nuttx/drivers/sensors/sensor.c

1376 lines
38 KiB
C
Raw Normal View History

/****************************************************************************
* drivers/sensors/sensor.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <poll.h>
#include <fcntl.h>
#include <nuttx/list.h>
#include <nuttx/kmalloc.h>
#include <nuttx/mm/circbuf.h>
#include <nuttx/mutex.h>
#include <nuttx/sensors/sensor.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Device naming ************************************************************/
#define ROUND_DOWN(x, y) (((x) / (y)) * (y))
#define DEVNAME_FMT "/dev/uorb/sensor_%s%s%d"
#define DEVNAME_UNCAL "_uncal"
#define TIMING_BUF_ESIZE (sizeof(uint32_t))
/****************************************************************************
* Private Types
****************************************************************************/
struct sensor_axis_map_s
{
int8_t src_x;
int8_t src_y;
int8_t src_z;
int8_t sign_x;
int8_t sign_y;
int8_t sign_z;
};
/* This structure describes sensor meta */
struct sensor_meta_s
{
size_t esize;
FAR char *name;
};
typedef enum sensor_role_e
{
SENSOR_ROLE_NONE,
SENSOR_ROLE_WR,
SENSOR_ROLE_RD,
SENSOR_ROLE_RDWR,
} sensor_role_t;
/* This structure describes user info of sensor, the user may be
* advertiser or subscriber
*/
struct sensor_user_s
{
/* The common info */
struct list_node node; /* Node of users list */
struct pollfd *fds; /* The poll structure of thread waiting events */
sensor_role_t role; /* The is used to indicate user's role based on open flags */
bool changed; /* This is used to indicate event happens and need to
* asynchronous notify other users
*/
unsigned int event; /* The event of this sensor, eg: SENSOR_EVENT_FLUSH_COMPLETE. */
bool flushing; /* The is used to indicate user is flushing */
sem_t buffersem; /* Wakeup user waiting for data in circular buffer */
size_t bufferpos; /* The index of user generation in buffer */
/* The subscriber info
* Support multi advertisers to subscribe their own data when they
* appear in dual role
*/
struct sensor_ustate_s state;
};
/* This structure describes the state of the upper half driver */
struct sensor_upperhalf_s
{
FAR struct sensor_lowerhalf_s *lower; /* The handle of lower half driver */
struct sensor_state_s state; /* The state of sensor device */
struct circbuf_s timing; /* The circular buffer of generation */
struct circbuf_s buffer; /* The circular buffer of data */
rmutex_t lock; /* Manages exclusive access to file operations */
struct list_node userlist; /* List of users */
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
static void sensor_pollnotify(FAR struct sensor_upperhalf_s *upper,
pollevent_t eventset, sensor_role_t role);
static int sensor_open(FAR struct file *filep);
static int sensor_close(FAR struct file *filep);
static ssize_t sensor_read(FAR struct file *filep, FAR char *buffer,
size_t buflen);
static ssize_t sensor_write(FAR struct file *filep, FAR const char *buffer,
size_t buflen);
static int sensor_ioctl(FAR struct file *filep, int cmd,
unsigned long arg);
static int sensor_poll(FAR struct file *filep, FAR struct pollfd *fds,
bool setup);
static ssize_t sensor_push_event(FAR void *priv, FAR const void *data,
size_t bytes);
/****************************************************************************
* Private Data
****************************************************************************/
static const struct sensor_axis_map_s g_remap_tbl[] =
{
{ 0, 1, 2, 1, 1, 1 }, /* P0 */
{ 1, 0, 2, 1, -1, 1 }, /* P1 */
{ 0, 1, 2, -1, -1, 1 }, /* P2 */
{ 1, 0, 2, -1, 1, 1 }, /* P3 */
