nuttx/tools/gdbserver.py

1195 lines
35 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# tools/gdbserver.py
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership. The
# ASF licenses this file to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance with the
# License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
#
import argparse
import binascii
import logging
import multiprocessing
import os
import re
import shutil
import socket
import struct
import subprocess
import sys
import elftools
from elftools.elf.elffile import ELFFile
# ELF section flags
SHF_WRITE = 0x1
SHF_ALLOC = 0x2
SHF_EXEC = 0x4
SHF_WRITE_ALLOC = SHF_WRITE | SHF_ALLOC
SHF_ALLOC_EXEC = SHF_ALLOC | SHF_EXEC
GDB_SIGNAL_DEFAULT = 7
UINT16_MAX = 65535
DEFAULT_GDB_INIT_CMD = "-ex 'bt full' -ex 'info reg' -ex 'display /40i $pc-40'"
logger = logging.getLogger()
# The global register table is dictionary like {arch:{reg:ndx}}
#
# where arch is the CPU architecture name;
# reg is the name of the register as used in log file
# ndx is the index of the register in GDB group registers list
#
# Registers with multiple convenient names can have multiple entries here, one
# for each name and with the same index.
reg_table = {
"arm": {
"R0": 0,
"R1": 1,
"R2": 2,
"R3": 3,
"R4": 4,
"R5": 5,
"R6": 6,
"FP": 7,
"R8": 8,
"SB": 9,
"SL": 10,
"R11": 11,
"IP": 12,
"SP": 13,
"LR": 14,
"PC": 15,
"xPSR": 16,
},
"arm-a": {
"R0": 0,
"R1": 1,
"R2": 2,
"R3": 3,
"R4": 4,
"R5": 5,
"R6": 6,
"R7": 7,
"R8": 8,
"SB": 9,
"SL": 10,
"FP": 11,
"IP": 12,
"SP": 13,
"LR": 14,
"PC": 15,
"CPSR": 41,
},
"arm-t": {
"R0": 0,
"R1": 1,
"R2": 2,
"R3": 3,
"R4": 4,
"R5": 5,
"R6": 6,
"FP": 7,
"R8": 8,
"SB": 9,
"SL": 10,
"R11": 11,
"IP": 12,
"SP": 13,
"LR": 14,
"PC": 15,
"CPSR": 41,
},
# rv64 works with gdb-multiarch on Ubuntu
"riscv": {
"ZERO": 0,
"RA": 1,
"SP": 2,
"GP": 3,
"TP": 4,
"T0": 5,
"T1": 6,
"T2": 7,
"FP": 8,
"S1": 9,
"A0": 10,
"A1": 11,
"A2": 12,
"A3": 13,
"A4": 14,
"A5": 15,
"A6": 16,
"A7": 17,
"S2": 18,
"S3": 19,
"S4": 20,
"S5": 21,
"S6": 22,
"S7": 23,
"S8": 24,
"S9": 25,
"S10": 26,
"S11": 27,
"T3": 28,
"T4": 29,
"T5": 30,
"T6": 31,
"PC": 32,
"S0": 8,
"EPC": 32,
},
# use xtensa-esp32s3-elf-gdb register table
"esp32s3": {
"PC": 0,
"PS": 73,
"A0": 1,
"A1": 2,
"A2": 3,
"A3": 4,
"A4": 5,
"A5": 6,
"A6": 7,
"A7": 8,
"A8": 9,
"A9": 10,
"A10": 11,
"A11": 12,
"A12": 13,
"A13": 14,
"A14": 15,
"A15": 16,
"WINDOWBASE": 69,
"WINDOWSTART": 70,
"CAUSE": 190,
"VADDR": 196,
"LBEG": 65,
"LEND": 66,
"LCNT": 67,
"SAR": 68,
"SCOM": 76,
},
# use xt-gdb register table
"xtensa": {
"PC": 32,
"PS": 742,
"A0": 256,
"A1": 257,
"A2": 258,
"A3": 259,
"A4": 260,
"A5": 261,
"A6": 262,
"A7": 263,
"A8": 264,
"A9": 265,
"A10": 266,
"A11": 267,
"A12": 268,
"A13": 269,
"A14": 270,
"A15": 271,
"WINDOWBASE": 584,
"WINDOWSTART": 585,
"CAUSE": 744,
"VADDR": 750,
"LBEG": 512,
"LEND": 513,
"LCNT": 514,
"SAR": 515,
"SCOM": 524,
},
}
# make sure the a0-a15 can be remapped to the correct register
reg_fix_value = {
"esp32s3": {
"WINDOWBASE": (0, 69),
"WINDOWSTART": (1, 70),
"PS": (0x40000, 73),
},
"xtensa": {
"WINDOWBASE": (0, 584),
"WINDOWSTART": (1, 585),
"PS": (0x40000, 742),
},
"riscv": {
"ZERO": 0,
},
}
def str_get_after(s, sub):
index = s.find(sub)
if index == -1:
return None
return s[index + len(sub) :]
def pack_memory(start, end, data):
return {"start": start, "end": end, "data": data}
class DumpELFFile:
"""
Class to parse ELF file for memory content in various sections.
