nuttx/mm/mm_test.c

473 lines
14 KiB
C
Raw Normal View History

/************************************************************************
* mm/mm_test.c
*
* Copyright (C) 2007, 2009, 2011 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <spudmonkey@racsa.co.cr>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* Fake NuttX dependencies */
#define FAR
#define CONFIG_MM_REGIONS 2
#define CONFIG_CAN_PASS_STRUCTS 1
#undef CONFIG_SMALL_MEMORY
#include "mm_internal.h"
/* Pre-processor Definitions */
#define TEST_HEAP1_SIZE 0x00080000
#define TEST_HEAP2_SIZE 0x00080000
#define NTEST_ALLOCS 32
/* #define STOP_ON_ERRORS do{}while(0) */
#define STOP_ON_ERRORS exit(1)
/* Test allocations */
static const int alloc_sizes[NTEST_ALLOCS] =
{
1024, 12, 962, 5692, 10254, 111, 9932, 601,
222, 2746, 3, 124321, 68, 776, 6750, 852,
4732, 28, 901, 480, 5011, 1536, 2011, 81647,
646, 1646, 69179, 194, 2590, 7, 969, 70
};
static const int realloc_sizes[NTEST_ALLOCS] =
{
18, 3088, 963, 123, 511, 11666, 3723, 42,
9374, 1990, 1412, 6, 592, 4088, 11, 5040,
8663, 91255, 28, 4346, 9172, 168, 229, 4734,
59139, 221, 7830, 30421, 1666, 4, 812, 416
};
static const int random1[NTEST_ALLOCS] =
{
20, 11, 3, 31, 9, 29, 7, 17,
21, 2, 26, 18, 14, 25, 0, 10,
27, 19, 22, 28, 8, 30, 12, 15,
4, 1, 24, 6, 16, 13, 5, 23
};
static const int random2[NTEST_ALLOCS] =
{
2, 19, 12, 23, 30, 11, 27, 4,
20, 7, 0, 16, 28, 15, 5, 24,
10, 17, 25, 31, 8, 29, 3, 26,
9, 18, 22, 13, 1, 21, 14, 6
};
static const int random3[NTEST_ALLOCS] =
{
8, 17, 3, 18, 26, 23, 30, 11,
12, 22, 4, 20, 25, 10, 27, 1,
29, 14, 19, 21, 0, 31, 7, 24,
9, 15, 2, 28, 16, 6, 13, 5
};
static const int alignment[NTEST_ALLOCS/2] =
{
128, 2048, 131072, 8192, 32, 32768, 16384 , 262144,
512, 4096, 65536, 8, 64, 1024, 16, 4
};
static void *allocs[NTEST_ALLOCS];
static struct mallinfo alloc_info;
static unsigned int g_reportedheapsize = 0;
static unsigned int g_actualheapsize = 0;
/************************************************************************
* mm_showchunkinfo
************************************************************************/
static int mm_findinfreelist(struct mm_freenode_s *node)
{
struct mm_freenode_s *list;
for(list = &g_nodelist[0];
list;
list = list->flink)
{
if (list == node)
{
return 1;
}
}
return 0;
}
static void mm_showchunkinfo(void)
{
struct mm_allocnode_s *node;
#if CONFIG_MM_REGIONS > 1
int region;
#else
# define region 0
#endif
int found;
printf(" CHUNK LIST:\n");
/* Visit each region */
#if CONFIG_MM_REGIONS > 1
for (region = 0; region < g_nregions; region++)
#endif
{
/* Visit each node in each region */
for (node = g_heapstart[region];
node < g_heapend[region];
node = (struct mm_allocnode_s *)((char*)node + node->size))
{
printf(" %p 0x%08x 0x%08x %s",
node, node->size, node->preceding & ~MM_ALLOC_BIT,
node->preceding & MM_ALLOC_BIT ? "Allocated" : "Free ");
found = mm_findinfreelist((struct mm_freenode_s *)node);
if (found && (node->preceding & MM_ALLOC_BIT) != 0)
{
printf(" Should NOT have been in free list\n");
}
else if (!found && (node->preceding & MM_ALLOC_BIT) == 0)
{
printf(" SHOULD have been in free listT\n");
}
else
{
printf(" OK\n");
}
}
}
#undef region
}
static void mm_showfreelist(void)
{
struct mm_freenode_s *prev;
