2013-11-28 15:04:46 +01:00
|
|
|
/************************************************************************************
|
|
|
|
* drivers/mtd/sst25xx.c
|
|
|
|
* Driver for SPI-based SST25VF parts 64MBit and larger.
|
|
|
|
*
|
|
|
|
* For smaller SST25 parts, use the sst25.c driver instead as support
|
|
|
|
* a different program mechanism (byte or word writing vs page writing
|
|
|
|
* supported in this driver).
|
|
|
|
*
|
|
|
|
* Copyright (C) 2009-2011, 2013 Gregory Nutt. All rights reserved.
|
|
|
|
* Author: Ken Pettit <pettitkd@gmail.com>
|
|
|
|
*
|
|
|
|
* Copied from / based on m25px.c and sst25.c drivers written by
|
|
|
|
* Gregory Nutt <gnutt@nuttx.org>
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
|
|
* used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Included Files
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
#include <nuttx/config.h>
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <errno.h>
|
|
|
|
#include <debug.h>
|
|
|
|
|
|
|
|
#include <nuttx/kmalloc.h>
|
|
|
|
#include <nuttx/fs/ioctl.h>
|
|
|
|
#include <nuttx/spi/spi.h>
|
|
|
|
#include <nuttx/mtd/mtd.h>
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Pre-processor Definitions
|
|
|
|
************************************************************************************/
|
|
|
|
/* Configuration ********************************************************************/
|
|
|
|
/* Per the data sheet, SST25 parts can be driven with either SPI mode 0 (CPOL=0 and
|
|
|
|
* CPHA=0) or mode 3 (CPOL=1 and CPHA=1). So you may need to specify
|
|
|
|
* CONFIG_SST25XX_SPIMODE to select the best mode for your device. If
|
|
|
|
* CONFIG_SST25XX_SPIMODE is not defined, mode 0 will be used.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef CONFIG_SST25XX_SPIMODE
|
|
|
|
# define CONFIG_SST25XX_SPIMODE SPIDEV_MODE0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* SPI Frequency. May be up to 25MHz. */
|
|
|
|
|
|
|
|
#ifndef CONFIG_SST25XX_SPIFREQUENCY
|
|
|
|
# define CONFIG_SST25XX_SPIFREQUENCY 20000000
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Various manufacturers may have produced the parts. 0xBF is the manufacturer ID
|
|
|
|
* for the SST serial FLASH.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef CONFIG_SST25XX_MANUFACTURER
|
|
|
|
# define CONFIG_SST25XX_MANUFACTURER 0xBF
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef CONFIG_SST25XX_MEMORY_TYPE
|
|
|
|
# define CONFIG_SST25XX_MEMORY_TYPE 0x25
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* SST25 Registers *******************************************************************/
|
|
|
|
/* Indentification register values */
|
|
|
|
|
|
|
|
#define SST25_MANUFACTURER CONFIG_SST25XX_MANUFACTURER
|
|
|
|
#define SST25_MEMORY_TYPE CONFIG_SST25XX_MEMORY_TYPE
|
|
|
|
|
|
|
|
#define SST25_SST25064_CAPACITY 0x4b /* 64 M-bit */
|
|
|
|
|
|
|
|
/* SST25064 capacity is 8,388,608 bytes:
|
|
|
|
* (2,0548 sectors) * (4,096 bytes per sector)
|
|
|
|
* (32,768 pages) * (256 bytes per page)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define SST25_SST25064_SECTOR_SHIFT 12 /* Sector size 1 << 15 = 65,536 */
|
|
|
|
#define SST25_SST25064_NSECTORS 2048
|
|
|
|
#define SST25_SST25064_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
|
|
|
|
#define SST25_SST25064_NPAGES 32768
|
|
|
|
|
|
|
|
/* Instructions */
|
|
|
|
/* Command Value N Description Addr Dummy Data */
|
|
|
|
#define SST25_WREN 0x06 /* 1 Write Enable 0 0 0 */
|
|
|
|
#define SST25_WRDI 0x04 /* 1 Write Disable 0 0 0 */
|
|
|
|
#define SST25_RDID 0x9f /* 1 Read Identification 0 0 1-3 */
|
|
|
|
#define SST25_RDSR 0x05 /* 1 Read Status Register 0 0 >=1 */
|
|
|
|
#define SST25_EWSR 0x50 /* 1 Write enable status 0 0 0 */
|
|
|
|
#define SST25_WRSR 0x01 /* 1 Write Status Register 0 0 1 */
|
|
|
|
#define SST25_READ 0x03 /* 1 Read Data Bytes 3 0 >=1 */
|
|
|
|
#define SST25_FAST_READ 0x0b /* 1 Higher speed read 3 1 >=1 */
|
|
|
|
#define SST25_PP 0x02 /* 1 Page Program 3 0 1-256 */
|
|
|
|
#define SST25_SE 0x20 /* 1 Sector Erase 3 0 0 */
|
|
|
|
#define SST25_BE32 0x52 /* 2 32K Block Erase 3 0 0 */
|
|
|
|
#define SST25_BE64 0xD8 /* 2 64K Block Erase 3 0 0 */
|
|
|
|
#define SST25_BE 0xc7 /* 1 Bulk Erase 0 0 0 */
|
|
|
|
#define SST25_RES 0xab /* 1 Read Electronic Signature 0 3 >=1 */
|
|
|
|
|
|
|
|
/* NOTE 1: All parts.