There are read-only sections (e.g. text and rodata) where
the memory content does not need to be dumped via coredump
and can be retrieved from the ELF file.
"""
def __init__(self, elffile: str):
self.elffile = elffile
self.__memories = []
self.__arch = None
self.__xlen = None
self.__text = 0
def parse(self):
self.__memories = []
elf = ELFFile.load_from_path(self.elffile)
self.__arch = elf.get_machine_arch().lower().replace("-", "")
self.__xlen = elf.elfclass
for section in elf.iter_sections():
# REALLY NEED to match exact type as all other sections
# (debug, text, etc.) are descendants where
# isinstance() would match.
if (
type(section) is not elftools.elf.sections.Section
): # pylint: disable=unidiomatic-typecheck
continue
size = section["sh_size"]
flags = section["sh_flags"]
start = section["sh_addr"]
end = start + size - 1
store = False
desc = "?"
if section["sh_type"] == "SHT_PROGBITS":
if (flags & SHF_ALLOC_EXEC) == SHF_ALLOC_EXEC:
# Text section
store = True
desc = "text"
elif (flags & SHF_WRITE_ALLOC) == SHF_WRITE_ALLOC:
# Data or Rodata section, rodata store in ram in some case
store = True
desc = "data or rodata"
elif (flags & SHF_ALLOC) == SHF_ALLOC:
# Read only data section
store = True
desc = "read-only data"
if store:
memory = pack_memory(start, end, section.data())
logger.debug(
f"ELF Section: {hex(memory['start'])} to {hex(memory['end'])} of size {len(memory['data'])} ({desc})"
)
self.__memories.append(memory)
# record first text segment address
for segment in elf.iter_segments():
if segment.header.p_flags & 1 and not self.__text:
self.__text = segment.header.p_vaddr
symtab = elf.get_section_by_name(".symtab")
self.symbol = {}
for symbol in symtab.iter_symbols():
if symbol["st_info"]["type"] != "STT_OBJECT":
continue
if symbol.name in (
"g_tcbinfo",
"g_pidhash",
"g_npidhash",
"g_last_regs",
"g_running_tasks",
):
self.symbol[symbol.name] = symbol
logger.debug(
f"name:{symbol.name} size:{symbol['st_size']} value:{hex(symbol['st_value'])}"
)
elf.close()
return True
def merge(self, other):
if other.arch() == self.arch() and other.xlen() == self.xlen():
self.__memories += other.get_memories()
else:
raise TypeError("inconsistent ELF types")
def get_memories(self):
return self.__memories
def arch(self):
return self.__arch
def xlen(self):
return self.__xlen
def text(self):
return self.__text
class DumpLogFile:
def __init__(self, logfile):
self.logfile = logfile
self.registers = []
self.__memories = list()
self.reg_table = dict()
self.reg_len = 32
def _init_register(self):
# registers list should be able to hold the max index
self.registers = [b"x"] * (max(self.reg_table.values()) + 1)
def _parse_register(self, line):
line = str_get_after(line, "up_dump_register:")
if line is None:
return False
line = line.strip()
# find register value
find_res = re.findall(r"(?P<REG>\w+): (?P<REGV>[0-9a-fA-F]+)", line)
for reg_name, reg_val in find_res:
if reg_name in self.reg_table:
reg_index = self.reg_table[reg_name]
self.registers[reg_index] = int(reg_val, 16)
self.reg_len = max(self.reg_len, len(reg_val) * 4)
return True
def _parse_fix_register(self, arch):
if arch in reg_fix_value:
for reg_name, reg_vals in reg_fix_value[arch].items():
reg_index = self.reg_table[reg_name]
self.registers[reg_index] = reg_vals[0]
