nuttx/fs/mnemofs/mnemofs_blkalloc.c

580 lines
16 KiB
C
Raw Normal View History

/****************************************************************************
* fs/mnemofs/mnemofs_blkalloc.c
* Block Allocator for mnemofs
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* Alternatively, the contents of this file may be used under the terms of
* the BSD-3-Clause license:
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2024 Saurav Pal
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of its contributors may
* be used to endorse or promote products derived from this software
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
****************************************************************************/
/* mnemofs block allocator takes some inspiration from littlefs's block
* allocator.
*
* It has two primary jobs...provide a block and ensure wear levelling. The
* block allocator of mnemofs tries to provide a block that will more or less
* ensure wear levelling. We'll call the block allocator as BA.
*
* The block allocator starts at a random block in the device and starts a
* circular allocation from there, ie. it allocated sequentially till it
* reaches the end, at which point it cycles back to the beginning and then
* continues allocating sequentially. If a page is requested it will check if
* the page has been written to (being used). If a page is being written to
* but all the pages in a block are ready to be erased, then the block is
* erased and page is allocated. If none of these two conditions match, it
* moves on to check the next page and so on. If the block that contains the
* page is a bad block, the BA skips all the pages in the entire block.
*
* The BA can also grant a request for an entire block. If the BA is
* currently in the middle of a block, it will skip the remaining pages till
* it reaches the start of the next block. These pages won't be reflected as
* being used, and can be allocated the next time the BA cycles back to these
* pages. Even though skipped pages will be eventually utilized later anyway,
* block allocation requests are made by very few critical data structures
* in mnemofs, and they all do it in bulk, and thus skipped pages are
* minimal.
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <math.h>
#include <nuttx/kmalloc.h>
#include <stdbool.h>
#include <stdlib.h>
#include "mnemofs.h"
#include "fs_heap.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
#define BMAP_GET(bmap, idx, off) (((bmap)[(idx)] & (1 << (off))) != 0)
#define BMAP_SET(bmap, idx, off) ((bmap)[(idx)] |= (1 << (off)))
#define DEL_ARR_BLK(sb, blk) (MFS_BA((sb)).k_del[(blk) * sizeof(size_t)])
#define DEL_ARR_PG(sb, pg) (DEL_ARR_BLK(sb, MFS_PG2BLK((sb), (pg))))
/****************************************************************************
* Private Types
****************************************************************************/
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
static inline void pg2bmap(mfs_t pg, FAR mfs_t *idx, FAR uint8_t *off);
static int is_pg_writeable(FAR struct mfs_sb_s * const sb, mfs_t pg,
FAR mfs_t *idx, FAR uint8_t *off);
static int is_blk_writeable(FAR struct mfs_sb_s * const sb,
const mfs_t blk);
/****************************************************************************
* Private Data
****************************************************************************/
/****************************************************************************
* Public Data
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: pg2bmap
*
* Description:
* Gets the bitmap location of a page. The page in the bitmap will be in
* bmap[idx] byte at (1 << off) position in the byte.
*
* Input Parameters:
* pg - Page number to check.
* idx - Populated later with the index of page in MFS_BA(sb).bmap_upgs
* off - Populated later with the offset of page in MFS_BA(sb).bmap_upgs
*
* Assumptions/Limitations:
* Does not check validity of the index.
*
****************************************************************************/
static inline void pg2bmap(mfs_t pg, FAR mfs_t *idx, FAR uint8_t *off)
{
/* The compiler should automatically use shift operation for division. */
*idx = pg / 8;
*off = pg % 8;
}
/****************************************************************************
* Name: is_pg_writeable
*
* Description:
* Checks if a page is writeable by checking if the page is either free, or
* it's being used but the entire block is ready for erase.
*
* Input Parameters:
* sb - Superblock instance of the device.
* pg - Page number to check.
* idx - Populated later with the index of page in MFS_BA(sb).bmap_upgs
* off - Populated later with the offset of page in MFS_BA(sb).bmap_upgs
*
* Returned Value:
* MFS_BLK_BAD - If the block of the page is a bad block.
* MFS_PG_USED - If the page is being used.
* MFS_BLK_ERASABLE - If page can be allocated, but block needs erase.
* MFS_PG_FREE - If the page is free.
* -ENOSYS - Not supported.
*
* Assumptions/Limitations:
* Assumes this is run in a locked environment.
*
****************************************************************************/
static int is_pg_writeable(FAR struct mfs_sb_s * const sb, mfs_t pg,
FAR mfs_t *idx, FAR uint8_t *off)
{
int blkbad_status;
/* Bad block check. */
blkbad_status = mfs_isbadblk(sb, MFS_PG2BLK(sb, pg));
if (predict_false(blkbad_status == -ENOSYS))
{
return blkbad_status;
}
if (predict_false(blkbad_status < 0) || blkbad_status == 1)
{
return MFS_BLK_BAD;
}
pg2bmap(MFS_BA(sb).c_pg, idx, off);
if (BMAP_GET(MFS_BA(sb).bmap_upgs, *idx, *off))
{
if (DEL_ARR_PG(sb, MFS_BA(sb).c_pg) == MFS_PGINBLK(sb))
{
return MFS_BLK_ERASABLE;
}
else
{
return MFS_PG_USED;
}
}
else
{
return MFS_PG_FREE;
}
}
/****************************************************************************
* Name: is_blk_writeable
*
* Description:
* Checks if an entire block is allocatable, either because none of the
* pages in it have been allocated, or because the entire block can be
* erased.