|
|
|
|
* NOTE 2: In SST25064 terminology, 0x52 and 0xd8 are block erase and 0x20
|
|
|
|
* is a sector erase. Block erase provides a faster way to erase
|
|
|
|
* multiple 4K sectors at once.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Status register bit definitions */
|
|
|
|
|
|
|
|
#define SST25_SR_WIP (1 << 0) /* Bit 0: Write in progress bit */
|
|
|
|
#define SST25_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */
|
|
|
|
#define SST25_SR_BP_SHIFT (2) /* Bits 2-5: Block protect bits */
|
|
|
|
#define SST25_SR_BP_MASK (15 << SST25_SR_BP_SHIFT)
|
|
|
|
# define SST25_SR_BP_NONE (0 << SST25_SR_BP_SHIFT) /* Unprotected */
|
|
|
|
# define SST25_SR_BP_UPPER128th (1 << SST25_SR_BP_SHIFT) /* Upper 128th */
|
|
|
|
# define SST25_SR_BP_UPPER64th (2 << SST25_SR_BP_SHIFT) /* Upper 64th */
|
|
|
|
# define SST25_SR_BP_UPPER32nd (3 << SST25_SR_BP_SHIFT) /* Upper 32nd */
|
|
|
|
# define SST25_SR_BP_UPPER16th (4 << SST25_SR_BP_SHIFT) /* Upper 16th */
|
|
|
|
# define SST25_SR_BP_UPPER8th (5 << SST25_SR_BP_SHIFT) /* Upper 8th */
|
|
|
|
# define SST25_SR_BP_UPPERQTR (6 << SST25_SR_BP_SHIFT) /* Upper quarter */
|
|
|
|
# define SST25_SR_BP_UPPERHALF (7 << SST25_SR_BP_SHIFT) /* Upper half */
|
|
|
|
# define SST25_SR_BP_ALL (8 << SST25_SR_BP_SHIFT) /* All sectors */
|
|
|
|
#define SST_SR_SEC (1 << 6) /* Security ID status */
|
|
|
|
#define SST25_SR_SRWD (1 << 7) /* Bit 7: Status register write protect */
|
|
|
|
|
|
|
|
#define SST25_DUMMY 0xa5
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Private Types
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
/* This type represents the state of the MTD device. The struct mtd_dev_s
|
|
|
|
* must appear at the beginning of the definition so that you can freely
|
|
|
|
* cast between pointers to struct mtd_dev_s and struct sst25xx_dev_s.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct sst25xx_dev_s
|
|
|
|
{
|
|
|
|
struct mtd_dev_s mtd; /* MTD interface */
|
|
|
|
FAR struct spi_dev_s *dev; /* Saved SPI interface instance */
|
|
|
|
uint8_t sectorshift; /* 16 or 18 */
|
|
|
|
uint8_t pageshift; /* 8 */
|
|
|
|
uint16_t nsectors; /* 128 or 64 */
|
|
|
|
uint32_t npages; /* 32,768 or 65,536 */
|
|
|
|
uint8_t lastwaswrite; /* Indicates if last operation was write */
|
|
|
|
};
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Private Function Prototypes
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
/* Helpers */
|
|
|
|
|
|
|
|
static void sst25xx_lock(FAR struct spi_dev_s *dev);
|
|
|
|
static inline void sst25xx_unlock(FAR struct spi_dev_s *dev);
|
|
|
|
static inline int sst25xx_readid(struct sst25xx_dev_s *priv);
|
|
|
|
static void sst25xx_waitwritecomplete(struct sst25xx_dev_s *priv);
|
|
|
|
static void sst25xx_writeenable(struct sst25xx_dev_s *priv);
|
|
|
|
static inline void sst25xx_sectorerase(struct sst25xx_dev_s *priv, off_t offset, uint8_t type);
|
|
|
|
static inline int sst25xx_bulkerase(struct sst25xx_dev_s *priv);
|
|
|
|
static inline void sst25xx_pagewrite(struct sst25xx_dev_s *priv, FAR const uint8_t *buffer,
|
|
|
|
off_t offset);
|
|
|
|
|
|
|
|
/* MTD driver methods */
|
|
|
|
|
|
|
|
static int sst25xx_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks);
|
|
|
|
static ssize_t sst25xx_bread(FAR struct mtd_dev_s *dev, off_t startblock,
|
|
|
|
size_t nblocks, FAR uint8_t *buf);
|
|
|
|
static ssize_t sst25xx_bwrite(FAR struct mtd_dev_s *dev, off_t startblock,
|
|
|
|
size_t nblocks, FAR const uint8_t *buf);
|
|
|
|
static ssize_t sst25xx_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
|
|
|
|
FAR uint8_t *buffer);
|
|
|
|
#ifdef CONFIG_MTD_BYTE_WRITE
|
|
|
|
static ssize_t sst25xx_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
|
|
|
|
FAR const uint8_t *buffer);
|
|
|
|
#endif
|
|
|
|
static int sst25xx_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg);
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Private Data
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Private Functions
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_lock
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static void sst25xx_lock(FAR struct spi_dev_s *dev)
|
|
|
|
{
|
|
|
|
/* On SPI busses where there are multiple devices, it will be necessary to
|
|
|
|
* lock SPI to have exclusive access to the busses for a sequence of
|
|
|
|
* transfers. The bus should be locked before the chip is selected.