def _parse_stack(self, line, start, data):
line = str_get_after(line, "stack_dump:")
if line is None:
return None
line = line.strip()
# find stack-dump
match_res = re.match(r"(?P<ADDR_START>0x\w+): (?P<VALS>( ?\w+)+)", line)
if match_res is None:
return None
addr_start = int(match_res.groupdict()["ADDR_START"], 16)
if start + len(data) != addr_start:
# stack is not contiguous
if len(data) == 0:
start = addr_start
else:
self.__memories.append(pack_memory(start, start + len(data), data))
data = b""
start = addr_start
reg_fmt = "<I" if self.reg_len <= 32 else "<Q"
for val in match_res.groupdict()["VALS"].split():
data = data + struct.pack(reg_fmt, int(val, 16))
return start, data
def parse(self, arch):
self.reg_table = reg_table[arch]
self._init_register()
data = bytes()
start = 0
if isinstance(self.logfile, list):
lines = self.logfile
else:
with open(self.logfile, "r") as f:
lines = f.readlines()
for line_num, line in enumerate(lines):
if line == "":
break
try:
if self._parse_register(line):
continue
res = self._parse_stack(line, start, data)
if res:
start, data = res
continue
except Exception as e:
logger.error("parse log file error: %s line_number %d" % (e, line_num))
sys.exit(1)
self._parse_fix_register(arch)
if data:
self.__memories.append(pack_memory(start, start + len(data), data))
def get_memories(self):
return self.__memories
class RawMemoryFile:
def __init__(self, rawfile):
self.__memories = list()
if rawfile is None:
return
for raw in rawfile:
file, start = raw.split(":")
start = int(start, 0)
size = os.path.getsize(file)
with open(file, "rb") as f:
data = f.read(size)
self.__memories.append(pack_memory(start, start + len(data), data))
def get_memories(self):
return self.__memories
class CoreDumpFile:
def __init__(self, coredump):
self.__memories = list()
if coredump is None:
return
with open(coredump, "rb") as f:
elffile = ELFFile(f)
for segment in elffile.iter_segments():
if segment["p_type"] != "PT_LOAD":
continue
logger.debug(f"Segment Flags: {segment['p_flags']}")
logger.debug(
f"Segment Offset: {segment['p_offset']}",
)
logger.debug(f"Segment Virtual Address: {hex(segment['p_vaddr'])}")
logger.debug(f"Segment Physical Address: {hex(segment['p_paddr'])}")
logger.debug(f"Segment File Size:{segment['p_filesz']}")
logger.debug(f"Segment Memory Size:{segment['p_memsz']}")
logger.debug(f"Segment Alignment:{segment['p_align']}")
logger.debug("=" * 40)
f.seek(segment["p_offset"], 0)
data = f.read(segment["p_filesz"])
self.__memories.append(
pack_memory(
segment["p_paddr"], segment["p_paddr"] + len(data), data
)
)
def get_memories(self):
return self.__memories
class GDBStub:
def __init__(
self,
logfile: DumpLogFile,
elffile: DumpELFFile,
rawfile: RawMemoryFile,
coredump: CoreDumpFile,
arch: str,
):
self.registers = logfile.registers
self.elffile = elffile
self.socket = None
self.gdb_signal = GDB_SIGNAL_DEFAULT
self.arch = arch
# new list oreder is coredump, rawfile, logfile, elffile
self.mem_regions = (
coredump.get_memories()
+ rawfile.get_memories()
+ logfile.get_memories()
+ self.elffile.get_memories()
)
self.reg_digits = elffile.xlen() // 4
self.reg_fmt = "<I" if elffile.xlen() <= 32 else "<Q"
self.threadinfo = []
self.current_thread = 0
try:
self.parse_thread()
logger.debug(f"Have {len(self.threadinfo)} threads to debug.")