{ 0, 1, 2, -1, 1, -1 }, /* P4 */
{ 1, 0, 2, -1, -1, -1 }, /* P5 */
{ 0, 1, 2, 1, -1, -1 }, /* P6 */
{ 1, 0, 2, 1, 1, -1 }, /* P7 */
};
static const struct sensor_meta_s g_sensor_meta[] =
{
{0, NULL},
{sizeof(struct sensor_accel), "accel"},
{sizeof(struct sensor_mag), "mag"},
{sizeof(struct sensor_gyro), "gyro"},
{sizeof(struct sensor_light), "light"},
{sizeof(struct sensor_baro), "baro"},
{sizeof(struct sensor_prox), "prox"},
{sizeof(struct sensor_humi), "humi"},
{sizeof(struct sensor_temp), "temp"},
{sizeof(struct sensor_rgb), "rgb"},
{sizeof(struct sensor_hall), "hall"},
{sizeof(struct sensor_ir), "ir"},
{sizeof(struct sensor_uv), "uv"},
{sizeof(struct sensor_noise), "noise"},
{sizeof(struct sensor_pm25), "pm25"},
{sizeof(struct sensor_pm1p0), "pm1p0"},
{sizeof(struct sensor_pm10), "pm10"},
{sizeof(struct sensor_co2), "co2"},
{sizeof(struct sensor_hcho), "hcho"},
{sizeof(struct sensor_tvoc), "tvoc"},
{sizeof(struct sensor_ph), "ph"},
{sizeof(struct sensor_dust), "dust"},
{sizeof(struct sensor_hrate), "hrate"},
{sizeof(struct sensor_hbeat), "hbeat"},
{sizeof(struct sensor_ecg), "ecg"},
{sizeof(struct sensor_ppgd), "ppgd"},
{sizeof(struct sensor_ppgq), "ppgq"},
{sizeof(struct sensor_impd), "impd"},
{sizeof(struct sensor_ots), "ots"},
{sizeof(struct sensor_wake_gesture), "wake_gesture"},
{sizeof(struct sensor_cap), "cap"},
{sizeof(struct sensor_gas), "gas"},
{sizeof(struct sensor_force), "force"},
{sizeof(struct sensor_gnss), "gnss"},
{sizeof(struct sensor_gnss_satellite), "gnss_satellite"},
{sizeof(struct sensor_gnss_measurement), "gnss_measurement"},
{sizeof(struct sensor_gnss_clock), "gnss_clock"},
};
static const struct file_operations g_sensor_fops =
{
sensor_open, /* open */
sensor_close, /* close */
sensor_read, /* read */
sensor_write, /* write */
NULL, /* seek */
sensor_ioctl, /* ioctl */
NULL, /* mmap */
NULL, /* truncate */
sensor_poll /* poll */
};
/****************************************************************************
* Private Functions
****************************************************************************/
static void sensor_lock(FAR void *priv)
{
FAR struct sensor_upperhalf_s *upper = priv;
nxrmutex_lock(&upper->lock);
}
static void sensor_unlock(FAR void *priv)
{
FAR struct sensor_upperhalf_s *upper = priv;
nxrmutex_unlock(&upper->lock);
}
static int sensor_update_interval(FAR struct file *filep,
FAR struct sensor_upperhalf_s *upper,
FAR struct sensor_user_s *user,
uint32_t interval)
{
FAR struct sensor_lowerhalf_s *lower = upper->lower;
FAR struct sensor_user_s *tmp;
uint32_t min_interval = interval;
uint32_t min_latency = interval != UINT32_MAX ?
user->state.latency : UINT32_MAX;
int ret = 0;
if (interval == user->state.interval)
{
return 0;
}
list_for_every_entry(&upper->userlist, tmp, struct sensor_user_s, node)
{
if (tmp == user || tmp->state.interval == UINT32_MAX)
{
continue;
}
if (min_interval > tmp->state.interval)
{
min_interval = tmp->state.interval;
}
if (min_latency > tmp->state.latency)
{
min_latency = tmp->state.latency;
}
}
if (lower->ops->set_interval)
{
if (min_interval != UINT32_MAX &&
min_interval != upper->state.min_interval)
{
uint32_t expected_interval = min_interval;
ret = lower->ops->set_interval(lower, filep, &min_interval);
if (ret < 0)
{
return ret;
}
else if (min_interval > expected_interval)
{
return -EINVAL;
}
}
if (min_latency == UINT32_MAX)
{
min_latency = 0;
}
if (lower->ops->batch &&
(min_latency != upper->state.min_latency ||
(min_interval != upper->state.min_interval && min_latency)))
{
ret = lower->ops->batch(lower, filep, &min_latency);