|
|
|
|
*
|
|
|
|
* This is a blocking call and will not return until we have exclusiv access to
|
|
|
|
* the SPI buss. We will retain that exclusive access until the bus is unlocked.
|
|
|
|
*/
|
|
|
|
|
|
|
|
(void)SPI_LOCK(dev, true);
|
|
|
|
|
|
|
|
/* After locking the SPI bus, the we also need call the setfrequency, setbits, and
|
|
|
|
* setmode methods to make sure that the SPI is properly configured for the device.
|
|
|
|
* If the SPI buss is being shared, then it may have been left in an incompatible
|
|
|
|
* state.
|
|
|
|
*/
|
|
|
|
|
|
|
|
SPI_SETMODE(dev, CONFIG_SST25XX_SPIMODE);
|
|
|
|
SPI_SETBITS(dev, 8);
|
|
|
|
(void)SPI_SETFREQUENCY(dev, CONFIG_SST25XX_SPIFREQUENCY);
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_unlock
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static inline void sst25xx_unlock(FAR struct spi_dev_s *dev)
|
|
|
|
{
|
|
|
|
(void)SPI_LOCK(dev, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_readid
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static inline int sst25xx_readid(struct sst25xx_dev_s *priv)
|
|
|
|
{
|
|
|
|
uint16_t manufacturer;
|
|
|
|
uint16_t memory;
|
|
|
|
uint16_t capacity;
|
|
|
|
|
|
|
|
fvdbg("priv: %p\n", priv);
|
|
|
|
|
|
|
|
/* Lock the SPI bus, configure the bus, and select this FLASH part. */
|
|
|
|
|
|
|
|
sst25xx_lock(priv->dev);
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true);
|
|
|
|
|
|
|
|
/* Send the "Read ID (RDID)" command and read the first three ID bytes */
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, SST25_RDID);
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true);
|
|
|
|
manufacturer = SPI_SEND(priv->dev, SST25_DUMMY);
|
|
|
|
memory = SPI_SEND(priv->dev, SST25_DUMMY);
|
|
|
|
capacity = SPI_SEND(priv->dev, SST25_DUMMY);
|
|
|
|
|
|
|
|
/* Deselect the FLASH and unlock the bus */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false);
|
|
|
|
sst25xx_unlock(priv->dev);
|
|
|
|
|
|
|
|
fvdbg("manufacturer: %02x memory: %02x capacity: %02x\n",
|
|
|
|
manufacturer, memory, capacity);
|
|
|
|
|
|
|
|
/* Check for a valid manufacturer and memory type */
|
|
|
|
|
|
|
|
if (manufacturer == SST25_MANUFACTURER && memory == SST25_MEMORY_TYPE)
|
|
|
|
{
|
|
|
|
/* Okay.. is it a FLASH capacity that we understand? */
|
|
|
|
|
|
|
|
if (capacity == SST25_SST25064_CAPACITY)
|
|
|
|
{
|
|
|
|
/* Save the FLASH geometry */
|
|
|
|
|
|
|
|
priv->sectorshift = SST25_SST25064_SECTOR_SHIFT;
|
|
|
|
priv->nsectors = SST25_SST25064_NSECTORS;
|
|
|
|
priv->pageshift = SST25_SST25064_PAGE_SHIFT;
|
|
|
|
priv->npages = SST25_SST25064_NPAGES;
|
|
|
|
return OK;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_waitwritecomplete
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static void sst25xx_waitwritecomplete(struct sst25xx_dev_s *priv)
|
|
|
|
{
|
|
|
|
uint8_t status;
|
|
|
|
|
|
|
|
/* No need to check if no write / erase was done */
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
if (!priv->lastwaswrite)
|
|
|
|
return;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Are we the only device on the bus? */
|
|
|
|
|
|
|
|
#ifdef CONFIG_SPI_OWNBUS
|
|
|
|
|
|
|
|
/* Select this FLASH part */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true);
|
|
|
|
|
|
|
|
/* Send "Read Status Register (RDSR)" command */
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, SST25_RDSR);
|
|
|
|
|
|
|
|
/* Loop as long as the memory is busy with a write cycle */
|
|
|
|
|
|
|
|
do
|
|
|
|
{
|
|
|
|
/* Send a dummy byte to generate the clock needed to shift out the status */
|
|
|
|
|
|
|
|
status = SPI_SEND(priv->dev, SST25_DUMMY);
|
|
|
|
}
|
|
|
|
while ((status & SST25_SR_WIP) != 0);
|
|
|
|
|
|
|
|
/* Deselect the FLASH */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
