nuttx/crypto/cryptosoft.c

1325 lines
34 KiB
C
Raw Normal View History

/****************************************************************************
* crypto/cryptosoft.c
* $OpenBSD: cryptosoft.c,v 1.71 2014/07/13 23:24:47 deraadt Exp $
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <assert.h>
#include <errno.h>
#include <endian.h>
#include <nuttx/kmalloc.h>
#include <crypto/bn.h>
#include <crypto/cryptodev.h>
#include <crypto/cryptosoft.h>
#include <crypto/curve25519.h>
#include <crypto/xform.h>
#include <sys/param.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
#ifndef howmany
# define howmany(x, y) (((x) + ((y) - 1)) / (y))
#endif
/****************************************************************************
* Private Data
****************************************************************************/
FAR struct swcr_data **swcr_sessions = NULL;
uint32_t swcr_sesnum = 0;
int swcr_id = -1;
/****************************************************************************
* Public Functions
****************************************************************************/
/* Apply a symmetric encryption/decryption algorithm. */
int swcr_encdec(FAR struct cryptop *crp, FAR struct cryptodesc *crd,
FAR struct swcr_data *sw, caddr_t buf)
{
unsigned char blk[EALG_MAX_BLOCK_LEN];
FAR unsigned char *iv;
FAR unsigned char *ivp;
FAR unsigned char *nivp;
unsigned char iv2[EALG_MAX_BLOCK_LEN];
FAR const struct enc_xform *exf;
int i;
int j;
int blks;
int ivlen;
exf = sw->sw_exf;
blks = exf->blocksize;
ivlen = exf->ivsize;
/* Initialize the IV */
if (crd->crd_flags & CRD_F_ENCRYPT)
{
/* Do we need to write the IV */
if (!(crd->crd_flags & CRD_F_IV_PRESENT))
{
arc4random_buf(crd->crd_iv, ivlen);
bcopy(crd->crd_iv, buf + crd->crd_inject, ivlen);
}
}
else
{
/* Decryption */
/* IV explicitly provided ? */
if (!(crd->crd_flags & CRD_F_IV_EXPLICIT))
{
/* Get IV off buf */
bcopy(buf + crd->crd_inject, crd->crd_iv, ivlen);
}
}
iv = crd->crd_iv;
ivp = iv;
/* xforms that provide a reinit method perform all IV
* handling themselves.
*/
if (exf->reinit)
{
exf->reinit((caddr_t)sw->sw_kschedule, iv);
}
i = crd->crd_len;
buf = buf + crd->crd_skip;
while (i > 0)
{
bcopy(buf, blk, exf->blocksize);
buf += exf->blocksize;
if (exf->reinit)
{
if (crd->crd_flags & CRD_F_ENCRYPT)
{
exf->encrypt((caddr_t)sw->sw_kschedule,
blk);
}
else
{
exf->decrypt((caddr_t)sw->sw_kschedule,
blk);
}
}
else if (crd->crd_flags & CRD_F_ENCRYPT)
{
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
exf->encrypt((caddr_t)sw->sw_kschedule, blk);
/* Keep encrypted block for XOR'ng
* with next block
*/
bcopy(blk, iv, blks);
ivp = iv;
}
else
{
/* decrypt */
/* Keep encrypted block for XOR'ing
* with next block
*/
nivp = (ivp == iv) ? iv2 : iv;
bcopy(blk, nivp, blks);
exf->decrypt((caddr_t)sw->sw_kschedule, blk);
/* XOR with previous block */
for (j = 0; j < blks; j++)
{
blk[j] ^= ivp[j];
}
ivp = nivp;
}
bcopy(blk, crp->crp_dst, exf->blocksize);
crp->crp_dst += exf->blocksize;
i -= blks;
/* Could be done... */
if (i == 0)
{
break;
}
}
bcopy(ivp, crp->crp_iv, ivlen);
return 0; /* Done with encryption/decryption */
}
/* Compute keyed-hash authenticator. */
int swcr_authcompute(FAR struct cryptop *crp,
FAR struct cryptodesc *crd,
FAR struct swcr_data *sw,
caddr_t buf)
{
unsigned char aalg[AALG_MAX_RESULT_LEN];
