-09-14 21:49:19 +02:00
---- ----------- -------------
BOARD SAMA5D2
PIN NAME PIO FUNCTION
---- ------------ -------------
J2 4 FLEXCOM_IO1 PD21 FLEXCOM4
J1 6 AD2 PD13 FLEXCOM4
---- ------------ -------------
By default, the standard UART on the connectors (FLEXCOM4) is
enabled in all of these configurations unless otherwise noted.
REVISIT: UART1 on the DBGU connect might be a better choice for the
default serial console
Giant Board Configuration Options
---------------------------------
2020-09-14 21:49:19 +02:00
CONFIG_ARCH - Identifies the arch/ subdirectory. This should
be set to::
2020-09-14 21:49:19 +02:00
CONFIG_ARCH="arm"
CONFIG_ARCH_family - For use in C code::
2020-09-14 21:49:19 +02:00
CONFIG_ARCH_ARM=y
CONFIG_ARCH_architecture - For use in C code::
2020-09-14 21:49:19 +02:00
CONFIG_ARCH_CORTEXA5=y
CONFIG_ARCH_CHIP - Identifies the ``arch/*/chip`` subdirectory::
2020-09-14 21:49:19 +02:00
CONFIG_ARCH_CHIP="sama5"
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
chip::
2020-09-14 21:49:19 +02:00
CONFIG_ARCH_CHIP_SAMA5=y
CONFIG_ARCH_CHIP_ATSAMA5D27=y
CONFIG_ARCH_BOARD - Identifies the ``boards/`` subdirectory and
hence, the board that supports the particular chip or SoC.::
2020-09-14 21:49:19 +02:00
CONFIG_ARCH_BOARD="giant-board" (for the Groboards Giant Board)
CONFIG_ARCH_BOARD_name - For use in C code::
2020-09-14 21:49:19 +02:00
CONFIG_ARCH_BOARD_GIANT_BOARD=y
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
of delay loops
CONFIG_ENDIAN_BIG - define if big endian (default is little
endian)
CONFIG_RAM_SIZE - Describes the installed DRAM (SRAM in this case)::
2020-09-14 21:49:19 +02:00
CONFIG_RAM_SIZE=0x0002000 (128Kb)
CONFIG_RAM_START - The physical start address of installed DRAM::
2020-09-14 21:49:19 +02:00
CONFIG_RAM_START=0x20000000
CONFIG_RAM_VSTART - The virtual start address of installed DRAM::
2020-09-14 21:49:19 +02:00
CONFIG_RAM_VSTART=0x20000000
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
have LEDs
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
stack. If defined, this symbol is the size of the interrupt
stack in bytes. If not defined, the user task stacks will be
used during interrupt handling.
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
Individual subsystems can be enabled:
REVISIT: Unverified, cloned text from the SAMA5D4-EK README.txt::
2020-09-14 21:49:19 +02:00
CONFIG_SAMA5_DBGU - Debug Unit
CONFIG_SAMA5_PIT - Periodic Interval Timer
CONFIG_SAMA5_WDT - Watchdog timer
CONFIG_SAMA5_HSMC - Multi-bit ECC
CONFIG_SAMA5_SMD - SMD Soft Modem
CONFIG_SAMA5_FLEXCOM0 - Flexcom 0
CONFIG_SAMA5_FLEXCOM1 - Flexcom 0
CONFIG_SAMA5_FLEXCOM2 - Flexcom 0
CONFIG_SAMA5_FLEXCOM3 - Flexcom 0
CONFIG_SAMA5_FLEXCOM4 - Flexcom 0
CONFIG_SAMA5_UART0 - UART 0 (not available on the pins)
CONFIG_SAMA5_UART1 - UART 1
CONFIG_SAMA5_UART2 - UART 2 (not available on the pins)
CONFIG_SAMA5_UART3 - UART 3 (not available on the pins)
CONFIG_SAMA5_UART4 - UART 4 (not available on the pins)
CONFIG_SAMA5_TWI0 - Two-Wire Interface 0