/* Loop as long as the memory is busy with a write cycle */
|
|
|
|
|
|
|
|
do
|
|
|
|
{
|
|
|
|
/* Select this FLASH part */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true);
|
|
|
|
|
|
|
|
/* Send "Read Status Register (RDSR)" command */
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, SST25_RDSR);
|
|
|
|
|
|
|
|
/* Send a dummy byte to generate the clock needed to shift out the status */
|
|
|
|
|
|
|
|
status = SPI_SEND(priv->dev, SST25_DUMMY);
|
|
|
|
|
|
|
|
/* Deselect the FLASH */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false);
|
|
|
|
|
|
|
|
/* Given that writing could take up to few tens of milliseconds, and erasing
|
|
|
|
* could take more. The following short delay in the "busy" case will allow
|
|
|
|
* other peripherals to access the SPI bus.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if ((status & SST25_SR_WIP) != 0)
|
|
|
|
{
|
|
|
|
sst25xx_unlock(priv->dev);
|
|
|
|
usleep(1000);
|
|
|
|
sst25xx_lock(priv->dev);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while ((status & SST25_SR_WIP) != 0);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
priv->lastwaswrite = false;
|
|
|
|
|
|
|
|
fvdbg("Complete\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_writeenable
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static void sst25xx_writeenable(struct sst25xx_dev_s *priv)
|
|
|
|
{
|
|
|
|
/* Select this FLASH part */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true);
|
|
|
|
|
|
|
|
/* Send "Write Enable (WREN)" command */
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, SST25_WREN);
|
|
|
|
|
|
|
|
/* Deselect the FLASH */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false);
|
|
|
|
fvdbg("Enabled\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_unprotect
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static void sst25xx_unprotect(struct sst25xx_dev_s *priv)
|
|
|
|
{
|
|
|
|
/* Send "Write enable status (EWSR)" */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true);
|
|
|
|
(void)SPI_SEND(priv->dev, SST25_EWSR);
|
|
|
|
|
|
|
|
/* Deselect the FLASH */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false);
|
|
|
|
|
|
|
|
/* Send "Write status (WRSR)" */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true);
|
|
|
|
SPI_SEND(priv->dev, SST25_WRSR);
|
|
|
|
|
|
|
|
/* Followed by the new status value */
|
|
|
|
|
|
|
|
SPI_SEND(priv->dev, 0);
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_sectorerase
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static void sst25xx_sectorerase(struct sst25xx_dev_s *priv, off_t sector, uint8_t type)
|
|
|
|
{
|
|
|
|
off_t offset;
|
|
|
|
|
|
|
|
offset = sector << priv->sectorshift;
|
|
|
|
|
|
|
|
fvdbg("sector: %08lx\n", (long)sector);
|
|
|
|
|
|
|
|
/* Wait for any preceding write to complete. We could simplify things by
|
|
|
|
* perform this wait at the end of each write operation (rather than at
|
|
|
|
* the beginning of ALL operations), but have the wait first will slightly
|
|
|
|
* improve performance.
|
|
|
|
*/
|
|
|
|
|
|
|
|
sst25xx_waitwritecomplete(priv);
|
|
|
|
|
|
|
|
/* Send write enable instruction */
|
|
|
|
|
|
|
|
sst25xx_writeenable(priv);
|
|
|
|
|
|
|
|
/* Select this FLASH part */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true);
|
|
|
|
|
|
|
|
/* Send the "Sector Erase (SE)" or Sub-Sector Erase (SSE) instruction
|
|
|
|
* that was passed in as the erase type.
|
|
|
|
*/
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, type);
|
|
|
|
|
|
|
|
/* Send the sector offset high byte first. For all of the supported
|
|
|
|
* parts, the sector number is completely contained in the first byte
|
|
|
|
* and the values used in the following two bytes don't really matter.