FAR const struct auth_hash *axf = sw->sw_axf;
int err;
if (sw->sw_ictx == 0)
{
return -EINVAL;
}
err = axf->update(&sw->sw_ctx, (FAR uint8_t *)buf + crd->crd_skip,
crd->crd_len);
if (err)
{
return err;
}
if (crd->crd_flags & CRD_F_ESN)
{
axf->update(&sw->sw_ctx, crd->crd_esn, 4);
}
switch (sw->sw_alg)
{
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
if (sw->sw_octx == NULL)
{
return -EINVAL;
}
if (crd->crd_flags & CRD_F_UPDATE)
{
break;
}
axf->final(aalg, &sw->sw_ctx);
bcopy(sw->sw_octx, &sw->sw_ctx, axf->ctxsize);
axf->update(&sw->sw_ctx, aalg, axf->hashsize);
axf->final((FAR uint8_t *)crp->crp_mac, &sw->sw_ctx);
bcopy(sw->sw_ictx, &sw->sw_ctx, axf->ctxsize);
break;
}
return 0;
}
int swcr_hash(FAR struct cryptop *crp,
FAR struct cryptodesc *crd,
FAR struct swcr_data *sw,
caddr_t buf)
{
FAR const struct auth_hash *axf = sw->sw_axf;
if (crd->crd_flags & CRD_F_UPDATE)
{
return axf->update(&sw->sw_ctx, (FAR uint8_t *)buf + crd->crd_skip,
crd->crd_len);
}
else
{
axf->final((FAR uint8_t *)crp->crp_mac, &sw->sw_ctx);
}
return 0;
}
/* Apply a combined encryption-authentication transformation */
int swcr_authenc(FAR struct cryptop *crp)
{
uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))];
FAR u_char *blk = (u_char *)blkbuf;
u_char aalg[AALG_MAX_RESULT_LEN];
u_char iv[EALG_MAX_BLOCK_LEN];
union authctx ctx;
FAR struct cryptodesc *crd;
FAR struct cryptodesc *crda = NULL;
FAR struct cryptodesc *crde = NULL;
FAR struct swcr_data *sw;
FAR struct swcr_data *swa;
FAR struct swcr_data *swe = NULL;
FAR const struct auth_hash *axf = NULL;
FAR const struct enc_xform *exf = NULL;
caddr_t buf = (caddr_t)crp->crp_buf;
caddr_t aad = (caddr_t)crp->crp_aad;
FAR uint32_t *blkp;
int blksz = 0;
int ivlen = 0;
int iskip = 0;
int oskip = 0;
int aadlen;
int len;
int i;
for (crd = crp->crp_desc; crd; crd = crd->crd_next)
{
for (sw = swcr_sessions[crp->crp_sid & 0xffffffff];
sw && sw->sw_alg != crd->crd_alg;
sw = sw->sw_next);
if (sw == NULL)
{
return -EINVAL;
}
switch (sw->sw_alg)
{
case CRYPTO_AES_GCM_16:
case CRYPTO_AES_GMAC:
case CRYPTO_AES_CMAC:
case CRYPTO_CHACHA20_POLY1305:
swe = sw;
crde = crd;
exf = swe->sw_exf;
ivlen = exf->ivsize;
break;
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
case CRYPTO_AES_128_CMAC:
case CRYPTO_CHACHA20_POLY1305_MAC:
swa = sw;
crda = crd;
axf = swa->sw_axf;
if (swa->sw_ictx == 0)
{
return -EINVAL;
}
bcopy(swa->sw_ictx, &ctx, axf->ctxsize);
blksz = axf->blocksize;
break;
default:
return -EINVAL;
}
}
if (crde == NULL || crda == NULL)
{
return -EINVAL;
}
/* Initialize the IV */
if (crde->crd_flags & CRD_F_ENCRYPT)
{
/* IV explicitly provided ? */
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
{
bcopy(crde->crd_iv, iv, ivlen);
}
else
{
arc4random_buf(iv, ivlen);
}
if (!((crde->crd_flags) & CRD_F_IV_PRESENT))
{
bcopy(iv, buf + crde->crd_inject, ivlen);
}
}
else
{
/* Decryption */
/* IV explicitly provided ? */
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
{
bcopy(crde->crd_iv, iv, ivlen);
}
else
{
/* Get IV off buf */
bcopy(iv, buf + crde->crd_inject, ivlen);
}
}
/* Supply MAC with IV */
if (axf->reinit)
{
axf->reinit(&ctx, iv, ivlen);
}
/* Supply MAC with AAD */
if (aad)
{
aadlen = crda->crd_len;
/* Section 5 of RFC 4106 specifies that AAD construction consists of
* {SPI, ESN, SN} whereas the real packet contains only {SPI, SN}.
