Documentation: migrate /syscall
This commit is contained in:
parent
00d14665d1
commit
64b924d18c
@ -19,3 +19,4 @@ NuttX is very feature-rich RTOS and is thus composed of various different subsys
|
||||
libs/index.rst
|
||||
net/index.rst
|
||||
mm/index.rst
|
||||
syscall.rst
|
||||
|
209
Documentation/components/syscall.rst
Normal file
209
Documentation/components/syscall.rst
Normal file
@ -0,0 +1,209 @@
|
||||
=============
|
||||
Syscall Layer
|
||||
=============
|
||||
|
||||
This page discusses supports a syscall layer from communication between a
|
||||
monolithic, kernel-mode NuttX kernel and a separately built, user-mode
|
||||
application set.
|
||||
|
||||
With most MCUs, NuttX is built as a flat, single executable image
|
||||
containing the NuttX RTOS along with all application code. The RTOS code
|
||||
and the application run in the same address space and at the same kernel-
|
||||
mode privileges. In order to exploit security features of certain
|
||||
processors, an alternative build model is also supported: NuttX can
|
||||
be built separately as a monolithic, kernel-mode module and the applications
|
||||
can be added as a separately built, user-mode module.
|
||||
|
||||
The syscall layer provided in this directory serves as the communication
|
||||
layer from the user-mode application into the kernel-mode RTOS. The
|
||||
switch from user-mode to kernel-mode is accomplished using software
|
||||
interrupts (SWIs). SWIs are implemented differently and named differently
|
||||
by different manufacturers but all work essentially the same: A special
|
||||
instruction is executed in user-mode that causes a software generated
|
||||
interrupt. The software generated interrupt is caught within the kernel
|
||||
and handle in kernel-mode.
|
||||
|
||||
Header Files
|
||||
------------
|
||||
|
||||
include/syscall.h
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
This header file supports general access to SWI facilities. It is simply
|
||||
a wrapper file that includes ``include/sys/syscall.h`` and
|
||||
``include/arch/syscall.h``.
|
||||
|
||||
include/sys/syscall.h
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The SWIs received by the kernel are distinguish by a code that identifies
|
||||
how to process the SWI. This header file defines all such codes understood
|
||||
by the NuttX kernel.
|
||||
|
||||
include/arch/syscall.h (or arch/<cpu>/include/syscall.h)
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
This header file is provided by the platform-specific logic and declares
|
||||
(or defines) the mechanism for providing software interrupts on this
|
||||
platform. The following functions must be declared (or defined) in this
|
||||
header file:
|
||||
|
||||
- ``SWI`` with ``SYS_`` call number and one parameter
|
||||
|
||||
.. code-block:: C
|
||||
|
||||
uintptr_t sys_call0(unsigned int nbr);
|
||||
|
||||
- ``SWI`` with ``SYS_`` call number and one parameter
|
||||
|
||||
.. code-block:: C
|
||||
|
||||
uintptr_t sys_call1(unsigned int nbr, uintptr_t parm1);
|
||||
|
||||
- ``SWI`` with ``SYS_`` call number and two parameters
|
||||
|
||||
.. code-block:: C
|
||||
|
||||
uintptr_t sys_call2(unsigned int nbr, uintptr_t parm1, uintptr_t parm2);
|
||||
|
||||
- ``SWI`` with ``SYS_`` call number and three parameters
|
||||
|
||||
.. code-block:: C
|
||||
|
||||
uintptr_t sys_call3(unsigned int nbr, uintptr_t parm1,
|
||||
uintptr_t parm2, uintptr_t parm3);
|
||||
|
||||
- ``SWI`` with ``SYS_`` call number and four parameters
|
||||
|
||||
.. code-block:: C
|
||||
|
||||
uintptr_t sys_call4(unsigned int nbr, uintptr_t parm1, uintptr_t parm2,
|
||||
uintptr_t parm3, uintptr_t parm4);
|
||||
|
||||
- ``SWI`` with ``SYS_`` call number and five parameters
|
||||
|
||||
.. code-block:: C
|
||||
|
||||
uintptr_t sys_call5(unsigned int nbr, uintptr_t parm1, uintptr_t parm2,
|
||||
uintptr_t parm3, uintptr_t parm4, uintptr_t parm5);
|
||||
|
||||
- ``SWI`` with ``SYS_`` call number and six parameters
|
||||
|
||||
.. code-block:: C
|
||||
|
||||
uintptr_t sys_call6(unsigned int nbr, uintptr_t parm1, uintptr_t parm2,
|
||||
uintptr_t parm3, uintptr_t parm4, uintptr_t parm5,
|
||||
uintptr_t parm6);
|
||||
|
||||
Syscall Database
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
||||
Sycall information is maintained in a database. That "database" is
|
||||
implemented as a simple comma-separated-value file, ``syscall.csv``. Most
|
||||
spreadsheets programs will accept this format and can be used to maintain
|
||||
the syscall database.