|
|
|
|
*/
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, (offset >> 16) & 0xff);
|
|
|
|
(void)SPI_SEND(priv->dev, (offset >> 8) & 0xff);
|
|
|
|
(void)SPI_SEND(priv->dev, offset & 0xff);
|
|
|
|
priv->lastwaswrite = true;
|
|
|
|
|
|
|
|
/* Deselect the FLASH */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false);
|
|
|
|
fvdbg("Erased\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_bulkerase
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static inline int sst25xx_bulkerase(struct sst25xx_dev_s *priv)
|
|
|
|
{
|
|
|
|
fvdbg("priv: %p\n", priv);
|
|
|
|
|
|
|
|
/* Wait for any preceding write to complete. We could simplify things by
|
|
|
|
* perform this wait at the end of each write operation (rather than at
|
|
|
|
* the beginning of ALL operations), but have the wait first will slightly
|
|
|
|
* improve performance.
|
|
|
|
*/
|
|
|
|
|
|
|
|
sst25xx_waitwritecomplete(priv);
|
|
|
|
|
|
|
|
/* Send write enable instruction */
|
|
|
|
|
|
|
|
sst25xx_writeenable(priv);
|
|
|
|
|
|
|
|
/* Select this FLASH part */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true);
|
|
|
|
|
|
|
|
/* Send the "Bulk Erase (BE)" instruction */
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, SST25_BE);
|
|
|
|
|
|
|
|
/* Deselect the FLASH */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false);
|
|
|
|
sst25xx_waitwritecomplete(priv);
|
|
|
|
|
|
|
|
fvdbg("Return: OK\n");
|
|
|
|
return OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_pagewrite
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static inline void sst25xx_pagewrite(struct sst25xx_dev_s *priv, FAR const uint8_t *buffer,
|
|
|
|
off_t page)
|
|
|
|
{
|
|
|
|
off_t offset = page << priv->pageshift;
|
|
|
|
|
|
|
|
fvdbg("page: %08lx offset: %08lx\n", (long)page, (long)offset);
|
|
|
|
|
|
|
|
/* Wait for any preceding write to complete. We could simplify things by
|
|
|
|
* perform this wait at the end of each write operation (rather than at
|
|
|
|
* the beginning of ALL operations), but have the wait first will slightly
|
|
|
|
* improve performance.
|
|
|
|
*/
|
|
|
|
|
|
|
|
sst25xx_waitwritecomplete(priv);
|
|
|
|
|
|
|
|
/* Enable the write access to the FLASH */
|
|
|
|
|
|
|
|
sst25xx_writeenable(priv);
|
|
|
|
|
|
|
|
/* Select this FLASH part */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true);
|
|
|
|
|
|
|
|
/* Send "Page Program (PP)" command */
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, SST25_PP);
|
|
|
|
|
|
|
|
/* Send the page offset high byte first. */
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, (offset >> 16) & 0xff);
|
|
|
|
(void)SPI_SEND(priv->dev, (offset >> 8) & 0xff);
|
|
|
|
(void)SPI_SEND(priv->dev, offset & 0xff);
|
|
|
|
|
|
|
|
/* Then write the specified number of bytes */
|
|
|
|
|
|
|
|
SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift);
|
|
|
|
priv->lastwaswrite = true;
|
|
|
|
|
|
|
|
/* Deselect the FLASH: Chip Select high */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false);
|
|
|
|
fvdbg("Written\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_bytewrite
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
#ifdef CONFIG_MTD_BYTE_WRITE
|
|
|
|
static inline void sst25xx_bytewrite(struct sst25xx_dev_s *priv, FAR const uint8_t *buffer,
|
|
|
|
off_t offset, uint16_t count)
|
|
|
|
{
|
|
|
|
fvdbg("offset: %08lx count:%d\n", (long)offset, count);
|
|
|
|
|
|
|
|
/* Wait for any preceding write to complete. We could simplify things by
|
|
|
|
* perform this wait at the end of each write operation (rather than at
|
|
|
|
* the beginning of ALL operations), but have the wait first will slightly
|
|
|
|
* improve performance.