CONFIG_SAMA5_TWI1 - Two-Wire Interface 1
CONFIG_SAMA5_SDMMC0 - SD MMC card interface 0 (not available on the pins)
CONFIG_SAMA5_SDMMC1 - SD MMC card interface 1
CONFIG_SAMA5_SPI0 - Serial Peripheral Interface 0
CONFIG_SAMA5_SPI1 - Serial Peripheral Interface 1
CONFIG_SAMA5_TC0 - Timer Counter 0 (ch. 0, 1, 2)
CONFIG_SAMA5_TC1 - Timer Counter 1 (ch. 3, 4, 5)
CONFIG_SAMA5_PWM - Pulse Width Modulation Controller
CONFIG_SAMA5_ADC - Touch Screen ADC Controller
CONFIG_SAMA5_XDMAC0 - XDMA Controller 0
CONFIG_SAMA5_XDMAC1 - XDMA Controller 1
CONFIG_SAMA5_UHPHS - USB Host High Speed
CONFIG_SAMA5_UDPHS - USB Device High Speed
CONFIG_SAMA5_EMAC0 - Ethernet MAC 0 (GMAC0) (not available on the pins)
CONFIG_SAMA5_EMAC1 - Ethernet MAC 1 (GMAC1) (not available on the pins)
CONFIG_SAMA5_LCDC - LCD Controller (not available on the pins)
CONFIG_SAMA5_ISI - Image Sensor Interface (not available on the pins)
CONFIG_SAMA5_SSC0 - Synchronous Serial Controller 0
CONFIG_SAMA5_SSC1 - Synchronous Serial Controller 1
CONFIG_SAMA5_SHA - Secure Hash Algorithm
CONFIG_SAMA5_AES - Advanced Encryption Standard
CONFIG_SAMA5_TDES - Triple Data Encryption Standard
CONFIG_SAMA5_TRNG - True Random Number Generator
CONFIG_SAMA5_ARM - Performance Monitor Unit
CONFIG_SAMA5_FUSE - Fuse Controller
CONFIG_SAMA5_MPDDRC - MPDDR controller
Some subsystems can be configured to operate in different ways. The drivers
need to know how to configure the subsystem.::
2020-09-14 21:49:19 +02:00
CONFIG_SAMA5_PIOA_IRQ - Support PIOA interrupts
CONFIG_SAMA5_PIOB_IRQ - Support PIOB interrupts
CONFIG_SAMA5_PIOC_IRQ - Support PIOD interrupts
CONFIG_SAMA5_PIOD_IRQ - Support PIOD interrupts
CONFIG_USART0_SERIALDRIVER - Flexcom0 is configured as a UART
CONFIG_USART1_SERIALDRIVER - Flexcom1 is configured as a UART
CONFIG_USART2_SERIALDRIVER - Flexcom2 is configured as a UART
CONFIG_USART3_SERIALDRIVER - Flexcom3 is configured as a UART
CONFIG_USART4_SERIALDRIVER - Flexcom4 is configured as a UART
AT91SAMA5 specific device driver settings
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- CONFIG_SAMA5_DBGU_SERIAL_CONSOLE - selects the DBGU
for the console and ttyDBGU
- CONFIG_SAMA5_DBGU_RXBUFSIZE - Characters are buffered as received.
This specific the size of the receive buffer
- CONFIG_SAMA5_DBGU_TXBUFSIZE - Characters are buffered before
being sent. This specific the size of the transmit buffer
- CONFIG_SAMA5_DBGU_BAUD - The configure BAUD of the DBGU.
- CONFIG_SAMA5_DBGU_PARITY - 0=no parity, 1=odd parity, 2=even parity
- CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=0,1,2,3) or UART
m (m=4,5) for the console and ttys0 (default is the DBGU).
- CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received.
This specific the size of the receive buffer
- CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before
being sent. This specific the size of the transmit buffer
- CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART. Must be
- CONFIG_U[S]ARTn_BITS - The number of bits. Must be either 7 or 8.