* Unfortunately it doesn't follow a good example set in the Section
* 3.3.2.1 of RFC 4303 where upper part of the ESN, located in the
* external (to the packet) memory buffer, is processed by the hash
* function in the end thus allowing to retain simple programming
* interfaces and avoid kludges like the one below.
*/
if (crda->crd_flags & CRD_F_ESN)
{
aadlen += 4;
/* SPI */
bcopy(buf + crda->crd_skip, blk, 4);
iskip = 4; /* loop below will start with an offset of 4 */
/* ESN */
bcopy(crda->crd_esn, blk + 4, 4);
oskip = iskip + 4; /* offset output buffer blk by 8 */
}
for (i = iskip; i < crda->crd_len; i += axf->hashsize)
{
len = MIN(crda->crd_len - i, axf->hashsize - oskip);
bcopy(buf + crda->crd_skip + i, blk + oskip, len);
bzero(blk + len + oskip, axf->hashsize - len - oskip);
axf->update(&ctx, blk, axf->hashsize);
oskip = 0; /* reset initial output offset */
}
}
if (exf->reinit)
{
exf->reinit((caddr_t)swe->sw_kschedule, iv);
}
/* Do encryption/decryption with MAC */
if (buf)
{
for (i = 0; i < crde->crd_len; i += blksz)
{
len = MIN(crde->crd_len - i, blksz);
if (len < blksz)
{
bzero(blk, blksz);
}
bcopy(buf + i, blk, len);
if (crde->crd_flags & CRD_F_ENCRYPT)
{
exf->encrypt((caddr_t)swe->sw_kschedule, blk);
axf->update(&ctx, blk, len);
}
else
{
axf->update(&ctx, blk, len);
exf->decrypt((caddr_t)swe->sw_kschedule, blk);
}
if (crp->crp_dst)
{
bcopy(blk, crp->crp_dst + i, len);
}
}
}
/* Do any required special finalization */
if (crp->crp_mac)
{
switch (crda->crd_alg)
{
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
/* length block */
bzero(blk, axf->hashsize);
blkp = (uint32_t *)blk + 1;
*blkp = htobe32(aadlen * 8);
blkp = (uint32_t *)blk + 3;
*blkp = htobe32(crde->crd_len * 8);
axf->update(&ctx, blk, axf->hashsize);
break;
case CRYPTO_CHACHA20_POLY1305_MAC:
/* length block */
bzero(blk, axf->hashsize);
blkp = (uint32_t *)blk;
*blkp = htole32(aadlen);
blkp = (uint32_t *)blk + 2;
*blkp = htole32(crde->crd_len);
axf->update(&ctx, blk, axf->hashsize);
break;
}
/* Finalize MAC */
axf->final(aalg, &ctx);
/* Inject the authentication data */
bcopy(aalg, crp->crp_mac, axf->authsize);
}
return 0;
}
/* Apply a compression/decompression algorithm */
int swcr_compdec(FAR struct cryptodesc *crd, FAR struct swcr_data *sw,
caddr_t buf, int outtype)
{
FAR uint8_t *data;
FAR uint8_t *out;
FAR const struct comp_algo *cxf;
uint32_t result;
cxf = sw->sw_cxf;
/* We must handle the whole buffer of data in one time
* then if there is not all the data in the mbuf, we must
* copy in a buffer.
