nuttx/configs/stm32f051-discovery/include/board.h

248 lines
11 KiB
C
Raw Normal View History

2017-04-14 16:33:52 +02:00
/************************************************************************************
* configs/stm32f051-discovery/include/board.h
2017-04-14 16:33:52 +02:00
*
* Copyright (C) 2017 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
* Alan Carvalho de Assis <acassis@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
#ifndef __CONFIG_STM32F051_DISCOVERY_INCLUDE_BOARD_H
#define __CONFIG_STM32F051_DISCOVERY_INCLUDE_BOARD_H
2017-04-14 16:33:52 +02:00
/************************************************************************************
* Included Files
************************************************************************************/
#include <nuttx/config.h>
#ifndef __ASSEMBLY__
# include <stdint.h>
#endif
/************************************************************************************
* Pre-processor Definitions
************************************************************************************/
/* Clocking *************************************************************************/
/* Four different clock sources can be used to drive the system clock (SYSCLK):
*
* - HSI high-speed internal oscillator clock
2017-04-17 19:14:24 +02:00
* Generated from an internal 8 MHz RC oscillator
2017-04-14 16:33:52 +02:00
* - HSE high-speed external oscillator clock
2017-04-17 19:14:24 +02:00
* Normally driven by an external crystal (X3). However, this crystal is not
* fitted on the STM32F0-Discovery board.
2017-04-14 16:33:52 +02:00
* - PLL clock
* - MSI multispeed internal oscillator clock
* The MSI clock signal is generated from an internal RC oscillator. Seven frequency
* ranges are available: 65.536 kHz, 131.072 kHz, 262.144 kHz, 524.288 kHz, 1.048 MHz,
* 2.097 MHz (default value) and 4.194 MHz.
*
* The devices have the following two secondary clock sources
* - LSI low-speed internal RC clock
* Drives the watchdog and RTC. Approximately 37KHz
* - LSE low-speed external oscillator clock
* Driven by 32.768KHz crystal (X2) on the OSC32_IN and OSC32_OUT pins.
*/
#define STM32_BOARD_XTAL 8000000ul /* X3 on board (not fitted)*/
2017-04-14 16:33:52 +02:00
#define STM32_HSI_FREQUENCY 8000000ul /* Approximately 8MHz */
#define STM32_HSI14_FREQUENCY 14000000ul /* HSI14 for ADC */
#define STM32_HSI48_FREQUENCY 48000000ul /* HSI48 for USB, only some STM32F0xx */
#define STM32_HSE_FREQUENCY STM32_BOARD_XTAL
#define STM32_LSI_FREQUENCY 40000 /* Approximately 40KHz */
#define STM32_LSE_FREQUENCY 32768 /* X2 on board */
2017-04-14 16:33:52 +02:00
/* PLL Configuration
*
* - PLL source is HSI -> 8MHz input (nominal)
* - PLL source predivider 2 -> 4MHz divided down PLL VCO clock output
* - PLL multipler is 12 -> 48MHz PLL VCO clock output (for USB)
2017-04-14 16:33:52 +02:00
*
* Resulting SYSCLK frequency is 8MHz x 12 / 2 = 48MHz
2017-04-14 16:33:52 +02:00
*
2017-04-17 22:28:19 +02:00
* USB:
* If the USB interface is used in the application, it requires a precise
* 48MHz clock which can be generated from either the (1) the internal
* main PLL with the HSE clock source using an HSE crystal oscillator. In
* this case, the PLL VCO clock (defined by STM32_CFGR_PLLMUL) must be
2017-04-17 22:28:19 +02:00
* programmed to output a 96 MHz frequency. This is required to provide a
* 48MHz clock to the (USBCLK = PLLVCO/2). Or (2) by using the internal
* 48MHz oscillator in automatic trimming mode. The synchronization for
* this oscillator can be taken from the USB data stream itself (SOF
* signalization) which allows crystal-less operation.
2017-04-14 16:33:52 +02:00
* SYSCLK
* The system clock is derived from the PLL VCO divided by the output
* division factor.
2017-04-14 16:33:52 +02:00
* Limitations:
* - 96 MHz as PLLVCO when the product is in range 1 (1.8V),
* - 48 MHz as PLLVCO when the product is in range 2 (1.5V),
* - 24 MHz when the product is in range 3 (1.2V).