if (ret >= 0)
{
upper->state.min_latency = min_latency;
}
}
}
upper->state.min_interval = min_interval;
user->state.interval = interval;
sensor_pollnotify(upper, POLLPRI, SENSOR_ROLE_WR);
return ret;
}
static int sensor_update_latency(FAR struct file *filep,
FAR struct sensor_upperhalf_s *upper,
FAR struct sensor_user_s *user,
uint32_t latency)
{
FAR struct sensor_lowerhalf_s *lower = upper->lower;
FAR struct sensor_user_s *tmp;
uint32_t min_latency = latency;
int ret = 0;
if (latency == user->state.latency)
{
return 0;
}
if (user->state.interval == UINT32_MAX)
{
user->state.latency = latency;
return 0;
}
if (latency <= upper->state.min_latency)
{
goto update;
}
list_for_every_entry(&upper->userlist, tmp, struct sensor_user_s, node)
{
if (tmp == user || tmp->state.interval == UINT32_MAX)
{
continue;
}
if (min_latency > tmp->state.latency)
{
min_latency = tmp->state.latency;
}
}
update:
if (min_latency == UINT32_MAX)
{
min_latency = 0;
}
if (min_latency == upper->state.min_latency)
{
user->state.latency = latency;
return ret;
}
if (lower->ops->batch)
{
ret = lower->ops->batch(lower, filep, &min_latency);
if (ret < 0)
{
return ret;
}
}
upper->state.min_latency = min_latency;
user->state.latency = latency;
sensor_pollnotify(upper, POLLPRI, SENSOR_ROLE_WR);
return ret;
}
static void sensor_generate_timing(FAR struct sensor_upperhalf_s *upper,
unsigned long nums)
{
uint32_t interval = upper->state.min_interval != UINT32_MAX ?
upper->state.min_interval : 1;
while (nums-- > 0)
{
upper->state.generation += interval;
circbuf_overwrite(&upper->timing, &upper->state.generation,
TIMING_BUF_ESIZE);
}
}
static bool sensor_is_updated(FAR struct sensor_upperhalf_s *upper,
FAR struct sensor_user_s *user)
{
long delta = upper->state.generation - user->state.generation;
if (delta <= 0)
{
return false;
}
else if (user->state.interval == UINT32_MAX)
{
return true;
}
else
{
/* Check whether next generation user want in buffer.
* generation next generation(not published yet)
* ____v_____________v
* ////|//////^ |
* ^ middle point
* next generation user want
*/
return delta >= user->state.interval -
(upper->state.min_interval >> 1);
}
}
static void sensor_catch_up(FAR struct sensor_upperhalf_s *upper,
FAR struct sensor_user_s *user)
{
uint32_t generation;
long delta;
circbuf_peek(&upper->timing, &generation, TIMING_BUF_ESIZE);
delta = generation - user->state.generation;
if (delta > 0)
{
user->bufferpos = upper->timing.tail / TIMING_BUF_ESIZE;
if (user->state.interval == UINT32_MAX)
{
user->state.generation = generation - 1;
}
else
{
delta -= upper->state.min_interval >> 1;
user->state.generation += ROUND_DOWN(delta,
user->state.interval);
}
}
}
static ssize_t sensor_do_samples(FAR struct sensor_upperhalf_s *upper,
FAR struct sensor_user_s *user,
FAR char *buffer, size_t len)
{
uint32_t generation;
ssize_t ret = 0;
size_t nums;
size_t pos;
size_t end;
sensor_catch_up(upper, user);
nums = upper->timing.head / TIMING_BUF_ESIZE - user->bufferpos;
if (len < nums * upper->state.esize)
{
nums = len / upper->state.esize;
}
len = nums * upper->state.esize;
/* Take samples continuously */
if (user->state.interval == UINT32_MAX)
{
ret = circbuf_peekat(&upper->buffer,
user->bufferpos * upper->state.esize,
buffer, len);
user->bufferpos += nums;
circbuf_peekat(&upper->timing,
(user->bufferpos - 1) * TIMING_BUF_ESIZE,
&user->state.generation, TIMING_BUF_ESIZE);
return ret;
}
/* Take samples one-bye-one, to determine whether a sample needed:
*
* If user's next generation is on the left side of middle point,
* we should copy this sample for user.