*/
data = kmm_malloc(crd->crd_len);
if (data == NULL)
{
return -EINVAL;
}
bcopy(buf + crd->crd_skip, data, crd->crd_len);
if (crd->crd_flags & CRD_F_COMP)
{
result = cxf->compress(data, crd->crd_len, &out);
}
else
{
result = cxf->decompress(data, crd->crd_len, &out);
}
kmm_free(data);
if (result == 0)
{
return -EINVAL;
}
sw->sw_size = result;
/* Check the compressed size when doing compression */
if (crd->crd_flags & CRD_F_COMP)
{
if (result > crd->crd_len)
{
/* Compression was useless, we lost time */
kmm_free(out);
return 0;
}
}
bcopy(out, buf + crd->crd_skip, result);
kmm_free(out);
return 0;
}
/* Generate a new software session. */
int swcr_newsession(FAR uint32_t *sid, FAR struct cryptoini *cri)
{
FAR struct swcr_data **swd;
FAR const struct auth_hash *axf;
FAR const struct enc_xform *txf;
uint32_t i;
int k;
if (sid == NULL || cri == NULL)
{
return -EINVAL;
}
if (swcr_sessions)
{
for (i = 1; i < swcr_sesnum; i++)
{
if (swcr_sessions[i] == NULL)
{
break;
}
}
}
if (swcr_sessions == NULL || i == swcr_sesnum)
{
if (swcr_sessions == NULL)
{
i = 1; /* We leave swcr_sessions[0] empty */
swcr_sesnum = CRYPTO_SW_SESSIONS;
}
else
{
swcr_sesnum *= 2;
}
swd = kmm_calloc(swcr_sesnum, sizeof(struct swcr_data *));
if (swd == NULL)
{
/* Reset session number */
if (swcr_sesnum == CRYPTO_SW_SESSIONS)
{
swcr_sesnum = 0;
}
else
{
swcr_sesnum /= 2;
}
return -ENOBUFS;
}
/* Copy existing sessions */
if (swcr_sessions)
{
bcopy(swcr_sessions, swd,
(swcr_sesnum / 2) * sizeof(struct swcr_data *));
kmm_free(swcr_sessions);
}
swcr_sessions = swd;
}
swd = &swcr_sessions[i];
*sid = i;
while (cri)
{
*swd = kmm_zalloc(sizeof(struct swcr_data));
if (*swd == NULL)
{
swcr_freesession(i);
return -ENOBUFS;
}
switch (cri->cri_alg)
{
case CRYPTO_3DES_CBC:
txf = &enc_xform_3des;
goto enccommon;
case CRYPTO_BLF_CBC:
txf = &enc_xform_blf;
goto enccommon;
case CRYPTO_CAST_CBC:
txf = &enc_xform_cast5;
goto enccommon;
case CRYPTO_AES_CBC:
txf = &enc_xform_aes;
goto enccommon;
case CRYPTO_AES_CTR:
txf = &enc_xform_aes_ctr;
goto enccommon;
case CRYPTO_AES_XTS:
txf = &enc_xform_aes_xts;
goto enccommon;
case CRYPTO_AES_GCM_16:
txf = &enc_xform_aes_gcm;
goto enccommon;
case CRYPTO_AES_GMAC:
txf = &enc_xform_aes_gmac;
(*swd)->sw_exf = txf;
break;
case CRYPTO_AES_CMAC:
txf = &enc_xform_aes_cmac;
(*swd)->sw_exf = txf;
break;
case CRYPTO_AES_OFB:
txf = &enc_xform_aes_ofb;
goto enccommon;
case CRYPTO_AES_CFB_8:
txf = &enc_xform_aes_cfb_8;
goto enccommon;
case CRYPTO_AES_CFB_128:
txf = &enc_xform_aes_cfb_128;
goto enccommon;
case CRYPTO_CHACHA20_POLY1305:
txf = &enc_xform_chacha20_poly1305;
goto enccommon;
case CRYPTO_NULL:
txf = &enc_xform_null;
goto enccommon;
enccommon:
if (txf->ctxsize > 0)
{
(*swd)->sw_kschedule = kmm_zalloc(txf->ctxsize);
if ((*swd)->sw_kschedule == NULL)
{
swcr_freesession(i);
return -EINVAL;
}
}
if (cri->cri_klen / 8 > txf->maxkey ||
cri->cri_klen / 8 < txf->minkey)