|
|
|
|
*/
|
|
|
|
|
|
|
|
sst25xx_waitwritecomplete(priv);
|
|
|
|
|
|
|
|
/* Enable the write access to the FLASH */
|
|
|
|
|
|
|
|
sst25xx_writeenable(priv);
|
|
|
|
|
|
|
|
/* Select this FLASH part */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true);
|
|
|
|
|
|
|
|
/* Send "Page Program (PP)" command */
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, SST25_PP);
|
|
|
|
|
|
|
|
/* Send the page offset high byte first. */
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, (offset >> 16) & 0xff);
|
|
|
|
(void)SPI_SEND(priv->dev, (offset >> 8) & 0xff);
|
|
|
|
(void)SPI_SEND(priv->dev, offset & 0xff);
|
|
|
|
|
|
|
|
/* Then write the specified number of bytes */
|
|
|
|
|
|
|
|
SPI_SNDBLOCK(priv->dev, buffer, count);
|
|
|
|
priv->lastwaswrite = true;
|
|
|
|
|
|
|
|
/* Deselect the FLASH: Chip Select high */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false);
|
|
|
|
fvdbg("Written\n");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_erase
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static int sst25xx_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks)
|
|
|
|
{
|
|
|
|
FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev;
|
|
|
|
size_t blocksleft = nblocks;
|
|
|
|
|
|
|
|
fvdbg("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
|
|
|
|
|
|
|
|
/* Lock access to the SPI bus until we complete the erase */
|
|
|
|
|
|
|
|
sst25xx_lock(priv->dev);
|
|
|
|
while (blocksleft > 0)
|
|
|
|
{
|
|
|
|
size_t sectorboundry;
|
|
|
|
size_t blkper;
|
|
|
|
|
|
|
|
/* We will erase in either 4K sectors or 32K or 64K blocks depending
|
|
|
|
* on the largest unit we can use given the startblock and nblocks.
|
|
|
|
* This will reduce erase time (in the event we have partitions
|
|
|
|
* enabled and are doing a bulk erase which is translated into
|
|
|
|
* a block erase operation).
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Test for 64K alignment */
|
|
|
|
|
|
|
|
blkper = 64 / 4;
|
|
|
|
sectorboundry = (startblock + blkper - 1) / blkper;
|
|
|
|
sectorboundry *= blkper;
|
|
|
|
|
|
|
|
/* If we are on a sector boundry and have at least a full sector
|
|
|
|
* of blocks left to erase, then we can do a full sector erase.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (startblock == sectorboundry && blocksleft >= blkper)
|
|
|
|
{
|
|
|
|
/* Do a 64k block erase */
|
|
|
|
|
|
|
|
sst25xx_sectorerase(priv, startblock, SST25_BE64);
|
|
|
|
startblock += blkper;
|
|
|
|
blocksleft -= blkper;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Test for 32K block alignment */
|
|
|
|
|
|
|
|
blkper = 32 / 4;
|
|
|
|
sectorboundry = (startblock + blkper - 1) / blkper;
|
|
|
|
sectorboundry *= blkper;
|
|
|
|
|
|
|
|
if (startblock == sectorboundry && blocksleft >= blkper)
|
|
|
|
{
|
|
|
|
/* Do a 32k block erase */
|
|
|
|
|
|
|
|
sst25xx_sectorerase(priv, startblock, SST25_BE32);
|
|
|
|
startblock += blkper;
|
|
|
|
blocksleft -= blkper;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Just do a sector erase */
|
|
|
|
|
|
|
|
sst25xx_sectorerase(priv, startblock, SST25_SE);
|
|
|
|
startblock++;
|
|
|
|
blocksleft--;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
sst25xx_unlock(priv->dev);
|
|
|
|
return (int)nblocks;
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_bread
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static ssize_t sst25xx_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks,
|
|
|
|
FAR uint8_t *buffer)
|
|
|
|
{
|
|
|
|
FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev;
|
|
|
|
ssize_t nbytes;
|
|
|
|
|
|
|
|
fvdbg("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
|
|
|
|
|
|
|
|
/* On this device, we can handle the block read just like the byte-oriented read */
|
|
|
|
|
|
|
|
nbytes = sst25xx_read(dev, startblock << priv->pageshift, nblocks << priv->pageshift, buffer);
|
|
|
|
if (nbytes > 0)
|
|
|
|
{
|
|
|
|
return nbytes >> priv->pageshift;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (int)nbytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_bwrite
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static ssize_t sst25xx_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks,
|
|
|
|
FAR const uint8_t *buffer)
|
|
|
|
{
|
|
|
|
FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev;
|
|
|
|
size_t blocksleft = nblocks;
|
|
|
|
size_t pagesize = 1 << priv->pageshift;
|
|
|
|
|
|
|
|
fvdbg("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
|
|
|
|
|
|
|
|
/* Lock the SPI bus and write each page to FLASH */
|
|
|
|
|
|
|
|
sst25xx_lock(priv->dev);
|
|
|
|
while (blocksleft-- > 0)
|
|
|
|
{
|
|
|
|
sst25xx_pagewrite(priv, buffer, startblock);
