nuttx/boards/arm/lpc43xx/lpc4357-evb/scripts/ramconfig.ld

129 lines
4.2 KiB
Plaintext
Raw Normal View History

/****************************************************************************
* boards/arm/lpc43xx/lpc4357-evb/scripts/ramconfig.ld
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/*
* Power-Up Reset Overview
* -----------------------
*
* The ARM core starts executing code on reset with the program counter set
* to 0x0000 0000. The LPC43xx contains a shadow pointer register that
* allows areas of memory to be mapped to address 0x0000 0000. The default,
* reset value of the shadow pointer is 0x1040 0000 so that on reset code in
* the boot ROM is always executed first.
*
* The boot starts after reset is released. The IRC is selected as CPU clock
* and the Cortex-M4 starts the boot loader. By default the JTAG access to the
* chip is disabled at reset. The boot ROM determines the boot mode based on
* the OTP BOOT_SRC value or reset state pins. For flash-based parts, the part
* boots from internal flash by default. Otherwise, the boot ROM copies the
* image to internal SRAM at location 0x1000 0000, sets the ARM's shadow
* pointer to 0x1000 0000, and jumps to that location.
*
* However, using JTAG the executable image can be also loaded directly into
* and executed from SRAM.
*/
/* Here we assume that:
*
* 1. We will be running out of SRAM at 0x1000:0000, and
* 2. All .data and .bss will all fit into the 72KB SRAM block.
*
* NOTE: That initialized data is kept in the program memory SRAM and copied
* to .data SRAM. This is wasteful and unnecessary but provides a good test
* for future, FLASH-resident code.
*/
MEMORY
{
progmem (rx) : ORIGIN = 0x10000000, LENGTH = 128K
datamem (rwx) : ORIGIN = 0x10080000, LENGTH = 72K
}
OUTPUT_ARCH(arm)
ENTRY(__start) /* Treat __start as the anchor for dead code stripping */
EXTERN(_vectors) /* Force the vectors to be included in the output */
SECTIONS
{
.text : {
_stext = ABSOLUTE(.);
*(.vectors)
*(.text .text.*)
*(.fixup)
*(.gnu.warning)
*(.rodata .rodata.*)
*(.gnu.linkonce.t.*)
*(.glue_7)
*(.glue_7t)
*(.got)
*(.gcc_except_table)
*(.gnu.linkonce.r.*)
_etext = ABSOLUTE(.);
} > progmem
.init_section : {
_sinit = ABSOLUTE(.);
KEEP(*(.init_array .init_array.*))
_einit = ABSOLUTE(.);
} > progmem
.ARM.extab : {
*(.ARM.extab*)
} > progmem
__exidx_start = ABSOLUTE(.);
.ARM.exidx : {
*(.ARM.exidx*)
} > progmem
__exidx_end = ABSOLUTE(.);
_eronly = ABSOLUTE(.);
.data : {
_sdata = ABSOLUTE(.);
*(.data .data.*)
*(.gnu.linkonce.d.*)
CONSTRUCTORS
. = ALIGN(4);
_edata = ABSOLUTE(.);
} > datamem AT > progmem
.bss : { /* BSS */
_sbss = ABSOLUTE(.);
*(.bss .bss.*)
*(.gnu.linkonce.b.*)
*(COMMON)
. = ALIGN(4);
_ebss = ABSOLUTE(.);
} > datamem
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_info 0 : { *(.debug_info) }
.debug_line 0 : { *(.debug_line) }
.debug_pubnames 0 : { *(.debug_pubnames) }
.debug_aranges 0 : { *(.debug_aranges) }
}