if len(self.threadinfo) == 0:
logger.critical(
"Check if your coredump or raw file matches the ELF file"
)
sys.exit(1)
if arch in reg_fix_value.keys():
self.regfix = True
logger.info(f"Current arch is {arch}, need reg index fix.")
except TypeError:
if not self.registers:
logger.critical(
"Logfile, coredump, or rawfile do not contain register. Please check if the files are correct."
)
sys.exit(1)
def get_gdb_packet(self):
socket = self.socket
if socket is None:
return None
data = b""
checksum = 0
# Wait for '$'
while True:
ch = socket.recv(1)
if ch == b"$":
break
# Get a full packet
while True:
ch = socket.recv(1)
if ch == b"#":
# End of packet
break
checksum += ord(ch)
data += ch
# Get checksum (2-bytes)
ch = socket.recv(2)
in_chksum = ord(binascii.unhexlify(ch))
logger.debug(f"Received GDB packet: {data}")
if (checksum % 256) == in_chksum:
# ACK
logger.debug("ACK")
socket.send(b"+")
return data
else:
# NACK
logger.debug(f"NACK (checksum {in_chksum} != {checksum}")
socket.send(b"-")
return None
def put_gdb_packet(self, data):
socket = self.socket
if socket is None:
return
checksum = 0
for d in data:
checksum += d
pkt = b"$" + data + b"#"
checksum = checksum % 256
pkt += format(checksum, "02X").encode()
logger.debug(f"Sending GDB packet: {pkt}")
socket.send(pkt)
def handle_signal_query_packet(self):
# the '?' packet
pkt = b"S"
pkt += format(self.gdb_signal, "02X").encode()
self.put_gdb_packet(pkt)
def handle_register_group_read_packet(self):
def put_register_packet(regs):
pkt = b""
for reg in regs:
if reg != b"x":
bval = struct.pack(self.reg_fmt, reg)
pkt += binascii.hexlify(bval)
else:
# Register not in coredump -> unknown value
# Send in "xxxxxxxx"
pkt += b"x" * self.reg_digits
self.put_gdb_packet(pkt)
if not self.threadinfo:
put_register_packet(self.registers)
else:
for thread in self.threadinfo:
if thread["tcb"]["pid"] == self.current_thread:
if thread["tcb"]["tcbptr"] in self.running_tasks.keys():
put_register_packet(self.running_tasks[thread["tcb"]["tcbptr"]])
else:
put_register_packet(thread["gdb_regs"])
break
def handle_register_single_read_packet(self, pkt):
logger.debug(f"pkt: {pkt}")
def put_one_register_packet(regs):
regval = None
reg = int(pkt[1:].decode("utf8"), 16)
if self.regfix:
for reg_name, reg_vals in reg_fix_value[self.arch].items():
if reg == reg_vals[1]:
logger.debug(f"{reg_name} fix to {reg_vals[0]}")
regval = reg_vals[0]
if regval is None:
# tcbinfo index to gdb index
reg_gdb_index = list(reg_table[self.arch].values())
if reg in reg_gdb_index:
reg = reg_gdb_index.index(reg)
regval = regs[reg]
elif reg < len(regs) and regs[reg] != b"x":
regval = regs[reg]
if regval is not None:
bval = struct.pack(self.reg_fmt, regval)
self.put_gdb_packet(binascii.hexlify(bval))
else:
self.put_gdb_packet(b"x" * self.reg_digits)
if not self.threadinfo:
put_one_register_packet(self.registers)
else:
for thread in self.threadinfo:
if thread["tcb"]["pid"] == self.current_thread:
if thread["tcb"]["tcbptr"] in self.running_tasks.keys():
put_one_register_packet(
self.running_tasks[thread["tcb"]["tcbptr"]]
)
else:
put_one_register_packet(thread["gdb_regs"])
break