{
swcr_freesession(i);
return -EINVAL;
}
if (txf->setkey((*swd)->sw_kschedule,
(FAR uint8_t *)cri->cri_key,
cri->cri_klen / 8) < 0)
{
swcr_freesession(i);
return -EINVAL;
}
(*swd)->sw_exf = txf;
break;
case CRYPTO_MD5_HMAC:
axf = &auth_hash_hmac_md5_96;
goto authcommon;
case CRYPTO_SHA1_HMAC:
axf = &auth_hash_hmac_sha1_96;
goto authcommon;
case CRYPTO_RIPEMD160_HMAC:
axf = &auth_hash_hmac_ripemd_160_96;
goto authcommon;
case CRYPTO_SHA2_256_HMAC:
axf = &auth_hash_hmac_sha2_256_128;
goto authcommon;
case CRYPTO_SHA2_384_HMAC:
axf = &auth_hash_hmac_sha2_384_192;
goto authcommon;
case CRYPTO_SHA2_512_HMAC:
axf = &auth_hash_hmac_sha2_512_256;
authcommon:
(*swd)->sw_ictx = kmm_malloc(axf->ctxsize);
if ((*swd)->sw_ictx == NULL)
{
swcr_freesession(i);
return -ENOBUFS;
}
(*swd)->sw_octx = kmm_malloc(axf->ctxsize);
if ((*swd)->sw_octx == NULL)
{
swcr_freesession(i);
return -ENOBUFS;
}
if (cri->cri_klen / 8 > axf->keysize)
{
swcr_freesession(i);
return -EINVAL;
}
for (k = 0; k < cri->cri_klen / 8; k++)
{
cri->cri_key[k] ^= HMAC_IPAD_VAL;
}
axf->init((*swd)->sw_ictx);
axf->update((*swd)->sw_ictx, (FAR uint8_t *)cri->cri_key,
cri->cri_klen / 8);
axf->update((*swd)->sw_ictx, hmac_ipad_buffer,
axf->blocksize - (cri->cri_klen / 8));
for (k = 0; k < cri->cri_klen / 8; k++)
{
cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
}
axf->init((*swd)->sw_octx);
axf->update((*swd)->sw_octx, (FAR uint8_t *)cri->cri_key,
cri->cri_klen / 8);
axf->update((*swd)->sw_octx, hmac_opad_buffer,
axf->blocksize - (cri->cri_klen / 8));
for (k = 0; k < cri->cri_klen / 8; k++)
{
cri->cri_key[k] ^= HMAC_OPAD_VAL;
}
(*swd)->sw_axf = axf;
bcopy((*swd)->sw_ictx, &(*swd)->sw_ctx, axf->ctxsize);
break;
case CRYPTO_MD5:
axf = &auth_hash_md5;
goto auth3common;
case CRYPTO_RIPEMD160:
axf = &auth_hash_ripemd_160;
goto auth3common;
case CRYPTO_SHA1:
axf = &auth_hash_sha1;
goto auth3common;
case CRYPTO_SHA2_224:
axf = &auth_hash_sha2_224;
goto auth3common;
case CRYPTO_SHA2_256:
axf = &auth_hash_sha2_256;
goto auth3common;
case CRYPTO_SHA2_384:
axf = &auth_hash_sha2_384;
goto auth3common;
case CRYPTO_SHA2_512:
axf = &auth_hash_sha2_512;
auth3common:
(*swd)->sw_ictx = kmm_zalloc(axf->ctxsize);
if ((*swd)->sw_ictx == NULL)
{
swcr_freesession(i);
return -ENOBUFS;
}
axf->init((*swd)->sw_ictx);
(*swd)->sw_axf = axf;
bcopy((*swd)->sw_ictx, &(*swd)->sw_ctx, axf->ctxsize);
if (cri->cri_sid != -1)
{
if (swcr_sessions[cri->cri_sid] == NULL)
{
swcr_freesession(i);
return -EINVAL;
}
bcopy(&swcr_sessions[cri->cri_sid]->sw_ctx, &(*swd)->sw_ctx,
axf->ctxsize);
}
break;
case CRYPTO_AES_128_GMAC:
axf = &auth_hash_gmac_aes_128;
goto auth4common;
case CRYPTO_AES_192_GMAC:
axf = &auth_hash_gmac_aes_192;
goto auth4common;
case CRYPTO_AES_256_GMAC:
axf = &auth_hash_gmac_aes_256;
goto auth4common;
case CRYPTO_AES_128_CMAC:
axf = &auth_hash_cmac_aes_128;
goto auth4common;
case CRYPTO_POLY1305:
axf = &auth_hash_poly1305;
goto auth4common;
case CRYPTO_CRC32:
axf = &auth_hash_crc32;
goto auth4common;
case CRYPTO_CHACHA20_POLY1305_MAC:
axf = &auth_hash_chacha20_poly1305;
auth4common:
(*swd)->sw_ictx = kmm_malloc(axf->ctxsize);
if ((*swd)->sw_ictx == NULL)
{
swcr_freesession(i);
return -ENOBUFS;
}
axf->init((*swd)->sw_ictx);
axf->setkey((*swd)->sw_ictx, (FAR uint8_t *)cri->cri_key,
cri->cri_klen / 8);
bcopy((*swd)->sw_ictx, &(*swd)->sw_ctx, axf->ctxsize);
(*swd)->sw_axf = axf;
break;
case CRYPTO_ESN:
/* nothing to do */
break;
default:
swcr_freesession(i);
return -EINVAL;
}
(*swd)->sw_alg = cri->cri_alg;
cri = cri->cri_next;
swd = &((*swd)->sw_next);
}
return 0;
}
/* Free a session. */
int swcr_freesession(uint64_t tid)
{
FAR struct swcr_data *swd;
FAR const struct enc_xform *txf;
FAR const struct auth_hash *axf;
uint32_t sid = ((uint32_t) tid) & 0xffffffff;
if (sid > swcr_sesnum || swcr_sessions == NULL ||
swcr_sessions[sid] == NULL)
{
return -EINVAL;
}
/* Silently accept and return */
if (sid == 0)
{
return 0;
}
while ((swd = swcr_sessions[sid]) != NULL)
{
swcr_sessions[sid] = swd->sw_next;
switch (swd->sw_alg)
{
case CRYPTO_3DES_CBC:
case CRYPTO_BLF_CBC:
case CRYPTO_CAST_CBC:
case CRYPTO_RIJNDAEL128_CBC:
case CRYPTO_AES_CTR:
case CRYPTO_AES_XTS:
case CRYPTO_AES_GCM_16:
case CRYPTO_AES_GMAC:
case CRYPTO_AES_CMAC:
case CRYPTO_AES_OFB:
case CRYPTO_AES_CFB_8:
case CRYPTO_AES_CFB_128:
case CRYPTO_CHACHA20_POLY1305:
case CRYPTO_NULL:
txf = swd->sw_exf;
if (swd->sw_kschedule)
{
explicit_bzero(swd->sw_kschedule, txf->ctxsize);
kmm_free(swd->sw_kschedule);
}
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
axf = swd->sw_axf;
if (swd->sw_ictx)
{
explicit_bzero(swd->sw_ictx, axf->ctxsize);
kmm_free(swd->sw_ictx);
}
if (swd->sw_octx)
{
explicit_bzero(swd->sw_octx, axf->ctxsize);
kmm_free(swd->sw_octx);
}
break;
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
case CRYPTO_AES_128_CMAC:
case CRYPTO_CHACHA20_POLY1305_MAC:
case CRYPTO_MD5:
case CRYPTO_POLY1305:
case CRYPTO_RIPEMD160:
case CRYPTO_SHA1:
case CRYPTO_SHA2_224:
case CRYPTO_SHA2_256:
case CRYPTO_SHA2_384:
case CRYPTO_SHA2_512:
case CRYPTO_CRC32:
axf = swd->sw_axf;
if (swd->sw_ictx)
{
explicit_bzero(swd->sw_ictx, axf->ctxsize);
kmm_free(swd->sw_ictx);
}
break;
}
kmm_free(swd);
}
return 0;
}
/* Process a software request. */
int swcr_process(struct cryptop *crp)
{
FAR const struct enc_xform *txf;
FAR struct cryptodesc *crd;
FAR struct swcr_data *sw;
uint32_t lid;
/* Sanity check */
if (crp == NULL)
{
return -EINVAL;
}
if (crp->crp_desc == NULL || crp->crp_buf == NULL)
{
crp->crp_etype = -EINVAL;
goto done;
}
lid = crp->crp_sid & 0xffffffff;
if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL)
{
crp->crp_etype = -ENOENT;
goto done;
}
/* Go through crypto descriptors, processing as we go */
for (crd = crp->crp_desc; crd; crd = crd->crd_next)
{
/* Find the crypto context.