* next_generation(or end)
* ________________v____
* timing buffer: //|//////. |
* ^ middle
* generation
* next sample(or end)
* ________________v____
* data buffer: | |
* ^
* sample
*/
pos = user->bufferpos;
end = upper->timing.head / TIMING_BUF_ESIZE;
circbuf_peekat(&upper->timing, pos * TIMING_BUF_ESIZE,
&generation, TIMING_BUF_ESIZE);
while (pos++ != end)
{
uint32_t next_generation;
long delta;
if (pos * TIMING_BUF_ESIZE == upper->timing.head)
{
next_generation = upper->state.generation +
upper->state.min_interval;
}
else
{
circbuf_peekat(&upper->timing, pos * TIMING_BUF_ESIZE,
&next_generation, TIMING_BUF_ESIZE);
}
delta = next_generation + generation -
((user->state.generation + user->state.interval) << 1);
if (delta >= 0)
{
ret += circbuf_peekat(&upper->buffer,
(pos - 1) * upper->state.esize,
buffer + ret, upper->state.esize);
user->bufferpos = pos;
user->state.generation += user->state.interval;
if (ret >= len)
{
break;
}
}
generation = next_generation;
}
if (pos - 1 == end && sensor_is_updated(upper, user))
{
generation = upper->state.generation - user->state.generation +
(upper->state.min_interval >> 1);
user->state.generation += ROUND_DOWN(generation,
user->state.interval);
}
return ret;
}
static void sensor_pollnotify_one(FAR struct sensor_user_s *user,
pollevent_t eventset,
sensor_role_t role)
{
if (!(user->role & role))
{
return;
}
if (eventset == POLLPRI)
{
user->changed = true;
}
poll_notify(&user->fds, 1, eventset);
}
static void sensor_pollnotify(FAR struct sensor_upperhalf_s *upper,
pollevent_t eventset, sensor_role_t role)
{
FAR struct sensor_user_s *user;
list_for_every_entry(&upper->userlist, user, struct sensor_user_s, node)
{
sensor_pollnotify_one(user, eventset, role);
}
}
static int sensor_open(FAR struct file *filep)
{
FAR struct inode *inode = filep->f_inode;
FAR struct sensor_upperhalf_s *upper = inode->i_private;
FAR struct sensor_lowerhalf_s *lower = upper->lower;
FAR struct sensor_user_s *user;
int ret = 0;
nxrmutex_lock(&upper->lock);
user = kmm_zalloc(sizeof(struct sensor_user_s));
if (user == NULL)
{
ret = -ENOMEM;
goto errout_with_lock;
}
if (lower->ops->open)
{
ret = lower->ops->open(lower, filep);
if (ret < 0)
{
goto errout_with_user;
}
}
if (filep->f_oflags & O_RDOK)
{
if (upper->state.nsubscribers == 0 && lower->ops->activate)
{
ret = lower->ops->activate(lower, filep, true);
if (ret < 0)
{
goto errout_with_open;
}
}
user->role |= SENSOR_ROLE_RD;
upper->state.nsubscribers++;
}
if (filep->f_oflags & O_WROK)
{
user->role |= SENSOR_ROLE_WR;
upper->state.nadvertisers++;
if (filep->f_oflags & SENSOR_PERSIST)
{
lower->persist = true;
}
}
if (upper->state.generation && lower->persist)
{
user->state.generation = upper->state.generation - 1;
user->bufferpos = upper->timing.head / TIMING_BUF_ESIZE - 1;
}
else
{
user->state.generation = upper->state.generation;
user->bufferpos = upper->timing.head / TIMING_BUF_ESIZE;
}
user->state.interval = UINT32_MAX;
user->state.esize = upper->state.esize;
nxsem_init(&user->buffersem, 0, 0);
list_add_tail(&upper->userlist, &user->node);
/* The new user generation, notify to other users */
sensor_pollnotify(upper, POLLPRI, SENSOR_ROLE_WR);
filep->f_priv = user;
goto errout_with_lock;
errout_with_open:
if (lower->ops->close)
{
lower->ops->close(lower, filep);
}
errout_with_user:
kmm_free(user);
errout_with_lock:
nxrmutex_unlock(&upper->lock);
return ret;
}
static int sensor_close(FAR struct file *filep)
{
FAR struct inode *inode = filep->f_inode;
FAR struct sensor_upperhalf_s *upper = inode->i_private;
FAR struct sensor_lowerhalf_s *lower = upper->lower;
