libs: workaround for Visual Studio(MSVC) Compiler Error C2124
D:\archer\code\nuttx\libs\libc\stdlib\lib_strtod.c: error C2124: divide or mod by zero Windows MSVC restrictions, MSVC doesn't allow division through a zero literal, but allows it through const variable set to zero Reference: https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/compiler-error-c2124?view=msvc-170 Signed-off-by: chao an <anchao@xiaomi.com>
This commit is contained in:
parent
86aed87487
commit
634baa5a2f
@ -74,15 +74,19 @@
|
||||
|
||||
/* General Constants ********************************************************/
|
||||
|
||||
#define INFINITY (1.0/0.0)
|
||||
#define NAN (0.0/0.0)
|
||||
#ifndef _HUGE_ENUF
|
||||
# define _HUGE_ENUF (1e+300) /* _HUGE_ENUF*_HUGE_ENUF must overflow */
|
||||
#endif
|
||||
|
||||
#define INFINITY ((double)(_HUGE_ENUF * _HUGE_ENUF))
|
||||
#define NAN ((double)(INFINITY * 0.0F))
|
||||
#define HUGE_VAL INFINITY
|
||||
|
||||
#define INFINITY_F (1.0F/0.0F)
|
||||
#define NAN_F (0.0F/0.0F)
|
||||
#define INFINITY_F ((float)INFINITY)
|
||||
#define NAN_F ((float)(INFINITY * 0.0F))
|
||||
|
||||
#define INFINITY_L (1.0L/0.0L)
|
||||
#define NAN_L (0.0L/0.0L)
|
||||
#define INFINITY_L ((long double)INFINITY)
|
||||
#define NAN_L ((long double)(INFINITY * 0.0F))
|
||||
|
||||
#define isnan(x) ((x) != (x))
|
||||
#define isnanf(x) ((x) != (x))
|
||||
|
@ -32,9 +32,12 @@
|
||||
*
|
||||
****************************************************************************/
|
||||
|
||||
/* "A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964)
|
||||
* "Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001)
|
||||
* "An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004)
|
||||
/* "A Precision Approximation of the Gamma Function"
|
||||
* - Cornelius Lanczos (1964)
|
||||
* "Lanczos Implementation of the Gamma Function"
|
||||
* - Paul Godfrey (2001)
|
||||
* "An Analysis of the Lanczos Gamma Approximation"
|
||||
* - Glendon Ralph Pugh (2004)
|
||||
*
|
||||
* Approximation method:
|
||||
*
|
||||
@ -133,9 +136,10 @@ static const double g_sden[N + 1] =
|
||||
static const double g_fact[] =
|
||||
{
|
||||
1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0,
|
||||
479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0,
|
||||
355687428096000.0, 6402373705728000.0, 121645100408832000.0,
|
||||
2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0,
|
||||
479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0,
|
||||
20922789888000.0, 355687428096000.0, 6402373705728000.0,
|
||||
121645100408832000.0, 2432902008176640000.0, 51090942171709440000.0,
|
||||
1124000727777607680000.0,
|
||||
};
|
||||
|
||||
/* S(x) rational function for positive x */
|
||||
@ -151,6 +155,7 @@ static double sinpi(double x)
|
||||
int n;
|
||||
|
||||
/* argument reduction: x = |x| mod 2 */
|
||||
|
||||
/* spurious inexact when x is odd int */
|
||||
|
||||
x = x * 0.5;
|
||||
@ -219,6 +224,7 @@ double tgamma(double x)
|
||||
double f;
|
||||
uint64_t i;
|
||||
} u;
|
||||
|
||||
u.f = x;
|
||||
|
||||
double absx;
|
||||
@ -241,17 +247,19 @@ double tgamma(double x)
|
||||
if (ix < (0x3ff - 54) << 20)
|
||||
{
|
||||
/* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
|
||||
|
||||
return 1 / x;
|
||||
}
|
||||
|
||||
/* integer arguments */
|
||||
|
||||
/* raise inexact when non-integer */
|
||||
|
||||
if (x == floor(x))
|
||||
{
|
||||
if (sign)
|
||||
{
|
||||
return 0 / 0.0;
|
||||
return NAN;
|
||||
}
|
||||
|
||||
if (x <= sizeof g_fact / sizeof *g_fact)
|
||||
@ -261,6 +269,7 @@ double tgamma(double x)
|
||||
}
|
||||
|
||||
/* x >= 172: tgamma(x)=inf with overflow */
|
||||
|
||||
/* x =< -184: tgamma(x)=+-0 with underflow */
|
||||
|
||||
if (ix >= 0x40670000)
|
||||
@ -269,11 +278,13 @@ double tgamma(double x)
|
||||
|
||||
if (sign)
|
||||
{
|
||||
FORCE_EVAL((float)(0x1p-126 / x));
|
||||
FORCE_EVAL((float)(ldexp(1.0, -126) / x));
|
||||
|
||||
if (floor(x) * 0.5 == floor(x * 0.5))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -0.0;
|
||||
}
|
||||
|
||||
@ -302,6 +313,7 @@ double tgamma(double x)
|
||||
if (x < 0)
|
||||
{
|
||||
/* reflection formula for negative x */
|
||||
|
||||
/* sinpi(absx) is not 0, integers are already handled */
|
||||
|
||||
r = -pi / (sinpi(absx) * absx * r);
|
||||
|
Loading…
Reference in New Issue
Block a user