- CONFIG_U[S]ARTn_PARITY - 0=no parity, 1=odd parity, 2=even parity
- CONFIG_U[S]ARTn_2STOP - Two stop bits
AT91SAMA5 USB Host Configuration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pre-requisites::
2020-09-14 21:49:19 +02:00
CONFIG_USBDEV - Enable USB device support
CONFIG_USBHOST - Enable USB host support
CONFIG_SAMA5_UHPHS - Needed
CONFIG_SAMA5_OHCI - Enable the STM32 USB OTG FS block
CONFIG_SCHED_WORKQUEUE - Worker thread support is required
Options::
2020-09-14 21:49:19 +02:00
CONFIG_SAMA5_OHCI_NEDS
Number of endpoint descriptors
CONFIG_SAMA5_OHCI_NTDS
Number of transfer descriptors
CONFIG_SAMA5_OHCI_TDBUFFERS
Number of transfer descriptor buffers
CONFIG_SAMA5_OHCI_TDBUFSIZE
Size of one transfer descriptor buffer
CONFIG_USBHOST_INT_DISABLE
Disable interrupt endpoint support
CONFIG_USBHOST_ISOC_DISABLE
Disable isochronous endpoint support
CONFIG_USBHOST_BULK_DISABLE
Disable bulk endpoint support
config SAMA5_OHCI_REGDEBUG
Configurations
--------------
2020-09-14 21:49:19 +02:00
Information Common to All Configurations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2020-09-14 21:49:19 +02:00
Each Giant Board configuration is maintained in a sub-directory and
can be selected as follow::
2020-09-14 21:49:19 +02:00
tools/configure.sh giant-board:<subdir>
Before building, make sure the PATH environment variable includes the
correct path to the directory than holds your toolchain binaries.
And then build NuttX by simply typing the following. At the conclusion of
the make, the nuttx binary will reside in an ELF file called, simply, nuttx.::
2020-09-14 21:49:19 +02:00
make
The <subdir> that is provided above as an argument to the tools/configure.sh
must be is one of the following.
NOTES:
1. These configurations use the mconf-based configuration tool. To
change any of these configurations using that tool, you should:
2020-09-14 21:49:19 +02:00
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
see additional README.txt files in the NuttX tools repository.
b. Execute 'make menuconfig' in nuttx/ in order to start the
reconfiguration process.
2. Unless stated otherwise, all configurations generate console
output on the DBGU (J23).
3. All of these configurations use the Code Sourcery for Windows toolchain
(unless stated otherwise in the description of the configuration). That
toolchain selection can easily be reconfigured using 'make menuconfig'.
Here are the relevant current settings:
Build Setup::
CONFIG_HOST_WINDOWS=y : Microsoft Windows
CONFIG_WINDOWS_CYGWIN=y : Using Cygwin or other POSIX environment
2020-09-14 21:49:19 +02:00
System Type -> Toolchain::
2020-09-14 21:49:19 +02:00
CONFIG_ARM_TOOLCHAIN_GNU_EABI=y : GNU EABI toolchain
2020-09-14 21:49:19 +02:00
4. The SAMA5Dx is running at 528MHz by default in these configurations.
Board Selection -> CPU Frequency::
2020-09-14 21:49:19 +02:00
CONFIG_SAMA5D2XULT_528MHZ=y : Enable 528MHz operation
CONFIG_BOARD_LOOPSPERMSEC=65775 : Calibrated on SAMA5D3-Xplained at 528MHz running from SDRAM
Configuration Sub-directories
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2020-09-14 21:49:19 +02:00
Summary: Some of the descriptions below are long and wordy. Here is the
concise summary of the available Giant Board configurations:
- nsh:
2020-09-14 21:49:19 +02:00
This is a basic NuttShell (NSH) configuration.
There may be issues with some of these configurations. See the details
for status of individual configurations.
Now for the gory details:
.........................
2020-09-14 21:49:19 +02:00
- netnsh:
This is a network enabled configuration based on the NuttShell (NSH).
The CDC-ECM driver is enabled, so you can plug a USB cable into the
USB-Micro port (USB-A) and the board will appear as an CDC-ECM
ethernet adapter.
- nsh:
This configuration directory provide the NuttShell (NSH). This is a
very simple NSH configuration upon which you can build further
functionality.
NOTES::
2020-09-14 21:49:19 +02:00
1. This configuration uses the UART1 (PD2 and PD3) for the serial
console. USART1 is available at the "DBGU" RS-232 connector (J24).
This is easily changed by reconfiguring to (1) enable a different
serial peripheral, and (2) selecting that serial peripheral as the
console device.
2. By default, this configuration is set up to build on Windows
under either a Cygwin or MSYS environment using a recent, Windows-
native, generic ARM EABI GCC toolchain (such as the ARM supported
toolchain). Both the build environment and the toolchain
selection can easily be changed by reconfiguring:
CONFIG_HOST_WINDOWS=y : Windows operating system
CONFIG_WINDOWS_CYGWIN=y : POSIX environment under windows
CONFIG_ARMV7A_TOOLCHAIN_EABIW=y : Generic GCC EABI toolchain for Windows
If you are running on Linux, make *certain* that you have
CONFIG_HOST_LINUX=y *before* the first make or you will create a
corrupt configuration that may not be easy to recover from. See
the warning in the section "Information Common to All Configurations"
for further information.