FAR struct sensor_user_s *user = filep->f_priv;
int ret = 0;
nxrmutex_lock(&upper->lock);
if (lower->ops->close)
{
ret = lower->ops->close(lower, filep);
if (ret < 0)
{
nxrmutex_unlock(&upper->lock);
return ret;
}
}
if (filep->f_oflags & O_RDOK)
{
upper->state.nsubscribers--;
if (upper->state.nsubscribers == 0 && lower->ops->activate)
{
lower->ops->activate(lower, filep, false);
}
}
if (filep->f_oflags & O_WROK)
{
upper->state.nadvertisers--;
}
list_delete(&user->node);
sensor_update_latency(filep, upper, user, UINT32_MAX);
sensor_update_interval(filep, upper, user, UINT32_MAX);
nxsem_destroy(&user->buffersem);
/* The user is closed, notify to other users */
sensor_pollnotify(upper, POLLPRI, SENSOR_ROLE_WR);
nxrmutex_unlock(&upper->lock);
kmm_free(user);
return ret;
}
static ssize_t sensor_read(FAR struct file *filep, FAR char *buffer,
size_t len)
{
FAR struct inode *inode = filep->f_inode;
FAR struct sensor_upperhalf_s *upper = inode->i_private;
FAR struct sensor_lowerhalf_s *lower = upper->lower;
FAR struct sensor_user_s *user = filep->f_priv;
ssize_t ret;
if (!buffer || !len)
{
return -EINVAL;
}
nxrmutex_lock(&upper->lock);
if (lower->ops->fetch)
{
if (!(filep->f_oflags & O_NONBLOCK))
{
nxrmutex_unlock(&upper->lock);
ret = nxsem_wait_uninterruptible(&user->buffersem);
if (ret < 0)
{
return ret;
}
nxrmutex_lock(&upper->lock);
}
else if (!upper->state.nsubscribers)
{
ret = -EAGAIN;
goto out;
}
ret = lower->ops->fetch(lower, filep, buffer, len);
}
else if (circbuf_is_empty(&upper->buffer))
{
ret = -ENODATA;
}
else if (sensor_is_updated(upper, user))
{
ret = sensor_do_samples(upper, user, buffer, len);
}
else if (lower->persist)
{
/* Persistent device can get latest old data if not updated. */
ret = circbuf_peekat(&upper->buffer,
(user->bufferpos - 1) * upper->state.esize,
buffer, upper->state.esize);
}
else
{
ret = -ENODATA;
}
out:
nxrmutex_unlock(&upper->lock);
return ret;
}
static ssize_t sensor_write(FAR struct file *filep, FAR const char *buffer,
size_t buflen)
{
FAR struct inode *inode = filep->f_inode;
FAR struct sensor_upperhalf_s *upper = inode->i_private;
FAR struct sensor_lowerhalf_s *lower = upper->lower;
return lower->push_event(lower->priv, buffer, buflen);
}
static int sensor_ioctl(FAR struct file *filep, int cmd, unsigned long arg)
{
FAR struct inode *inode = filep->f_inode;
FAR struct sensor_upperhalf_s *upper = inode->i_private;
FAR struct sensor_lowerhalf_s *lower = upper->lower;
FAR struct sensor_user_s *user = filep->f_priv;
uint32_t arg1 = (uint32_t)arg;
int ret = 0;
sninfo("cmd=%x arg=%08lx\n", cmd, arg);
switch (cmd)
{
case SNIOC_GET_STATE:
{
nxrmutex_lock(&upper->lock);
memcpy((FAR void *)(uintptr_t)arg,
&upper->state, sizeof(upper->state));
user->changed = false;
nxrmutex_unlock(&upper->lock);
}
break;
case SNIOC_GET_USTATE:
{
nxrmutex_lock(&upper->lock);
memcpy((FAR void *)(uintptr_t)arg,
&user->state, sizeof(user->state));
nxrmutex_unlock(&upper->lock);
}
break;
case SNIOC_SET_INTERVAL:
{
nxrmutex_lock(&upper->lock);
ret = sensor_update_interval(filep, upper, user,
arg1 ? arg1 : UINT32_MAX);
nxrmutex_unlock(&upper->lock);
}
break;
case SNIOC_BATCH:
{
nxrmutex_lock(&upper->lock);
ret = sensor_update_latency(filep, upper, user, arg1);
nxrmutex_unlock(&upper->lock);
}
break;
case SNIOC_SELFTEST:
{
if (lower->ops->selftest == NULL)
{
ret = -ENOTSUP;
break;
}
ret = lower->ops->selftest(lower, filep, arg);
}
break;
case SNIOC_SET_CALIBVALUE:
{
if (lower->ops->set_calibvalue == NULL)
{
ret = -ENOTSUP;
break;
}
ret = lower->ops->set_calibvalue(lower, filep, arg);
}
break;
case SNIOC_CALIBRATE:
{
if (lower->ops->calibrate == NULL)
{
ret = -ENOTSUP;