* XXX Note that the logic here prevents us from having
* XXX the same algorithm multiple times in a session
* XXX (or rather, we can but it won't give us the right
* XXX results). To do that, we'd need some way of differentiating
* XXX between the various instances of an algorithm (so we can
* XXX locate the correct crypto context).
*/
for (sw = swcr_sessions[lid];
sw && sw->sw_alg != crd->crd_alg;
sw = sw->sw_next);
/* No such context ? */
if (sw == NULL)
{
crp->crp_etype = -EINVAL;
goto done;
}
switch (sw->sw_alg)
{
case CRYPTO_NULL:
{
break;
}
case CRYPTO_3DES_CBC:
case CRYPTO_BLF_CBC:
case CRYPTO_CAST_CBC:
case CRYPTO_RIJNDAEL128_CBC:
case CRYPTO_AES_CTR:
case CRYPTO_AES_XTS:
case CRYPTO_AES_OFB:
case CRYPTO_AES_CFB_8:
case CRYPTO_AES_CFB_128:
txf = sw->sw_exf;
if (crp->crp_iv)
{
if (!(crd->crd_flags & CRD_F_IV_EXPLICIT))
{
bcopy(crp->crp_iv, crd->crd_iv, txf->ivsize);
crd->crd_flags |= CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT;
crd->crd_skip = 0;
}
}
else
{
crd->crd_flags |= CRD_F_IV_PRESENT;
crd->crd_skip = txf->blocksize;
crd->crd_len -= txf->blocksize;
}
if ((crp->crp_etype = swcr_encdec(crp, crd, sw,
crp->crp_buf)) != 0)
{
goto done;
}
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
crp->crp_buf)) != 0)
{
goto done;
}
break;
case CRYPTO_MD5:
case CRYPTO_POLY1305:
case CRYPTO_RIPEMD160:
case CRYPTO_SHA1:
case CRYPTO_SHA2_224:
case CRYPTO_SHA2_256:
case CRYPTO_SHA2_384:
case CRYPTO_SHA2_512:
case CRYPTO_CRC32:
if ((crp->crp_etype = swcr_hash(crp, crd, sw,
crp->crp_buf)) != 0)
{
goto done;
}
break;
case CRYPTO_AES_GCM_16:
case CRYPTO_AES_GMAC:
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
case CRYPTO_AES_128_CMAC:
case CRYPTO_CHACHA20_POLY1305:
case CRYPTO_CHACHA20_POLY1305_MAC:
crp->crp_etype = swcr_authenc(crp);
goto done;
break;
default:
/* Unknown/unsupported algorithm */
crp->crp_etype = -EINVAL;
goto done;
}
}
done:
return 0;
}
static int swcr_dh_make_public(FAR struct cryptkop *krp)
{
/* Curve25519 is used for testing. In fact,
* the four parameters of this interface are p, g, x, gx
* p: used to determine the conic curve;
* g: the base point of the curve;
* x: the private key produced by random;
* gx: the public key generated by the private key,
* which could be caculated by gx = g ^ x mod p;
* In curve25519, p and g are fixed.