def handle_register_group_write_packet(self):
# the 'G' packet for writing to a group of registers
#
# We don't support writing so return error
self.put_gdb_packet(b"E01")
def handle_register_single_write_packet(self, pkt):
# the 'P' packet for writing to registers
index, value = pkt[1:].split(b"=")
reg_val = 0
for i in range(0, len(value), 2):
data = value[i : i + 2]
reg_val = reg_val + (int(data.decode("utf8"), 16) << (i * 4))
reg = int(index.decode("utf8"), 16)
if reg < len(self.registers):
self.registers[reg] = reg_val
self.put_gdb_packet(b"OK")
def get_mem_region(self, addr):
for mem in self.mem_regions:
if mem["start"] <= addr < mem["end"]:
return mem
return None
def handle_memory_read_packet(self, pkt):
# the 'm' packet for reading memory: m<addr>,<len>
# extract address and length from packet
# and convert them into usable integer values
addr, length = pkt[1:].split(b",")
s_addr = int(addr, 16)
length = int(length, 16)
remaining = length
addr = s_addr
barray = b""
r = self.get_mem_region(addr)
while remaining > 0:
if r is None:
barray = None
break
offset = addr - r["start"]
barray += r["data"][offset : offset + 1]
addr += 1
remaining -= 1
if barray is not None:
pkt = binascii.hexlify(barray)
self.put_gdb_packet(pkt)
else:
self.put_gdb_packet(b"E01")
def handle_memory_write_packet(self, pkt):
# the 'M' packet for writing to memory
#
# We don't support writing so return error
self.put_gdb_packet(b"E02")
def handle_is_thread_active(self, pkt):
self.current_thread = int(pkt[1:]) - 1
self.put_gdb_packet(b"OK")
def handle_thread_context(self, pkt):
if b"g" == pkt[1:2]:
self.current_thread = int(pkt[2:]) - 1
elif b"c" == pkt[1:2]:
self.current_thread = int(pkt[3:]) - 1
if self.current_thread == -1:
self.current_thread = 0
self.put_gdb_packet(b"OK")
def parse_thread(self):
def unpack_data(addr, size, fmt):
r = self.get_mem_region(addr)
offset = addr - r["start"]
data = r["data"][offset : offset + size]
return struct.unpack(fmt, data)
TCBINFO_FMT = "<8HQ"
# uint16_t pid_off; /* Offset of tcb.pid */
# uint16_t state_off; /* Offset of tcb.task_state */
# uint16_t pri_off; /* Offset of tcb.sched_priority */
# uint16_t name_off; /* Offset of tcb.name */
# uint16_t stack_off; /* Offset of tcb.stack_alloc_ptr */
# uint16_t stack_size_off; /* Offset of tcb.adj_stack_size */
# uint16_t regs_off; /* Offset of tcb.regs */
# uint16_t regs_num; /* Num of general regs */
# union
# {
# uint8_t u[8];
# FAR const uint16_t *p;
# }
unpacked_data = unpack_data(
self.elffile.symbol["g_tcbinfo"]["st_value"],
self.elffile.symbol["g_tcbinfo"]["st_size"],
TCBINFO_FMT,
)
tcbinfo = {
"pid_off": int(unpacked_data[0]),
"state_off": int(unpacked_data[1]),
"pri_off": int(unpacked_data[2]),
"name_off": int(unpacked_data[3]),
"stack_off": int(unpacked_data[4]),
"stack_size_off": int(unpacked_data[5]),
"regs_off": int(unpacked_data[6]),
"regs_num": int(unpacked_data[7]),
"reg_off": int(unpacked_data[8]),
}
unpacked_data = unpack_data(
self.elffile.symbol["g_npidhash"]["st_value"],
self.elffile.symbol["g_npidhash"]["st_size"],
"<I",
)
npidhash = int(unpacked_data[0])
logger.debug(f"g_npidhash is {hex(npidhash)}")