break;
}
ret = lower->ops->calibrate(lower, filep, arg);
}
break;
case SNIOC_SET_USERPRIV:
{
nxrmutex_lock(&upper->lock);
upper->state.priv = (uint64_t)arg;
nxrmutex_unlock(&upper->lock);
}
break;
case SNIOC_SET_BUFFER_NUMBER:
{
nxrmutex_lock(&upper->lock);
if (!circbuf_is_init(&upper->buffer))
{
if (arg1 >= lower->nbuffer)
{
lower->nbuffer = arg1;
upper->state.nbuffer = arg1;
}
else
{
ret = -ERANGE;
}
}
else
{
ret = -EBUSY;
}
nxrmutex_unlock(&upper->lock);
}
break;
case SNIOC_UPDATED:
{
nxrmutex_lock(&upper->lock);
*(FAR bool *)(uintptr_t)arg = sensor_is_updated(upper, user);
nxrmutex_unlock(&upper->lock);
}
break;
case SNIOC_GET_INFO:
{
if (lower->ops->get_info == NULL)
{
ret = -ENOTSUP;
break;
}
ret = lower->ops->get_info(lower, filep,
(FAR struct sensor_device_info_s *)(uintptr_t)arg);
}
break;
case SNIOC_GET_EVENTS:
{
nxrmutex_lock(&upper->lock);
*(FAR unsigned int *)(uintptr_t)arg = user->event;
user->event = 0;
nxrmutex_unlock(&upper->lock);
}
case SNIOC_FLUSH:
{
nxrmutex_lock(&upper->lock);
/* If the sensor is not activated, return -EINVAL. */
if (upper->state.nsubscribers == 0)
{
nxrmutex_unlock(&upper->lock);
return -EINVAL;
}
if (lower->ops->flush != NULL)
{
/* Lower half driver will do flush in asynchronous mode,
* flush will be completed until push event happened with
* bytes is zero.
*/
ret = lower->ops->flush(lower, filep);
if (ret >= 0)
{
user->flushing = true;
}
}
else
{
/* If flush is not supported, complete immediately */
user->event |= SENSOR_EVENT_FLUSH_COMPLETE;
sensor_pollnotify_one(user, POLLPRI, user->role);
}
nxrmutex_unlock(&upper->lock);
}
break;
default:
/* Lowerhalf driver process other cmd. */
if (lower->ops->control)
{
ret = lower->ops->control(lower, filep, cmd, arg);
}
else
{
ret = -ENOTTY;
}
break;
}
return ret;
}
static int sensor_poll(FAR struct file *filep,
FAR struct pollfd *fds, bool setup)
{
FAR struct inode *inode = filep->f_inode;
FAR struct sensor_upperhalf_s *upper = inode->i_private;
FAR struct sensor_lowerhalf_s *lower = upper->lower;
FAR struct sensor_user_s *user = filep->f_priv;
pollevent_t eventset = 0;
int semcount;
int ret = 0;
nxrmutex_lock(&upper->lock);
if (setup)
{
/* Don't have enough space to store fds */
if (user->fds)
{
ret = -ENOSPC;
goto errout;
}
user->fds = fds;
fds->priv = filep;
if (lower->ops->fetch)
{
/* Always return POLLIN for fetch data directly(non-block) */
if (filep->f_oflags & O_NONBLOCK)
{
eventset |= POLLIN;
}
else
{
nxsem_get_value(&user->buffersem, &semcount);
if (semcount > 0)
{
eventset |= POLLIN;
}
}
}
else if (sensor_is_updated(upper, user))
{
eventset |= POLLIN;
}
if (user->changed)
{
eventset |= POLLPRI;
}
poll_notify(&fds, 1, eventset);
}
else
{
user->fds = NULL;
fds->priv = NULL;
}
errout:
nxrmutex_unlock(&upper->lock);
return ret;
}
static ssize_t sensor_push_event(FAR void *priv, FAR const void *data,
size_t bytes)
{
FAR struct sensor_upperhalf_s *upper = priv;
FAR struct sensor_lowerhalf_s *lower = upper->lower;
FAR struct sensor_user_s *user;
unsigned long envcount;
int semcount;
int ret;
nxrmutex_lock(&upper->lock);
if (bytes == 0)
{
list_for_every_entry(&upper->userlist, user, struct sensor_user_s,
node)
{
if (user->flushing)
{
user->flushing = false;
user->event |= SENSOR_EVENT_FLUSH_COMPLETE;
sensor_pollnotify_one(user, POLLPRI, user->role);
}
}
nxrmutex_unlock(&upper->lock);
return 0;
}
envcount = bytes / upper->state.esize;
if (bytes != envcount * upper->state.esize)
{
nxrmutex_unlock(&upper->lock);
return -EINVAL;
}
if (!circbuf_is_init(&upper->buffer))
{
/* Initialize sensor buffer when data is first generated */
