libs: workaround for Visual Studio(MSVC) Compiler Error C2124
D:\archer\code\nuttx\libs\libc\stdlib\lib_strtod.c: error C2124: divide or mod by zero Windows MSVC restrictions, MSVC doesn't allow division through a zero literal, but allows it through const variable set to zero Reference: https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/compiler-error-c2124?view=msvc-170 Signed-off-by: chao an <anchao@xiaomi.com>
This commit is contained in:
parent
86aed87487
commit
634baa5a2f
@ -74,15 +74,19 @@
|
|||||||
|
|
||||||
/* General Constants ********************************************************/
|
/* General Constants ********************************************************/
|
||||||
|
|
||||||
#define INFINITY (1.0/0.0)
|
#ifndef _HUGE_ENUF
|
||||||
#define NAN (0.0/0.0)
|
# define _HUGE_ENUF (1e+300) /* _HUGE_ENUF*_HUGE_ENUF must overflow */
|
||||||
#define HUGE_VAL INFINITY
|
#endif
|
||||||
|
|
||||||
#define INFINITY_F (1.0F/0.0F)
|
#define INFINITY ((double)(_HUGE_ENUF * _HUGE_ENUF))
|
||||||
#define NAN_F (0.0F/0.0F)
|
#define NAN ((double)(INFINITY * 0.0F))
|
||||||
|
#define HUGE_VAL INFINITY
|
||||||
|
|
||||||
#define INFINITY_L (1.0L/0.0L)
|
#define INFINITY_F ((float)INFINITY)
|
||||||
#define NAN_L (0.0L/0.0L)
|
#define NAN_F ((float)(INFINITY * 0.0F))
|
||||||
|
|
||||||
|
#define INFINITY_L ((long double)INFINITY)
|
||||||
|
#define NAN_L ((long double)(INFINITY * 0.0F))
|
||||||
|
|
||||||
#define isnan(x) ((x) != (x))
|
#define isnan(x) ((x) != (x))
|
||||||
#define isnanf(x) ((x) != (x))
|
#define isnanf(x) ((x) != (x))
|
||||||
|
@ -32,9 +32,12 @@
|
|||||||
*
|
*
|
||||||
****************************************************************************/
|
****************************************************************************/
|
||||||
|
|
||||||
/* "A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964)
|
/* "A Precision Approximation of the Gamma Function"
|
||||||
* "Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001)
|
* - Cornelius Lanczos (1964)
|
||||||
* "An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004)
|
* "Lanczos Implementation of the Gamma Function"
|
||||||
|
* - Paul Godfrey (2001)
|
||||||
|
* "An Analysis of the Lanczos Gamma Approximation"
|
||||||
|
* - Glendon Ralph Pugh (2004)
|
||||||
*
|
*
|
||||||
* Approximation method:
|
* Approximation method:
|
||||||
*
|
*
|
||||||
@ -133,9 +136,10 @@ static const double g_sden[N + 1] =
|
|||||||
static const double g_fact[] =
|
static const double g_fact[] =
|
||||||
{
|
{
|
||||||
1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0,
|
1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0,
|
||||||
479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0,
|
479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0,
|
||||||
355687428096000.0, 6402373705728000.0, 121645100408832000.0,
|
20922789888000.0, 355687428096000.0, 6402373705728000.0,
|
||||||
2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0,
|
121645100408832000.0, 2432902008176640000.0, 51090942171709440000.0,
|
||||||
|
1124000727777607680000.0,
|
||||||
};
|
};
|
||||||
|
|
||||||
/* S(x) rational function for positive x */
|
/* S(x) rational function for positive x */
|
||||||
@ -151,6 +155,7 @@ static double sinpi(double x)
|
|||||||
int n;
|
int n;
|
||||||
|
|
||||||
/* argument reduction: x = |x| mod 2 */
|
/* argument reduction: x = |x| mod 2 */
|
||||||
|
|
||||||
/* spurious inexact when x is odd int */
|
/* spurious inexact when x is odd int */
|
||||||
|
|
||||||
x = x * 0.5;
|
x = x * 0.5;
|
||||||
@ -205,7 +210,7 @@ static double s(double x)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return num/den;
|
return num / den;
|
||||||
}
|
}
|
||||||
|
|
||||||
/****************************************************************************
|
/****************************************************************************
|
||||||
@ -219,6 +224,7 @@ double tgamma(double x)
|
|||||||
double f;
|
double f;
|
||||||
uint64_t i;
|
uint64_t i;
|
||||||
} u;
|
} u;
|
||||||
|
|
||||||
u.f = x;
|
u.f = x;
|
||||||
|
|
||||||
double absx;
|
double absx;
|
||||||
@ -241,17 +247,19 @@ double tgamma(double x)
|
|||||||
if (ix < (0x3ff - 54) << 20)
|
if (ix < (0x3ff - 54) << 20)
|
||||||
{
|
{
|
||||||
/* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
|
/* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
|
||||||
|
|
||||||
return 1 / x;
|
return 1 / x;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* integer arguments */
|
/* integer arguments */
|
||||||
|
|
||||||
/* raise inexact when non-integer */
|
/* raise inexact when non-integer */
|
||||||
|
|
||||||
if (x == floor(x))
|
if (x == floor(x))
|
||||||
{
|
{
|
||||||
if (sign)
|
if (sign)
|
||||||
{
|
{
|
||||||
return 0 / 0.0;
|
return NAN;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (x <= sizeof g_fact / sizeof *g_fact)
|
if (x <= sizeof g_fact / sizeof *g_fact)
|
||||||
@ -261,6 +269,7 @@ double tgamma(double x)
|
|||||||
}
|
}
|
||||||
|
|
||||||
/* x >= 172: tgamma(x)=inf with overflow */
|
/* x >= 172: tgamma(x)=inf with overflow */
|
||||||
|
|
||||||
/* x =< -184: tgamma(x)=+-0 with underflow */
|
/* x =< -184: tgamma(x)=+-0 with underflow */
|
||||||
|
|
||||||
if (ix >= 0x40670000)
|
if (ix >= 0x40670000)
|
||||||
@ -269,11 +278,13 @@ double tgamma(double x)
|
|||||||
|
|
||||||
if (sign)
|
if (sign)
|
||||||
{
|
{
|
||||||
FORCE_EVAL((float)(0x1p-126 / x));
|
FORCE_EVAL((float)(ldexp(1.0, -126) / x));
|
||||||
|
|
||||||
if (floor(x) * 0.5 == floor(x * 0.5))
|
if (floor(x) * 0.5 == floor(x * 0.5))
|
||||||
{
|
{
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
return -0.0;
|
return -0.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -302,6 +313,7 @@ double tgamma(double x)
|
|||||||
if (x < 0)
|
if (x < 0)
|
||||||
{
|
{
|
||||||
/* reflection formula for negative x */
|
/* reflection formula for negative x */
|
||||||
|
|
||||||
/* sinpi(absx) is not 0, integers are already handled */
|
/* sinpi(absx) is not 0, integers are already handled */
|
||||||
|
|
||||||
r = -pi / (sinpi(absx) * absx * r);
|
r = -pi / (sinpi(absx) * absx * r);
|
||||||
|
Loading…
Reference in New Issue
Block a user