unpacked_data = unpack_data(
self.elffile.symbol["g_pidhash"]["st_value"],
self.elffile.symbol["g_pidhash"]["st_size"],
"<I",
)
pidhash = int(unpacked_data[0])
logger.debug(f"g_pidhash is {hex(pidhash)}")
tcbptr_list = []
for i in range(0, npidhash):
unpacked_data = unpack_data(pidhash + i * 4, 4, "<I")
tcbptr_list.append(int(unpacked_data[0]))
def parse_tcb(tcbptr):
tcb = {}
tcb["pid"] = int(unpack_data(tcbptr + tcbinfo["pid_off"], 4, "<I")[0])
tcb["state"] = int(unpack_data(tcbptr + tcbinfo["state_off"], 1, "<B")[0])
tcb["pri"] = int(unpack_data(tcbptr + tcbinfo["pri_off"], 1, "<B")[0])
tcb["stack"] = int(unpack_data(tcbptr + tcbinfo["stack_off"], 4, "<I")[0])
tcb["stack_size"] = int(
unpack_data(tcbptr + tcbinfo["stack_size_off"], 4, "<I")[0]
)
tcb["regs"] = int(unpack_data(tcbptr + tcbinfo["regs_off"], 4, "<I")[0])
tcb["tcbptr"] = tcbptr
i = 0
tcb["name"] = ""
while True:
c = int(unpack_data(tcbptr + tcbinfo["name_off"] + i, 1, "<B")[0])
if c == 0:
break
i += 1
tcb["name"] += chr(c)
return tcb
def parse_regs_to_gdb(regs):
gdb_regs = []
for i in range(0, tcbinfo["regs_num"]):
reg_off = int(unpack_data(tcbinfo["reg_off"] + i * 2, 2, "<H")[0])
if reg_off == UINT16_MAX:
gdb_regs.append(b"x")
else:
gdb_regs.append(int(unpack_data(regs + reg_off, 4, "<I")[0]))
return gdb_regs
self.cpunum = self.elffile.symbol["g_running_tasks"]["st_size"] // 4
logger.debug(f"Have {self.cpunum} cpu")
unpacked_data = unpack_data(
self.elffile.symbol["g_running_tasks"]["st_value"],
self.elffile.symbol["g_running_tasks"]["st_size"],
f"<{self.cpunum}I",
)
self.running_tasks = {}
last_regs_size = self.elffile.symbol["g_last_regs"]["st_size"] // self.cpunum
logger.debug(f"last_regs_size is {last_regs_size}")
for i in range(0, self.cpunum):
self.running_tasks[int(unpacked_data[i])] = parse_regs_to_gdb(
self.elffile.symbol["g_last_regs"]["st_value"] + i * last_regs_size
)
for tcbptr in tcbptr_list:
if tcbptr == 0:
continue
thread_dict = {}
tcb = parse_tcb(tcbptr)
thread_dict["tcb"] = tcb
thread_dict["gdb_regs"] = parse_regs_to_gdb(tcb["regs"])
self.threadinfo.append(thread_dict)
def handle_general_query_packet(self, pkt):
if b"Rcmd" == pkt[1:5]:
self.put_gdb_packet(b"OK")
elif b"qfThreadInfo" == pkt[: len(b"qfThreadInfo")]:
reply_str = "m"
for thread in self.threadinfo:
pid = thread["tcb"]["pid"]
reply_str += "," + str(pid + 1) # pid + 1 for gdb index
reply = reply_str.encode("utf-8")
self.put_gdb_packet(reply)
elif b"qsThreadInfo" == pkt[: len(b"qsThreadInfo")]:
self.put_gdb_packet(b"l")
elif b"qThreadExtraInfo" == pkt[: len(b"qThreadExtraInfo")]:
cmd, pid = pkt[1:].split(b",")
pid = int(pid) - 1
for thread in self.threadinfo:
if thread["tcb"]["pid"] == pid:
pkt_str = "Name: %s, State: %d, Pri: %d, Stack: %x, Size: %d" % (
thread["tcb"]["name"],
thread["tcb"]["state"],
thread["tcb"]["pri"],
thread["tcb"]["stack"],
thread["tcb"]["stack_size"],
)
pkt = pkt_str.encode()
pkt_str = pkt.hex()
pkt = pkt_str.encode()
self.put_gdb_packet(pkt)
break
else:
self.put_gdb_packet(b"")
def handle_vkill_packet(self, pkt):
self.put_gdb_packet(b"OK")
logger.debug("quit with gdb")
sys.exit(0)