ret = circbuf_init(&upper->buffer, NULL, lower->nbuffer *
upper->state.esize);
if (ret < 0)
{
nxrmutex_unlock(&upper->lock);
return ret;
}
ret = circbuf_init(&upper->timing, NULL, lower->nbuffer *
TIMING_BUF_ESIZE);
if (ret < 0)
{
circbuf_uninit(&upper->buffer);
nxrmutex_unlock(&upper->lock);
return ret;
}
}
circbuf_overwrite(&upper->buffer, data, bytes);
sensor_generate_timing(upper, envcount);
list_for_every_entry(&upper->userlist, user, struct sensor_user_s, node)
{
if (sensor_is_updated(upper, user))
{
nxsem_get_value(&user->buffersem, &semcount);
if (semcount < 1)
{
nxsem_post(&user->buffersem);
}
sensor_pollnotify_one(user, POLLIN, SENSOR_ROLE_RD);
}
}
nxrmutex_unlock(&upper->lock);
return bytes;
}
static void sensor_notify_event(FAR void *priv)
{
FAR struct sensor_upperhalf_s *upper = priv;
FAR struct sensor_user_s *user;
int semcount;
nxrmutex_lock(&upper->lock);
list_for_every_entry(&upper->userlist, user, struct sensor_user_s, node)
{
nxsem_get_value(&user->buffersem, &semcount);
if (semcount < 1)
{
nxsem_post(&user->buffersem);
}
sensor_pollnotify_one(user, POLLIN, SENSOR_ROLE_RD);
}
nxrmutex_unlock(&upper->lock);
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: sensor_remap_vector_raw16
*
* Description:
* This function remap the sensor data according to the place position on
* board. The value of place is determined base on g_remap_tbl.
*
* Input Parameters:
* in - A pointer to input data need remap.
* out - A pointer to output data.
* place - The place position of sensor on board,
* ex:SENSOR_BODY_COORDINATE_PX
*
****************************************************************************/
void sensor_remap_vector_raw16(FAR const int16_t *in, FAR int16_t *out,
int place)
{
FAR const struct sensor_axis_map_s *remap;
int16_t tmp[3];
DEBUGASSERT(place < (sizeof(g_remap_tbl) / sizeof(g_remap_tbl[0])));
remap = &g_remap_tbl[place];
tmp[0] = in[remap->src_x] * remap->sign_x;
tmp[1] = in[remap->src_y] * remap->sign_y;
tmp[2] = in[remap->src_z] * remap->sign_z;
memcpy(out, tmp, sizeof(tmp));
}
/****************************************************************************
* Name: sensor_register
*
* Description:
* This function binds an instance of a "lower half" Sensor driver with the
* "upper half" Sensor device and registers that device so that can be used
* by application code.
*
* We will register the chararter device by node name format based on the
* type of sensor. Multiple types of the same type are distinguished by
* numbers. eg: accel0, accel1
*
* Input Parameters:
* dev - A pointer to an instance of lower half sensor driver. This
* instance is bound to the sensor driver and must persists as long
* as the driver persists.
* devno - The user specifies which device of this type, from 0. If the
* devno alerady exists, -EEXIST will be returned.
*
* Returned Value:
* OK if the driver was successfully register; A negated errno value is
* returned on any failure.
*
****************************************************************************/
int sensor_register(FAR struct sensor_lowerhalf_s *lower, int devno)
{
char path[PATH_MAX];
DEBUGASSERT(lower != NULL);
snprintf(path, PATH_MAX, DEVNAME_FMT,
g_sensor_meta[lower->type].name,
lower->uncalibrated ? DEVNAME_UNCAL : "",
devno);
return sensor_custom_register(lower, path,
g_sensor_meta[lower->type].esize);
}
/****************************************************************************
* Name: sensor_custom_register
*
* Description:
* This function binds an instance of a "lower half" Sensor driver with the
* "upper half" Sensor device and registers that device so that can be used
* by application code.