* - Output division to avoid exceeding 32 MHz as SYSCLK.
* - The minimum input clock frequency for PLL is 2 MHz (when using HSE as
* PLL source).
2017-04-14 16:33:52 +02:00
*/
#define STM32_CFGR_PLLSRC RCC_CFGR_PLLSRC_HSId2 /* Source is HSI/2 */
#define STM32_PLLSRC_FREQUENCY (STM32_HSI_FREQUENCY/2) /* 8MHz / 2 = 4MHz */
#ifdef CONFIG_STM32F0L0_USB
# undef STM32_CFGR2_PREDIV /* Not used with source HSI/2 */
# define STM32_CFGR_PLLMUL RCC_CFGR_PLLMUL_CLKx12 /* PLLMUL = 12 */
# define STM32_PLL_FREQUENCY (12*STM32_PLLSRC_FREQUENCY) /* PLL VCO Frequency is 48MHz */
2017-04-14 16:33:52 +02:00
#else
# undef STM32_CFGR2_PREDIV /* Not used with source HSI/2 */
# define STM32_CFGR_PLLMUL RCC_CFGR_PLLMUL_CLKx12 /* PLLMUL = 12 */
# define STM32_PLL_FREQUENCY (12*STM32_PLLSRC_FREQUENCY) /* PLL VCO Frequency is 48MHz */
2017-04-14 16:33:52 +02:00
#endif
/* Use the PLL and set the SYSCLK source to be the divided down PLL VCO output
* frequency (STM32_PLL_FREQUENCY divided by the PLLDIV value).
2017-04-14 16:33:52 +02:00
*/
#define STM32_SYSCLK_SW RCC_CFGR_SW_PLL /* Use the PLL as the SYSCLK */
#define STM32_SYSCLK_SWS RCC_CFGR_SWS_PLL
#ifdef CONFIG_STM32F0L0_USB
# define STM32_SYSCLK_FREQUENCY STM32_PLL_FREQUENCY /* SYSCLK frequency is PLL VCO = 48MHz */
2017-04-14 16:33:52 +02:00
#else
# define STM32_SYSCLK_FREQUENCY STM32_PLL_FREQUENCY /* SYSCLK frequency is PLL VCO = 48MHz */
2017-04-14 16:33:52 +02:00
#endif
#define STM32_RCC_CFGR_HPRE RCC_CFGR_HPRE_SYSCLK
#define STM32_HCLK_FREQUENCY STM32_SYSCLK_FREQUENCY
#define STM32_BOARD_HCLK STM32_HCLK_FREQUENCY /* Same as above, to satisfy compiler */
2017-04-14 16:33:52 +02:00
/* APB1 clock (PCLK1) is HCLK (48MHz) */
2017-04-17 19:14:24 +02:00
#define STM32_RCC_CFGR_PPRE1 RCC_CFGR_PPRE1_HCLK
#define STM32_PCLK1_FREQUENCY (STM32_HCLK_FREQUENCY)
2017-04-17 19:14:24 +02:00
/* APB2 clock (PCLK2) is HCLK (48MHz) */
2017-04-14 16:33:52 +02:00
#define STM32_RCC_CFGR_PPRE2 RCC_CFGR_PPRE2_HCLK
#define STM32_PCLK2_FREQUENCY STM32_HCLK_FREQUENCY
#define STM32_APB2_CLKIN (STM32_PCLK2_FREQUENCY)
2017-04-14 16:33:52 +02:00
2017-04-17 19:14:24 +02:00
/* APB1 timers 1-3, 6-7, and 14-17 will receive PCLK1 */
2017-04-14 16:33:52 +02:00
#define STM32_APB1_TIM1_CLKIN (STM32_PCLK1_FREQUENCY)
#define STM32_APB1_TIM2_CLKIN (STM32_PCLK1_FREQUENCY)
#define STM32_APB1_TIM3_CLKIN (STM32_PCLK1_FREQUENCY)
2017-04-17 19:14:24 +02:00
#define STM32_APB1_TIM6_CLKIN (STM32_PCLK1_FREQUENCY)
#define STM32_APB1_TIM7_CLKIN (STM32_PCLK1_FREQUENCY)
2017-04-14 16:33:52 +02:00
#define STM32_APB1_TIM14_CLKIN (STM32_PCLK1_FREQUENCY)
#define STM32_APB1_TIM15_CLKIN (STM32_PCLK1_FREQUENCY)
#define STM32_APB1_TIM16_CLKIN (STM32_PCLK1_FREQUENCY)
#define STM32_APB1_TIM17_CLKIN (STM32_PCLK1_FREQUENCY)
2017-04-17 19:14:24 +02:00
2017-04-14 16:33:52 +02:00
/* LED definitions ******************************************************************/
2017-04-17 19:14:24 +02:00
/* The STM32F0-Discovery board has four LEDs. Two of these are controlled by
2017-04-14 16:33:52 +02:00
* logic on the board and are not available for software control:
*
* LD1 COM: LD2 default status is red. LD2 turns to green to indicate that
* communications are in progress between the PC and the ST-LINK/V2.