def run(self, socket: socket.socket):
self.socket = socket
while True:
pkt = self.get_gdb_packet()
if pkt is None:
continue
pkt_type = pkt[0:1]
logger.debug(f"Got packet type: {pkt_type}")
if pkt_type == b"?":
self.handle_signal_query_packet()
elif pkt_type in (b"C", b"S"):
# Continue/stepping execution, which is not supported.
# So signal exception again
self.handle_signal_query_packet()
elif pkt_type == b"g":
self.handle_register_group_read_packet()
elif pkt_type == b"G":
self.handle_register_group_write_packet()
elif pkt_type == b"p":
self.handle_register_single_read_packet(pkt)
elif pkt_type == b"P":
self.handle_register_single_write_packet(pkt)
elif pkt_type == b"m":
self.handle_memory_read_packet(pkt)
elif pkt_type == b"M":
self.handle_memory_write_packet(pkt)
elif pkt_type == b"q":
self.handle_general_query_packet(pkt)
elif pkt.startswith(b"vKill") or pkt_type == b"k":
# GDB quits
self.handle_vkill_packet(pkt)
elif pkt_type == b"H":
self.handle_thread_context(pkt)
elif pkt_type == b"T":
self.handle_is_thread_active(pkt)
else:
self.put_gdb_packet(b"")
def arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"-e", "--elffile", required=True, action="append", help="elffile"
)
parser.add_argument("-l", "--logfile", help="logfile")
parser.add_argument(
"-a",
"--arch",
help="Only use if can't be learnt from ELFFILE.",
required=False,
choices=[arch for arch in reg_table.keys()],
)
parser.add_argument("-p", "--port", help="gdbport", type=int, default=1234)
parser.add_argument(
"-g",
"--gdb",
help="provided a custom GDB path, automatically start GDB session and exit gdbserver when exit GDB. ",
type=str,
)
parser.add_argument(
"-i",
"--init-cmd",
nargs="?",
default=argparse.SUPPRESS,
help="provided a custom GDB init command, automatically start GDB sessions and input what you provide. "
f"if you don't provide any command, it will use default command [{DEFAULT_GDB_INIT_CMD}]. ",
)
parser.add_argument(
"-r",
"--rawfile",
nargs="*",
help="rawfile is a binary file, args format like ram.bin:0x10000 ...",
)
parser.add_argument(
"-c",
"--coredump",
nargs="?",
help="coredump file, will prase memory in this file",
)
parser.add_argument(
"--debug",
action="store_true",
default=False,
help="if enabled, it will show more logs.",
)
return parser.parse_args()
def config_log(debug):
if debug:
logger.setLevel(logging.DEBUG)
else:
logger.setLevel(logging.INFO)
logging.basicConfig(
format="[%(levelname)s][%(asctime)s][%(lineno)d] %(message)s",
datefmt="%H:%M:%S",
)
def auto_parse_log_file(logfile):
with open(logfile, errors="ignore") as f:
dumps = []
tmp_dmp = []
start = False
for line in f.readlines():
line = line.strip()
if len(line) == 0:
continue
if "up_dump_register" in line or "stack" in line:
start = True
else:
if start:
start = False
dumps.append(tmp_dmp)
tmp_dmp = []
if start:
tmp_dmp.append(line)
if start:
dumps.append(tmp_dmp)
terminal_width, _ = shutil.get_terminal_size()
terminal_width = max(terminal_width - 4, 0)
def get_one_line(lines):
return " ".join(lines[:2])[:terminal_width]
if len(dumps) == 0:
logger.error(f"Cannot find any dump in {logfile}, exiting...")