*/
uint8_t *secret = (uint8_t *)krp->krp_param[2].crp_p;
uint8_t *public = (uint8_t *)krp->krp_param[3].crp_p;
curve25519_generate_secret(secret);
return curve25519_generate_public(public, secret);
}
static int swcr_dh_make_common(FAR struct cryptkop *krp)
{
/* Curve25519 is used for testing. In fact,
* the four parameters of this interface are:
* public key / private key / p (the conic curve) / shared key
*/
uint8_t *public = (uint8_t *)krp->krp_param[0].crp_p;
uint8_t *secret = (uint8_t *)krp->krp_param[1].crp_p;
uint8_t *shared = (uint8_t *)krp->krp_param[3].crp_p;
return curve25519(shared, secret, public);
}
int swcr_rsa_verify(struct cryptkop *krp)
{
uint8_t *exp = (uint8_t *)krp->krp_param[0].crp_p;
uint8_t *modulus = (uint8_t *)krp->krp_param[1].crp_p;
uint8_t *sig = (uint8_t *)krp->krp_param[2].crp_p;
uint8_t *hash = (uint8_t *)krp->krp_param[3].crp_p;
uint8_t *padding = (uint8_t *)krp->krp_param[4].crp_p;
int exp_len = krp->krp_param[0].crp_nbits / 8;
int modulus_len = krp->krp_param[1].crp_nbits / 8;
int sig_len = krp->krp_param[2].crp_nbits / 8;
int hash_len = krp->krp_param[3].crp_nbits / 8;
int padding_len = krp->krp_param[4].crp_nbits / 8;
struct bn a;
struct bn e;
struct bn n;
struct bn r;
bignum_init(&a);
bignum_init(&e);
bignum_init(&n);
bignum_init(&r);
memcpy(e.array, exp, exp_len);
memcpy(n.array, modulus, modulus_len);
memcpy(a.array, sig, sig_len);
pow_mod_faster(&a, &e, &n, &r);
return !!memcmp(r.array, hash, hash_len) +
!!memcmp(r.array + hash_len, padding, padding_len);
}
int swcr_kprocess(struct cryptkop *krp)
{
/* Sanity check */
if (krp == NULL)
{
return -EINVAL;
}
/* Go through crypto descriptors, processing as we go */
switch (krp->krp_op)
{
case CRK_DH_MAKE_PUBLIC:
if ((krp->krp_status = swcr_dh_make_public(krp) != 0))
{
goto done;
}
break;
case CRK_DH_COMPUTE_KEY:
if ((krp->krp_status = swcr_dh_make_common(krp)) != 0)
{
goto done;
}
break;
case CRK_RSA_PKCS15_VERIFY:
if ((krp->krp_status = swcr_rsa_verify(krp)) != 0)
{
goto done;
}
break;
default:
/* Unknown/unsupported algorithm */
krp->krp_status = -EINVAL;
goto done;
}
done:
return 0;
}
/* Initialize the driver, called from the kernel main(). */
void swcr_init(void)
{
int algs[CRYPTO_ALGORITHM_MAX + 1];
int kalgs[CRK_ALGORITHM_MAX + 1];
int flags = CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_ENCRYPT_MAC |
CRYPTOCAP_F_MAC_ENCRYPT;
swcr_id = crypto_get_driverid(flags);
if (swcr_id < 0)
{
/* This should never happen */
PANIC();
}
algs[CRYPTO_3DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_BLF_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_CAST_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_RIJNDAEL128_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_CTR] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_XTS] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_GCM_16] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_NULL] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_128_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_192_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_256_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_OFB] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_CFB_8] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_CFB_128] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_CHACHA20_POLY1305] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_CHACHA20_POLY1305_MAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_MD5] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_POLY1305] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_RIPEMD160] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA1] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_224] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_256] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_384] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_512] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_CRC32] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_CMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_128_CMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_ESN] = CRYPTO_ALG_FLAG_SUPPORTED;
crypto_register(swcr_id, algs, swcr_newsession,
swcr_freesession, swcr_process);
kalgs[CRK_DH_MAKE_PUBLIC] = CRYPTO_ALG_FLAG_SUPPORTED;
kalgs[CRK_DH_COMPUTE_KEY] = CRYPTO_ALG_FLAG_SUPPORTED;
kalgs[CRK_RSA_PKCS15_VERIFY] = CRYPTO_ALG_FLAG_SUPPORTED;
crypto_kregister(swcr_id, kalgs, swcr_kprocess);
}