4. This configuration supports logging of debug output to a circular
buffer in RAM. This feature is discussed fully in this Wiki page:
http://nuttx.org/doku.php?id=wiki:howtos:syslog . Relevant
configuration settings are summarized below:
File System:
Device Drivers:
CONFIG_RAMLOG=y : Enable the RAM-based logging feature.
CONFIG_RAMLOG_SYSLOG=y : This enables the RAM-based logger as the
system logger.
CONFIG_RAMLOG_NONBLOCKING=y : Needs to be non-blocking for dmesg
CONFIG_RAMLOG_BUFSIZE=16384 : Buffer size is 16KiB
NOTE: This RAMLOG feature is really only of value if debug output
is enabled. But, by default, no debug output is disabled in this
configuration. Therefore, there is no logic that will add anything
to the RAM buffer. This feature is configured and in place only
to support any future debugging needs that you may have.
If you don't plan on using the debug features, then by all means
disable this feature and save 16KiB of RAM!
NOTE: There is an issue with capturing data in the RAMLOG: If
the system crashes, all of the crash dump information will into
the RAMLOG and you will be unable to access it! You can tell that
the system has crashed because (a) it will be unresponsive and (b)
the RED LED will be blinking at about 2Hz.
That is another good reason to disable the RAMLOG!
5. This configuration executes out of SDRAM flash and is loaded into
SDRAM from SD card U-Boot. Data also is positioned in SDRAM.
Booting with U-Boot from nuttx.bin on an SD card is the only boot
method that has been tested. These are the commands that I used to boot NuttX
from the SD card:
U-Boot> fatload mmc 0 0x20008000 nuttx.bin
U-Boot> go 0x20008040
6. This configuration supports /dev/null, /dev/zero, and /dev/random.
CONFIG_DEV_NULL=y : Enables /dev/null
CONFIG_DEV_ZERO=y : Enabled /dev/zero
Support for /dev/random is implemented using the SAMA5D2's True
Random Number Generator (TRNG). See the section above entitled
"TRNG and /dev/random" for information about configuring /dev/random.
CONFIG_SAMA5_TRNG=y : Enables the TRNG peripheral
CONFIG_DEV_RANDOM=y : Enables /dev/random
7. This configuration has support for NSH built-in applications enabled.
No built-in applications are enabled, however.
8. This configuration has support for the FAT and PROCFS file
systems built in.
The FAT file system includes long file name support. Please be aware
that Microsoft claims patents against the long file name support (see
more discussion in the top-level NOTICE file).
2020-09-14 21:49:19 +02:00
CONFIG_FS_FAT=y : Enables the FAT file system
CONFIG_FAT_LCNAMES=y : Enable lower case 8.3 file names
CONFIG_FAT_LFN=y : Enables long file name support
CONFIG_FAT_MAXFNAME=32 : Arbitrarily limits the size of a path
segment name to 32 bytes
The PROCFS file system is enabled simply with:
CONFIG_FS_PROCFS=y : Enable PROCFS file system
9. The Real Time Clock/Calendar (RTC) is enabled in this configuration.
See the section entitled "RTC" above for detailed configuration
settings.
The RTC alarm is not enabled by default since there is nothing in
this configuration that uses it. The alarm can easily be enabled,
however, as described in the "RTC" section.
The time value from the RTC will be used as the NuttX system time
in all timestamp operations. You may use the NSH 'date' command
to set or view the RTC as described above in the "RTC" section.
NOTE: If you want the RTC to preserve time over power cycles, you
will need to install a battery in the battery holder (J12) and close
the jumper, JP13.
- sdmmcnsh:
This is a configuration based on the NuttShell (NSH). The SDMMC
peripheral is enabled, and can read and write to a VFAT filesystem
on the SD Card.
NuttX will mount the SD Card at ``/mnt/mmcsd1``.
2020-09-14 21:49:19 +02:00
- sdmmc-net-nsh:
This is a combination of the netnsh and sdmmcnsh configurations.