|
|
|
|
buffer += pagesize;
|
|
|
|
startblock++;
|
|
|
|
}
|
|
|
|
|
|
|
|
sst25xx_unlock(priv->dev);
|
|
|
|
return nblocks;
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_read
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static ssize_t sst25xx_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
|
|
|
|
FAR uint8_t *buffer)
|
|
|
|
{
|
|
|
|
FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev;
|
|
|
|
|
|
|
|
fvdbg("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
|
|
|
|
|
|
|
|
/* Wait for any preceding write to complete. We could simplify things by
|
|
|
|
* perform this wait at the end of each write operation (rather than at
|
|
|
|
* the beginning of ALL operations), but have the wait first will slightly
|
|
|
|
* improve performance.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (priv->lastwaswrite)
|
|
|
|
{
|
|
|
|
sst25xx_waitwritecomplete(priv);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Lock the SPI bus and select this FLASH part */
|
|
|
|
|
|
|
|
sst25xx_lock(priv->dev);
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true);
|
|
|
|
|
|
|
|
/* Send "Read from Memory " instruction */
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, SST25_READ);
|
|
|
|
|
|
|
|
/* Send the page offset high byte first. */
|
|
|
|
|
|
|
|
(void)SPI_SEND(priv->dev, (offset >> 16) & 0xff);
|
|
|
|
(void)SPI_SEND(priv->dev, (offset >> 8) & 0xff);
|
|
|
|
(void)SPI_SEND(priv->dev, offset & 0xff);
|
|
|
|
|
|
|
|
/* Then read all of the requested bytes */
|
|
|
|
|
|
|
|
SPI_RECVBLOCK(priv->dev, buffer, nbytes);
|
|
|
|
|
|
|
|
/* Deselect the FLASH and unlock the SPI bus */
|
|
|
|
|
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false);
|
|
|
|
sst25xx_unlock(priv->dev);
|
|
|
|
fvdbg("return nbytes: %d\n", (int)nbytes);
|
|
|
|
return nbytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_write
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
#ifdef CONFIG_MTD_BYTE_WRITE
|
|
|
|
static ssize_t sst25xx_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
|
|
|
|
FAR const uint8_t *buffer)
|
|
|
|
{
|
|
|
|
FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev;
|
|
|
|
int startpage;
|
|
|
|
int endpage;
|
|
|
|
int count;
|
|
|
|
int index;
|
|
|
|
int pagesize;
|
|
|
|
int bytestowrite;
|
|
|
|
|
|
|
|
fvdbg("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
|
|
|
|
|
|
|
|
/* We must test if the offset + count crosses one or more pages
|
|
|
|
* and perform individual writes. The devices can only write in
|
|
|
|
* page increments.
|
|
|
|
*/
|
|
|
|
|
|
|
|
startpage = offset / (1 << priv->pageshift);
|
|
|
|
endpage = (offset + nbytes) / (1 << priv->pageshift);
|
|
|
|
|
|
|
|
if (startpage == endpage)
|
|
|
|
{
|
|
|
|
/* All bytes within one programmable page. Just do the write. */
|
|
|
|
|
|
|
|
sst25xx_bytewrite(priv, buffer, offset, nbytes);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Write the 1st partial-page */
|
|
|
|
|
|
|
|
count = nbytes;
|
|
|
|
pagesize = (1 << priv->pageshift);
|
|
|
|
bytestowrite = pagesize - (offset & (pagesize-1));
|
|
|
|
sst25xx_bytewrite(priv, buffer, offset, bytestowrite);
|
|
|
|
|
|
|
|
/* Update offset and count */
|
|
|
|
|
|
|
|
offset += bytestowrite;
|
|
|
|
count -= bytestowrite;
|
|
|
|
index = bytestowrite;
|
|
|
|
|
|
|
|
/* Write full pages */
|
|
|
|
|
|
|
|
while (count >= pagesize)
|
|
|
|
{
|
|
|
|
sst25xx_bytewrite(priv, &buffer[index], offset, pagesize);
|
|
|
|
|
|
|
|
/* Update offset and count */
|
|
|
|
|
|
|
|
offset += pagesize;
|
|
|
|
count -= pagesize;
|
|
|
|
index += pagesize;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now write any partial page at the end */
|
|
|
|
|
|
|
|
if (count > 0)
|
|
|
|
{
|
|
|
|
sst25xx_bytewrite(priv, &buffer[index], offset, count);
|
|
|
|
}
|
|
|
|
|
|
|
|
priv->lastwaswrite = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return nbytes;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_MTD_BYTE_WRITE */
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_ioctl
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
static int sst25xx_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg)
|
|
|
|
{
|
|
|
|
FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev;
|
|
|
|
int ret = -EINVAL; /* Assume good command with bad parameters */
|
|
|
|
|
|
|
|
fvdbg("cmd: %d \n", cmd);
|
|
|
|
|
|
|
|
switch (cmd)
|
|
|
|
{
|
|
|
|
case MTDIOC_GEOMETRY:
|
|
|
|
{
|
|
|
|
FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg);
|
|
|
|
if (geo)
|
|
|
|
{
|
|
|
|
/* Populate the geometry structure with information need to know
|
|
|
|
* the capacity and how to access the device.