*
* Input Parameters:
* sb - Superblock instance of the device.
* pg - Page number to check.
* idx - Populated later with the index of page in MFS_BA(sb).bmap_upgs
* off - Populated later with the offset of page in MFS_BA(sb).bmap_upgs
*
* Returned Value:
* MFS_BLK_BAD - If the block is a bad block.
* MFS_BLK_USED - If the block is being used.
* MFS_BLK_ERASABLE - If block can be allocated, but block needs erase.
* MFS_BLK_FREE - If the block is free.
*
* Assumptions/Limitations:
* Assumes this is run in a locked environment.
*
****************************************************************************/
static int is_blk_writeable(FAR struct mfs_sb_s * const sb, const mfs_t blk)
{
int blkbad_status;
mfs_t i;
mfs_t pg = MFS_BLK2PG(sb, blk);
mfs_t idx;
uint8_t off;
/* Bad block check. */
blkbad_status = mfs_isbadblk(sb, blk);
if (predict_false(blkbad_status == -ENOSYS))
{
return blkbad_status;
}
if (predict_false(blkbad_status < 0) || blkbad_status == 1)
{
return MFS_BLK_BAD;
}
for (i = 0; i < MFS_PGINBLK(sb); i++)
{
pg2bmap(pg + i, &idx, &off);
if (BMAP_GET(MFS_BA(sb).bmap_upgs, idx, off))
{
if (DEL_ARR_PG(sb, MFS_BA(sb).c_pg) == MFS_PGINBLK(sb))
{
return MFS_BLK_ERASABLE;
}
else
{
return MFS_BLK_USED;
}
}
}
return MFS_BLK_FREE;
}
/****************************************************************************
* Public Functions
****************************************************************************/
int mfs_ba_fmt(FAR struct mfs_sb_s * const sb)
{
int ret = OK;
/* We need at least 5 blocks, as one is occupied by superblock, at least
* one for the journal, 2 for journal's master blocks, and at least one for
* actual data.
*/
if (MFS_NBLKS(sb) < 5)
{
ret = -ENOSPC;
goto errout;
}
memset(&MFS_BA(sb), 0, sizeof(MFS_BA(sb)));
MFS_BA(sb).s_blk = rand() % MFS_NBLKS(sb);
if (MFS_PG2BLK(sb, MFS_BA(sb).s_blk) == sb->sb_blk)
{
MFS_BA(sb).s_blk++;
MFS_BA(sb).s_blk %= MFS_NBLKS(sb);
}
MFS_BA(sb).c_pg = MFS_BLK2PG(sb, MFS_BA(sb).s_blk);
/* MFS_BA(sb).k_del_elemsz = ((log + 7) & (-8)) / 8; */
MFS_BA(sb).k_del = fs_heap_zalloc(sizeof(size_t) * MFS_NBLKS(sb));
if (predict_false(MFS_BA(sb).k_del == NULL))
{
ret = -ENOMEM;
goto errout;
}
MFS_BA(sb).n_bmap_upgs = MFS_UPPER8(MFS_NPGS(sb));
MFS_BA(sb).bmap_upgs = fs_heap_zalloc(MFS_BA(sb).n_bmap_upgs);
if (predict_false(MFS_BA(sb).bmap_upgs == NULL))
{
ret = -ENOMEM;
goto errout_with_k_del;
}
/* TODO: Do not start from journal blocks. */
finfo("mnemofs: Block Allocator initialized, starting at page %d.\n",
MFS_BLK2PG(sb, MFS_BA(sb).s_blk));
return ret;
errout_with_k_del:
fs_heap_free(MFS_BA(sb).k_del);
errout:
return ret;
}
int mfs_ba_init(FAR struct mfs_sb_s * const sb)
{
/* TODO: Ensure journal and master node are initialized before this. */
int ret = OK;
ret = mfs_ba_fmt(sb);
if (predict_false(ret < 0))
{
goto errout;
}
/* Traverse the FS tree. */
ret = mfs_pitr_traversefs(sb, MFS_MN(sb).root_ctz, MFS_ISDIR);
if (predict_false(ret < 0))
{
goto errout_with_ba;
}
return ret;
errout_with_ba:
mfs_ba_free(sb);
errout:
return ret;
}
void mfs_ba_free(FAR struct mfs_sb_s * const sb)
{