*
* You can register the character device type by specific path and esize.
* This API corresponds to the sensor_custom_unregister.
*
* Input Parameters:
* dev - A pointer to an instance of lower half sensor driver. This
* instance is bound to the sensor driver and must persists as long
* as the driver persists.
* path - The user specifies path of device. ex: /dev/uorb/xxx.
* esize - The element size of intermediate circular buffer.
*
* Returned Value:
* OK if the driver was successfully register; A negated errno value is
* returned on any failure.
*
****************************************************************************/
int sensor_custom_register(FAR struct sensor_lowerhalf_s *lower,
FAR const char *path, size_t esize)
{
FAR struct sensor_upperhalf_s *upper;
int ret = -EINVAL;
DEBUGASSERT(lower != NULL);
if (lower->type >= SENSOR_TYPE_COUNT || !esize)
{
snerr("ERROR: type is invalid\n");
return ret;
}
/* Allocate the upper-half data structure */
upper = kmm_zalloc(sizeof(struct sensor_upperhalf_s));
if (!upper)
{
snerr("ERROR: Allocation failed\n");
return -ENOMEM;
}
/* Initialize the upper-half data structure */
list_initialize(&upper->userlist);
upper->state.esize = esize;
upper->state.min_interval = UINT32_MAX;
if (lower->ops->activate)
{
upper->state.nadvertisers = 1;
}
nxrmutex_init(&upper->lock);
/* Bind the lower half data structure member */
lower->priv = upper;
lower->sensor_lock = sensor_lock;
lower->sensor_unlock = sensor_unlock;
if (!lower->ops->fetch)
{
if (!lower->nbuffer)
{
lower->nbuffer = 1;
}
lower->push_event = sensor_push_event;
}
else
{
lower->notify_event = sensor_notify_event;
lower->nbuffer = 0;
}
#ifdef CONFIG_SENSORS_RPMSG
lower = sensor_rpmsg_register(lower, path);
if (lower == NULL)
{
ret = -EIO;
goto drv_err;
}
#endif
upper->state.nbuffer = lower->nbuffer;
upper->lower = lower;
sninfo("Registering %s\n", path);
ret = register_driver(path, &g_sensor_fops, 0666, upper);
if (ret)
{
goto drv_err;
}
return ret;
drv_err:
nxrmutex_destroy(&upper->lock);
kmm_free(upper);
return ret;
}
/****************************************************************************
* Name: sensor_unregister
*
* Description:
* This function unregister character node and release all resource about
* upper half driver.
*
* Input Parameters:
* dev - A pointer to an instance of lower half sensor driver. This
* instance is bound to the sensor driver and must persists as long
* as the driver persists.
* devno - The user specifies which device of this type, from 0.
****************************************************************************/
void sensor_unregister(FAR struct sensor_lowerhalf_s *lower, int devno)
{
char path[PATH_MAX];
snprintf(path, PATH_MAX, DEVNAME_FMT,
g_sensor_meta[lower->type].name,
lower->uncalibrated ? DEVNAME_UNCAL : "",
devno);
sensor_custom_unregister(lower, path);
}
/****************************************************************************
* Name: sensor_custom_unregister
*
* Description:
* This function unregister character node and release all resource about
* upper half driver. This API corresponds to the sensor_custom_register.
*
* Input Parameters:
* dev - A pointer to an instance of lower half sensor driver. This
* instance is bound to the sensor driver and must persists as long
* as the driver persists.
* path - The user specifies path of device, ex: /dev/uorb/xxx
****************************************************************************/
void sensor_custom_unregister(FAR struct sensor_lowerhalf_s *lower,
FAR const char *path)
{
FAR struct sensor_upperhalf_s *upper;
DEBUGASSERT(lower != NULL);
DEBUGASSERT(lower->priv != NULL);
upper = lower->priv;
sninfo("UnRegistering %s\n", path);
unregister_driver(path);
#ifdef CONFIG_SENSORS_RPMSG
sensor_rpmsg_unregister(lower);
#endif
nxrmutex_destroy(&upper->lock);
if (circbuf_is_init(&upper->buffer))
{
circbuf_uninit(&upper->buffer);
circbuf_uninit(&upper->timing);
}
kmm_free(upper);
}