sys.exit(1)
if len(dumps) == 1:
return dumps[0]
for i in range(len(dumps)):
print(f"{i}: {get_one_line(dumps[i])}")
index_input = input("Dump number[0]: ").strip()
if index_input == "":
index_input = 0
return dumps[int(index_input)]
def main(args):
args.elffile = tuple(set(args.elffile))
for name in args.elffile:
if not os.path.isfile(name):
logger.error(f"Cannot find file {name}, exiting...")
sys.exit(1)
if args.logfile:
if not os.path.isfile(args.logfile):
logger.error(f"Cannot find file {args.logfile}, exiting...")
sys.exit(1)
if not args.rawfile and not args.logfile and not args.coredump:
logger.error("Must have a input file log or rawfile or coredump, exiting...")
sys.exit(1)
config_log(args.debug)
elf = DumpELFFile(args.elffile[0])
elf.parse()
elf_texts = [elf.text()]
for name in args.elffile[1:]:
other = DumpELFFile(name)
other.parse()
elf_texts.append(other.text())
elf.merge(other)
if args.logfile is not None:
selected_log = auto_parse_log_file(args.logfile)
log = DumpLogFile(selected_log)
else:
log = DumpLogFile(None)
if args.logfile is not None:
if args.arch:
log.parse(args.arch)
elif elf.arch() in reg_table.keys():
log.parse(elf.arch())
else:
logger.error("Architecture unknown, exiting...")
sys.exit(2)
elf.parse_addr2line(args.arch, args.addr2line, log.stack_data)
raw = RawMemoryFile(args.rawfile)
coredump = CoreDumpFile(args.coredump)
gdb_stub = GDBStub(log, elf, raw, coredump, args.arch)
gdbserver = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# Reuse address so we don't have to wait for socket to be
# close before we can bind to the port again
gdbserver.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)
try:
gdbserver.bind(("", args.port))
except OSError:
gdbserver.bind(("", 0))
logger.info(
f"Port {args.port} is already in use, using port {gdbserver.getsockname()[1]} instead."
)
args.port = gdbserver.getsockname()[1]
gdbserver.listen(1)
gdb_exec = "gdb" if not args.gdb else args.gdb
gdb_init_cmd = ""
if hasattr(args, "init_cmd"):
if args.init_cmd is not None:
gdb_init_cmd = args.init_cmd.strip()
else:
gdb_init_cmd = DEFAULT_GDB_INIT_CMD
gdb_cmd = [
f"{gdb_exec} {args.elffile[0]} -ex 'target remote localhost:{args.port}' "
f"{gdb_init_cmd}"
]
for i in range(len(elf_texts[1:])):
name = args.elffile[1 + i]
text = hex(elf_texts[1 + i])
gdb_cmd.append(f"-ex 'add-symbol-file {name} {text}'")
gdb_cmd = "".join(gdb_cmd)
logger.info(f"Waiting GDB connection on port {args.port} ...")
if not args.gdb:
logger.info("Press Ctrl+C to stop ...")
logger.info(f"Hint: {gdb_cmd}")
else:
logger.info(f"Run GDB command: {gdb_cmd}")
def gdb_run(cmd):
try:
subprocess.run(cmd, shell=True)
except KeyboardInterrupt:
pass
multiprocessing.Process(target=gdb_run, args=(gdb_cmd,)).start()
while True:
try:
conn, remote = gdbserver.accept()
if conn:
logger.info(f"Accepted GDB connection from {remote}")
gdb_stub.run(conn)
except KeyboardInterrupt:
break
gdbserver.close()
if __name__ == "__main__":
main(arg_parser())