fs_heap_free(MFS_BA(sb).k_del);
fs_heap_free(MFS_BA(sb).bmap_upgs);
finfo("Block Allocator Freed.");
}
mfs_t mfs_ba_getpg(FAR struct mfs_sb_s * const sb)
{
bool inc = true;
bool found = false;
mfs_t i = MFS_BA(sb).c_pg;
mfs_t pg = 0;
mfs_t idx;
mfs_t tpgs = MFS_NBLKS(sb) * MFS_PGINBLK(sb);
uint8_t off;
for (; i != tpgs; i++)
{
switch (is_pg_writeable(sb, MFS_BA(sb).c_pg, &idx, &off))
{
case MFS_PG_USED:
finfo("Used %d\n", MFS_BA(sb).c_pg);
break;
case MFS_PG_FREE:
finfo("Free %d\n", MFS_BA(sb).c_pg);
pg = MFS_BA(sb).c_pg;
mfs_ba_markusedpg(sb, pg);
found = true;
break;
case MFS_BLK_BAD:
finfo("Bad %d\n", MFS_BA(sb).c_pg);
/* Skip pages to next block. */
MFS_BA(sb).c_pg = MFS_BLK2PG(sb,
(MFS_PG2BLK(sb, MFS_BA(sb).c_pg) + 1) %
MFS_NBLKS(sb));
inc = false;
break;
case MFS_BLK_ERASABLE:
finfo("Erasable %d\n", MFS_BA(sb).c_pg);
pg = MFS_BA(sb).c_pg;
mfs_erase_blk(sb, MFS_PG2BLK(sb, MFS_BA(sb).c_pg));
DEL_ARR_PG(sb, MFS_BA(sb).c_pg) = 0;
mfs_ba_markusedpg(sb, pg);
found = true;
break;
case -ENOSYS:
/* TODO: Manually check for bad blocks. */
return 0;
}
if (inc)
{
MFS_BA(sb).c_pg++;
MFS_BA(sb).c_pg %= tpgs;
}
else
{
i--;
inc = true;
}
if (found)
{
break;
}
}
if (!found)
{
DEBUGASSERT(pg == 0);
finfo("No more pages found. Page: %u.", pg);
}
return pg;
}
mfs_t mfs_ba_getblk(FAR struct mfs_sb_s * const sb)
{
bool found = false;
mfs_t i = 0;
mfs_t blk;
mfs_t ret = 0;
blk = MFS_PG2BLK(sb, MFS_BA(sb).c_pg);
if (MFS_BA(sb).c_pg % MFS_PGINBLK(sb))
{
/* Skipped pages are not updated in used. */
blk++;
blk %= MFS_NBLKS(sb);
i++;
}
for (; i < MFS_NBLKS(sb); i++)
{
switch (is_blk_writeable(sb, blk))
{
case MFS_BLK_BAD:
break;
case MFS_BLK_USED:
break;
case MFS_BLK_ERASABLE:
mfs_ba_blkmarkdel(sb, blk);
mfs_ba_markusedblk(sb, blk);
found = true;
break;
case MFS_BLK_FREE:
mfs_ba_markusedblk(sb, blk);
found = true;
break;
case -ENOSYS:
/* TODO: Manually check for bad blocks. */
return 0;
}
if (found)
{
break;
}
blk++;
blk %= MFS_NBLKS(sb);
}
if (found)
{
ret = blk;
MFS_BA(sb).c_pg = MFS_BLK2PG(sb, (++blk) % MFS_NBLKS(sb));
}
finfo("Block number: %u. Found: %d.", ret, found);
return ret;
}
void mfs_ba_pgmarkdel(FAR struct mfs_sb_s * const sb, mfs_t pg)
{
DEL_ARR_PG(sb, MFS_BA(sb).c_pg)++;
}
void mfs_ba_blkmarkdel(FAR struct mfs_sb_s * const sb, mfs_t blk)
{
DEL_ARR_BLK(sb, blk) = MFS_PGINBLK(sb);
}
int mfs_ba_delmarked(FAR struct mfs_sb_s * const sb)
{
int ret = OK;
mfs_t i;
for (i = 1; i < MFS_NBLKS(sb); i++)
{
if (DEL_ARR_BLK(sb, i) == MFS_PGINBLK(sb))
{
ret = mfs_erase_blk(sb, i);
if (ret != OK)
{
return ret;
}
}
}
return ret;
}
/* Mark a page as being used. Used by master node during initial format and
*/
void mfs_ba_markusedpg(FAR struct mfs_sb_s * const sb, mfs_t pg)
{
mfs_t idx;
uint8_t off;
pg2bmap(pg, &idx, &off);
BMAP_SET(MFS_BA(sb).bmap_upgs, idx, off); /* Set as used */
}
void mfs_ba_markusedblk(FAR struct mfs_sb_s * const sb, mfs_t blk)
{
mfs_t i = 0;
mfs_t pg = MFS_BLK2PG(sb, blk);
for (i = 0; i < MFS_PGINBLK(sb); i++)
{
mfs_ba_markusedpg(sb, pg + i);
}
}
mfs_t mfs_ba_getavailpgs(FAR const struct mfs_sb_s * const sb)
{
/* TODO */
return 0;
}