* LD2 PWR: Red LED indicates that the board is powered.
*
* And two LEDs can be controlled by software:
*
* User LD3: Green LED is a user LED connected to the I/O PB7 of the STM32F051R8
2017-04-14 16:33:52 +02:00
* MCU.
* User LD4: Blue LED is a user LED connected to the I/O PB6 of the STM32F051R8
2017-04-14 16:33:52 +02:00
* MCU.
*
* If CONFIG_ARCH_LEDS is not defined, then the user can control the LEDs in any
* way. The following definitions are used to access individual LEDs.
*/
/* LED index values for use with board_userled() */
#define BOARD_LED1 0 /* User LD3 */
#define BOARD_LED2 1 /* User LD4 */
#define BOARD_NLEDS 2
/* LED bits for use with board_userled_all() */
#define BOARD_LED1_BIT (1 << BOARD_LED1)
#define BOARD_LED2_BIT (1 << BOARD_LED2)
/* If CONFIG_ARCH_LEDs is defined, then NuttX will control the 8 LEDs on board the
2017-04-17 19:14:24 +02:00
* STM32F0-Discovery. The following definitions describe how NuttX controls the LEDs:
2017-04-14 16:33:52 +02:00
*
* SYMBOL Meaning LED state
* LED1 LED2
* ------------------- ----------------------- -------- --------
* LED_STARTED NuttX has been started OFF OFF
* LED_HEAPALLOCATE Heap has been allocated OFF OFF
* LED_IRQSENABLED Interrupts enabled OFF OFF
* LED_STACKCREATED Idle stack created ON OFF
* LED_INIRQ In an interrupt No change
* LED_SIGNAL In a signal handler No change
* LED_ASSERTION An assertion failed No change
* LED_PANIC The system has crashed OFF Blinking
* LED_IDLE STM32 is is sleep mode Not used
*/
#define LED_STARTED 0
#define LED_HEAPALLOCATE 0
#define LED_IRQSENABLED 0
#define LED_STACKCREATED 1
#define LED_INIRQ 2
#define LED_SIGNAL 2
#define LED_ASSERTION 2
#define LED_PANIC 3
/* Button definitions ***************************************************************/
2017-04-17 19:14:24 +02:00
/* The STM32F0-Discovery supports two buttons; only one button is controllable by
2017-04-14 16:33:52 +02:00
* software:
*
* B1 USER: user and wake-up button connected to the I/O PA0 of the STM32F051R8.
* B2 RESET: pushbutton connected to NRST is used to RESET the STM32F051R8.
2017-04-14 16:33:52 +02:00
*/
#define BUTTON_USER 0
#define NUM_BUTTONS 1
#define BUTTON_USER_BIT (1 << BUTTON_USER)
/* Alternate Pin Functions **********************************************************/
/* USART 1 */
#define GPIO_USART1_TX GPIO_USART1_TX_1
#define GPIO_USART1_RX GPIO_USART1_RX_1
2017-04-14 16:33:52 +02:00
/* I2C pins definition */
#define GPIO_I2C1_SCL GPIO_I2C1_SCL_1
#define GPIO_I2C1_SDA GPIO_I2C1_SDA_1
#endif /* __CONFIG_STM32F051_DISCOVERY_INCLUDE_BOARD_H */