struct mm_freenode_s *node;
int i = 0;
printf(" FREE NODE LIST:\n");
for(prev = NULL, node = &g_nodelist[0];
node;
prev = node, node = node->flink)
{
/* Dump "fake" nodes in a different way */
if (node->size == 0)
{
printf(" [NODE %2d] %08x %08x %08x\n",
i, node->preceding, (int)node->flink, (int)node->blink);
i++;
}
else
{
printf(" %08x %08x %08x %08x %08x\n",
(int)node, node->size, node->preceding, (int)node->flink, (int)node->blink);
}
/* Verify all backward links */
if (node->blink != prev)
{
fprintf(stderr, "Backward link is wrong: Is %p, should be %p\n",
node->blink, prev);
STOP_ON_ERRORS;
}
}
}
static void mm_showmallinfo(void)
{
int sval;
mm_showchunkinfo();
mm_showfreelist();
alloc_info = mallinfo();
printf(" mallinfo:\n");
printf(" Total space allocated from system = %ld\n",
alloc_info.arena);
printf(" Number of non-inuse chunks = %ld\n",
alloc_info.ordblks);
printf(" Largest non-inuse chunk = %ld\n",
alloc_info.mxordblk);
printf(" Total allocated space = %ld\n",
alloc_info.uordblks);
printf(" Total non-inuse space = %ld\n",
alloc_info.fordblks);
sval = mm_getsemaphore();
if (sval != 1)
{
fprintf(stderr, "After mallinfo, semaphore count=%d, should be 1\n", sval);
STOP_ON_ERRORS;
}
if (!g_reportedheapsize)
{
g_reportedheapsize = alloc_info.uordblks + alloc_info.fordblks;
if (g_reportedheapsize > g_actualheapsize + 16*CONFIG_MM_REGIONS ||
g_reportedheapsize < g_actualheapsize -16*CONFIG_MM_REGIONS)
{
fprintf(stderr, "Total memory %d not close to uordlbks=%d + fordblks=%d = %d\n",
g_actualheapsize, alloc_info.uordblks, alloc_info.fordblks, g_reportedheapsize);
STOP_ON_ERRORS;
}
}
else if (alloc_info.uordblks + alloc_info.fordblks != g_reportedheapsize)
{
fprintf(stderr, "Total memory %d != uordlbks=%d + fordblks=%d\n",
g_reportedheapsize, alloc_info.uordblks, alloc_info.fordblks);
STOP_ON_ERRORS;
}
}
static void do_mallocs(void **mem, const int *size, const int *rand, int n)
{
int sval;
int i;
int j;
for (i = 0; i < n; i++)
{
j = rand[i];
if (!mem[j])
{
printf("(%d)Allocating %d bytes\n", i, size[j]);
mem[j] = mm_malloc(size[j]);
printf("(%d)Memory allocated at %p\n", i, mem[j]);
if (mem[j] == NULL)
{
int allocsize = MM_ALIGN_UP(size[j] + SIZEOF_MM_ALLOCNODE);
fprintf(stderr, "(%d)malloc failed for allocsize=%d\n", i, allocsize);
if (allocsize > alloc_info.mxordblk)
{
fprintf(stderr, " Normal, largest free block is only %ld\n", alloc_info.mxordblk);
}
else
{
fprintf(stderr, " ERROR largest free block is %ld\n", alloc_info.mxordblk);
exit(1);
}
}
else
{
memset(mem[j], 0xAA, size[j]);
}
sval = mm_getsemaphore();
if (sval != 1)
{
fprintf(stderr, " After malloc semaphore count=%d, should be 1\n", sval);
STOP_ON_ERRORS;
}
mm_showmallinfo();
}
}
}
static void do_reallocs(void **mem, const int *oldsize, const int *newsize, const int *rand, int n)
{
int sval;
int i;
int j;
for (i = 0; i < n; i++)
{
j = rand[i];
printf("(%d)Re-allocating at %p from %d to %d bytes\n",
i, mem[j], oldsize[j], newsize[j]);
mem[j] = mm_realloc(mem[j], newsize[j]);
printf("(%d)Memory re-allocated at %p\n", i, mem[j]);
if (mem[j] == NULL)
{
int allocsize = MM_ALIGN_UP(newsize[j] + SIZEOF_MM_ALLOCNODE);
fprintf(stderr, "(%d)realloc failed for allocsize=%d\n", i, allocsize);
