nuttx/arch/arm/src/efm32/efm32_start.c

283 lines
8.3 KiB
C
Raw Normal View History

2014-10-17 20:02:32 +02:00
/****************************************************************************
* arch/arm/src/efm32/efm32_start.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
2014-10-17 20:02:32 +02:00
*
* http://www.apache.org/licenses/LICENSE-2.0
2014-10-17 20:02:32 +02:00
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
2014-10-17 20:02:32 +02:00
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdint.h>
#include <assert.h>
#include <debug.h>
#include <nuttx/init.h>
#include <nuttx/syslog/syslog.h>
2014-10-17 20:02:32 +02:00
#include <arch/board/board.h>
#include <arch/efm32/chip.h>
#include "arm_arch.h"
#include "arm_internal.h"
#include "efm32_config.h"
2014-10-17 20:02:32 +02:00
#include "efm32_lowputc.h"
#include "efm32_clockconfig.h"
#include "efm32_start.h"
#include "nvic.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* .data is positioned first in the primary RAM followed immediately by .bss.
* The IDLE thread stack lies just after .bss and has size give by
* CONFIG_IDLETHREAD_STACKSIZE; The heap then begins just after the IDLE
* ARM EABI requires 64 bit stack alignment.
*/
#define HEAP_BASE ((uintptr_t)&_ebss + CONFIG_IDLETHREAD_STACKSIZE)
/****************************************************************************
* Public Data
****************************************************************************/
/* g_idle_topstack: _sbss is the start of the BSS region as defined by the
* linker script. _ebss lies at the end of the BSS region. The idle task
* stack starts at the end of BSS and is of size CONFIG_IDLETHREAD_STACKSIZE.
* The IDLE thread is the thread that the system boots on and, eventually,
* becomes the IDLE, do nothing task that runs only when there is nothing
* else to run. The heap continues from there until the end of memory.
* g_idle_topstack is a read-only variable the provides this computed
* address.
*/
const uintptr_t g_idle_topstack = HEAP_BASE;
2014-10-17 20:02:32 +02:00
/****************************************************************************
* Private Function prototypes
****************************************************************************/
#ifdef CONFIG_ARCH_FPU
static inline void efm32_fpuconfig(void);
#endif
2014-10-17 20:02:32 +02:00
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: showprogress
*
* Description:
* Print a character on the UART to show boot status.
*
****************************************************************************/
#ifdef CONFIG_DEBUG_FEATURES
# if defined(CONFIG_ARMV7M_ITMSYSLOG)
# define showprogress(c) (void)syslog_putc(c)
# elif defined(HAVE_UART_CONSOLE) || defined(HAVE_LEUART_CONSOLE)
# define showprogress(c) efm32_lowputc(c)
# else
# define showprogress(c)
# endif
2014-10-17 20:02:32 +02:00
#else
# define showprogress(c)
#endif
/****************************************************************************
* Name: efm32_fpuconfig
*
* Description:
* Configure the FPU. Relative bit settings:
*
* CPACR: Enables access to CP10 and CP11
* CONTROL.FPCA: Determines whether the FP extension is active in the
* current context:
* FPCCR.ASPEN: Enables automatic FP state preservation, then the
* processor sets this bit to 1 on successful completion of any FP
* instruction.
* FPCCR.LSPEN: Enables lazy context save of FP state. When this is
* done, the processor reserves space on the stack for the FP state,
* but does not save that state information to the stack.
*
* Software must not change the value of the ASPEN bit or LSPEN bit either:
* - the CPACR permits access to CP10 and CP11, that give access to the FP
* extension, or
* - the CONTROL.FPCA bit is set to 1
*
****************************************************************************/
#ifdef CONFIG_ARCH_FPU
#ifndef CONFIG_ARMV7M_LAZYFPU
static inline void efm32_fpuconfig(void)
{
uint32_t regval;
/* Set CONTROL.FPCA so that we always get the extended context frame
* with the volatile FP registers stacked above the basic context.
*/
regval = getcontrol();
regval |= (1 << 2);
setcontrol(regval);
/* Ensure that FPCCR.LSPEN is disabled, so that we don't have to contend
* with the lazy FP context save behaviour. Clear FPCCR.ASPEN since we
* are going to turn on CONTROL.FPCA for all contexts.
*/
regval = getreg32(NVIC_FPCCR);
regval &= ~((1 << 31) | (1 << 30));
putreg32(regval, NVIC_FPCCR);
/* Enable full access to CP10 and CP11 */
regval = getreg32(NVIC_CPACR);
regval |= ((3 << (2 * 10)) | (3 << (2 * 11)));
putreg32(regval, NVIC_CPACR);
}
#else
static inline void efm32_fpuconfig(void)
{
uint32_t regval;
/* Clear CONTROL.FPCA so that we do not get the extended context frame
* with the volatile FP registers stacked in the saved context.
*/
regval = getcontrol();
regval &= ~(1 << 2);
setcontrol(regval);
/* Ensure that FPCCR.LSPEN is disabled, so that we don't have to contend
* with the lazy FP context save behaviour. Clear FPCCR.ASPEN since we
* are going to keep CONTROL.FPCA off for all contexts.
*/
regval = getreg32(NVIC_FPCCR);
regval &= ~((1 << 31) | (1 << 30));
putreg32(regval, NVIC_FPCCR);
/* Enable full access to CP10 and CP11 */
regval = getreg32(NVIC_CPACR);
regval |= ((3 << (2 * 10)) | (3 << (2 * 11)));
putreg32(regval, NVIC_CPACR);
}
#endif
#else
# define efm32_fpuconfig()
#endif
2014-10-17 20:02:32 +02:00
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: _start
*
* Description:
* This is the reset entry point.
*
****************************************************************************/
void __start(void)
{
const uint32_t *src;
uint32_t *dest;
/* Configure the uart so that we can get debug output as soon as possible */
efm32_clockconfig();
efm32_fpuconfig();
2014-10-17 20:02:32 +02:00
efm32_lowsetup();
showprogress('A');
/* Clear .bss. We'll do this inline (vs. calling memset) just to be
* certain that there are no issues with the state of global variables.
*/
for (dest = &_sbss; dest < &_ebss; )
{
*dest++ = 0;
}
showprogress('B');
/* Move the initialized data section from his temporary holding spot in
* FLASH into the correct place in SRAM. The correct place in SRAM is
* give by _sdata and _edata. The temporary location is in FLASH at the
* end of all of the other read-only data (.text, .rodata) at _eronly.
*/
for (src = &_eronly, dest = &_sdata; dest < &_edata; )
{
*dest++ = *src++;
}
showprogress('C');
#ifdef CONFIG_ARMV7M_ITMSYSLOG
/* Perform ARMv7-M ITM SYSLOG initialization */
itm_syslog_initialize();
#endif
2014-10-17 20:02:32 +02:00
/* Perform early serial initialization */
arm_earlyserialinit();
2014-10-17 20:02:32 +02:00
showprogress('D');
/* For the case of the separate user-/kernel-space build, perform whatever
* platform specific initialization of the user memory is required.
* Normally this just means initializing the user space .data and .bss
* segments.
*/
#ifdef CONFIG_NUTTX_KERNEL
efm32_userspace();
showprogress('E');
#endif
/* Initialize onboard resources */
efm32_boardinitialize();
showprogress('F');
2014-10-17 20:02:32 +02:00
/* Then start NuttX */
showprogress('\r');
showprogress('\n');
nx_start();
2014-10-17 20:02:32 +02:00
/* Shouldn't get here */
2015-10-07 19:39:06 +02:00
for (; ; );
2014-10-17 20:02:32 +02:00
}