|
|
|
|
*
|
|
|
|
* NOTE: that the device is treated as though it where just an array
|
|
|
|
* of fixed size blocks. That is most likely not true, but the client
|
|
|
|
* will expect the device logic to do whatever is necessary to make it
|
|
|
|
* appear so.
|
|
|
|
*/
|
|
|
|
|
|
|
|
geo->blocksize = (1 << priv->pageshift);
|
|
|
|
geo->erasesize = (1 << priv->sectorshift);
|
|
|
|
geo->neraseblocks = priv->nsectors;
|
|
|
|
|
|
|
|
ret = OK;
|
|
|
|
|
|
|
|
fvdbg("blocksize: %d erasesize: %d neraseblocks: %d\n",
|
|
|
|
geo->blocksize, geo->erasesize, geo->neraseblocks);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case MTDIOC_BULKERASE:
|
|
|
|
{
|
|
|
|
/* Erase the entire device */
|
|
|
|
|
|
|
|
sst25xx_lock(priv->dev);
|
|
|
|
ret = sst25xx_bulkerase(priv);
|
|
|
|
sst25xx_unlock(priv->dev);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case MTDIOC_XIPBASE:
|
|
|
|
default:
|
|
|
|
ret = -ENOTTY; /* Bad command */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
fvdbg("return %d\n", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Public Functions
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
* Name: sst25xx_initialize
|
|
|
|
*
|
|
|
|
* Description:
|
|
|
|
* Create an initialize MTD device instance. MTD devices are not registered
|
|
|
|
* in the file system, but are created as instances that can be bound to
|
|
|
|
* other functions (such as a block or character driver front end).
|
|
|
|
*
|
|
|
|
************************************************************************************/
|
|
|
|
|
|
|
|
FAR struct mtd_dev_s *sst25xx_initialize(FAR struct spi_dev_s *dev)
|
|
|
|
{
|
|
|
|
FAR struct sst25xx_dev_s *priv;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
fvdbg("dev: %p\n", dev);
|
|
|
|
|
|
|
|
/* Allocate a state structure (we allocate the structure instead of using
|
|
|
|
* a fixed, static allocation so that we can handle multiple FLASH devices.
|
|
|
|
* The current implementation would handle only one FLASH part per SPI
|
|
|
|
* device (only because of the SPIDEV_FLASH definition) and so would have
|
|
|
|
* to be extended to handle multiple FLASH parts on the same SPI bus.
|
|
|
|
*/
|
|
|
|
|
|
|
|
priv = (FAR struct sst25xx_dev_s *)kzalloc(sizeof(struct sst25xx_dev_s));
|
|
|
|
if (priv)
|
|
|
|
{
|
|
|
|
/* Initialize the allocated structure. (unsupported methods were
|
|
|
|
* nullified by kzalloc).
|
|
|
|
*/
|
|
|
|
|
|
|
|
priv->mtd.erase = sst25xx_erase;
|
|
|
|
priv->mtd.bread = sst25xx_bread;
|
|
|
|
priv->mtd.bwrite = sst25xx_bwrite;
|
|
|
|
priv->mtd.read = sst25xx_read;
|
|
|
|
#ifdef CONFIG_MTD_BYTE_WRITE
|
|
|
|
priv->mtd.write = sst25xx_write;
|
|
|
|
#endif
|
|
|
|
priv->mtd.ioctl = sst25xx_ioctl;
|
|
|
|
priv->dev = dev;
|
|
|
|
priv->lastwaswrite = false;
|
|
|
|
|
|
|
|
/* Deselect the FLASH */
|
|
|
|
|
|
|
|
SPI_SELECT(dev, SPIDEV_FLASH, false);
|
|
|
|
|
|
|
|
/* Identify the FLASH chip and get its capacity */
|
|
|
|
|
|
|
|
ret = sst25xx_readid(priv);
|
|
|
|
if (ret != OK)
|
|
|
|
{
|
|
|
|
/* Unrecognized! Discard all of that work we just did and return NULL */
|
|
|
|
|
|
|
|
fdbg("Unrecognized\n");
|
|
|
|
kfree(priv);
|
|
|
|
priv = NULL;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Make sure that the FLASH is unprotected so that we can write into it */
|
|
|
|
|
|
|
|
sst25xx_unprotect(priv);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-12-12 16:21:55 +01:00
|
|
|
/* Register the MTD with the procfs system if enabled */
|
|
|
|
|
|
|
|
#ifdef CONFIG_MTD_REGISTRATION
|
|
|
|
mtd_register(&priv->mtd, "sst25xx");
|
|
|
|
#endif
|
|
|
|
|
2013-11-28 15:04:46 +01:00
|
|
|
/* Return the implementation-specific state structure as the MTD device */
|
|
|
|
|
|
|
|
fvdbg("Return %p\n", priv);
|
|
|
|
return (FAR struct mtd_dev_s *)priv;
|
|
|
|
}
|