if (allocsize > alloc_info.mxordblk)
{
fprintf(stderr, " Normal, largest free block is only %ld\n", alloc_info.mxordblk);
}
else
{
fprintf(stderr, " ERROR largest free block is %ld\n", alloc_info.mxordblk);
exit(1);
}
}
else
{
memset(mem[j], 0x55, newsize[j]);
}
sval = mm_getsemaphore();
if (sval != 1)
{
fprintf(stderr, " After realloc semaphore count=%d, should be 1\n", sval);
STOP_ON_ERRORS;
}
mm_showmallinfo();
}
}
static void do_memaligns(void **mem, const int *size, const int *align, const int *rand, int n)
{
int sval;
int i;
int j;
for (i = 0; i < n; i++)
{
j = rand[i];
printf("(%d)Allocating %d bytes aligned to 0x%08x\n",
i, size[j], align[i]);
mem[j] = mm_memalign(align[i], size[j]);
printf("(%d)Memory allocated at %p\n", i, mem[j]);
if (mem[j] == NULL)
{
int allocsize = MM_ALIGN_UP(size[j] + SIZEOF_MM_ALLOCNODE) + 2*align[i];
fprintf(stderr, "(%d)memalign failed for allocsize=%d\n", i, allocsize);
if (allocsize > alloc_info.mxordblk)
{
fprintf(stderr, " Normal, largest free block is only %ld\n", alloc_info.mxordblk);
}
else
{
fprintf(stderr, " ERROR largest free block is %ld\n", alloc_info.mxordblk);
exit(1);
}
}
else
{
memset(mem[j], 0x33, size[j]);
}
sval = mm_getsemaphore();
if (sval != 1)
{
fprintf(stderr, " After memalign semaphore count=%d, should be 1\n", sval);
STOP_ON_ERRORS;
}
mm_showmallinfo();
}
}
static void do_frees(void **mem, const int *size, const int *rand, int n)
{
int sval;
int i;
int j;
for (i = 0; i < n; i++)
{
j = rand[i];
printf("(%d)Releasing memory at %p (size=%d bytes)\n",
i, mem[j], size[j]);
mm_free(mem[j]);
mem[j] = NULL;
sval = mm_getsemaphore();
if (sval != 1)
{
fprintf(stderr, " After free semaphore count=%d, should be 1\n", sval);
STOP_ON_ERRORS;
}
mm_showmallinfo();
}
}
int main(int argc, char **argv, char **envp)
{
void *heap1_base;
void *heap2_base;
int i, j;
/* Allocate a heap */
printf("Allocating test heap #1 of %ldKb\n", TEST_HEAP1_SIZE/1024);
heap1_base = malloc(TEST_HEAP1_SIZE);
printf("Allocated heap1_base=%p\n", heap1_base);
if (heap1_base == 0)
{
fprintf(stderr, "Failed to allocate test heap #1\n");
exit(1);
}
printf("Allocating test heap #2 of %ldKb\n", TEST_HEAP2_SIZE/1024);
heap2_base = malloc(TEST_HEAP2_SIZE);
printf("Allocated heap2_base=%p\n", heap2_base);
if (heap2_base == 0)
{
fprintf(stderr, "Failed to allocate test heap #2\n");
exit(1);
}
/* Initialize the memory manager */
mm_initialize(heap1_base, TEST_HEAP1_SIZE);
g_actualheapsize = TEST_HEAP1_SIZE;
mm_showmallinfo();
mm_addregion(heap2_base, TEST_HEAP2_SIZE);
g_reportedheapsize = 0;
g_actualheapsize += TEST_HEAP2_SIZE;
mm_showmallinfo();
/* Allocate some memory */
do_mallocs(allocs, alloc_sizes, random1, NTEST_ALLOCS);
/* Re-allocate the memory */
do_reallocs(allocs, alloc_sizes, realloc_sizes, random2, NTEST_ALLOCS);
/* Release the memory */
do_frees(allocs, realloc_sizes, random3, NTEST_ALLOCS);
/* Allocate aligned memory */
do_memaligns(allocs, alloc_sizes, alignment, random2, NTEST_ALLOCS/2);
do_memaligns(allocs, alloc_sizes, alignment, &random2[NTEST_ALLOCS/2], NTEST_ALLOCS/2);
/* Release aligned memory */
do_frees(allocs, alloc_sizes, random1, NTEST_ALLOCS);
/* Clean up and exit */
free(heap1_base);
free(heap2_base);
printf("TEST COMPLETE\n");
return 0;
}