|
||||
|
||||
The format of the CSV file for each line is:
|
||||
|
||||
* Field 1: Function name
|
||||
|
||||
* Field 2: The header file that contains the function prototype
|
||||
|
||||
* Field 3: Condition for compilation
|
||||
|
||||
* Field 4: The type of function return value.
|
||||
|
||||
* Field 5 - N+5: The type of each of the N formal parameters of the function
|
||||
|
||||
* Fields N+5 - : If the last parameter is "...", then the following fields
|
||||
provide the type and number of of possible optional parameters.
|
||||
See note below about variadic functions
|
||||
|
||||
Each type field has a format as follows:
|
||||
|
||||
* type name:
|
||||
|
||||
For all simpler types
|
||||
|
||||
* formal type | actual type:
|
||||
|
||||
For array types where the form of the formal (eg. ``int parm[2]``)
|
||||
differs from the type of actual passed parameter (eg. ``int*``).
|
||||
This is necessary because you cannot do simple casts to array types.
|
||||
|
||||
* formal type | union member actual type | union member fieldname:
|
||||
|
||||
A similar situation exists for unions. For example, the formal
|
||||
parameter type union sigval -- You cannot cast a uintptr_t to
|
||||
a union sigval, but you can cast to the type of one of the union
|
||||
member types when passing the actual parameter. Similarly, we
|
||||
cannot cast a union sigval to a uinptr_t either. Rather, we need
|
||||
to cast a specific union member fieldname to ``uintptr_t``.
|
||||
|
||||
Variadic Functions
|
||||
------------------
|
||||
|
||||
General variadic functions which may have an arbitrary number of argument
|
||||
or arbitrary types cannot be represented as system calls.
|
||||
``syslog()`` is a good example. Normally you would work around this by
|
||||
using the non- variadic form of the OS interface that accepts a ``va_list``
|
||||
as an argument, ``vsyslog()`` in this case.
|
||||
|
||||
There there are many functions that have a variadic form but take only
|
||||
one or two arguments optional arguments. There can be handled as system
|
||||
calls, but only by treating them as though they had a fixed number of
|
||||
arguments.
|
||||
|
||||
These are are handled in ``syscall.csv`` by appending the number and type of
|
||||
optional arguments. For example, consider the ``open()`` OS interface. Its
|
||||
prototype is:
|
||||
|
||||
.. code-block:: C
|
||||
|
||||
int open(const char *path, int oflag, ...);
|
||||
|
||||
In reality, open may take only a single optional argument of type ``mode_t``
|
||||
and is represented in syscall.cvs like this::
|
||||
|
||||
"open","fcntl.h","","int","const char*","int","...","mode_t"
|
||||
|
||||
The existence of the ``mode_t`` tells ``tools/mksyscall`` that there is at most
|
||||
one optional parameter and, if present, it is of type ``mode_t``.
|
||||
|
||||
NOTE: This CSV file is used both to support the generate of trap information,
|
||||
but also for the generation of symbol tables. See ``Documentation/components/tools/``
|
||||
and ``Documentation/components/libs/`` for further information.
|
||||
|
||||
Auto-Generated Files
|
||||
--------------------
|
||||
|
||||
Stubs and proxies for the sycalls are automatically generated from this CSV
|
||||
database. Here the following definition is used:
|
||||
|
||||
* Proxy - A tiny bit of code that executes in the user space. A proxy
|
||||
has exactly the same function prototype as does the "real" function
|
||||
for which it proxies. However, it only serves to map the function
|
||||
call into a syscall, marshaling all of the system call parameters
|
||||
as necessary.
|
||||
|
||||
* Stub - Another tiny bit of code that executes within the NuttX kernel
|
||||
that is used to map a software interrupt received by the kernel to
|
||||
a kernel function call. The stubs receive the marshaled system
|
||||
call data, and perform the actually kernel function call (in
|
||||
kernel-mode) on behalf of the proxy function.
|
||||
|
||||
Sub-Directories
|
||||
---------------
|
||||
|
||||
* ``stubs`` - Autogenerated stub files are placed in this directory.
|
||||
* ``proxies`` - Autogenerated proxy files are placed in this directory.
|
||||
|
||||
mksyscall
|
||||
---------
|
||||
|
||||
mksyscall is C program that is used used during the initial NuttX build
|
||||
by the logic in the top-level ``syscall/``! directory. Information about the
|
||||
stubs and proxies is maintained in a comma separated value (CSV) file
|
||||
in the ``syscall/`` directory. The mksyscall program will accept this CVS
|
||||
file as input and generate all of the required proxy or stub files as
|
||||
output. See ``Documentation/components/tools/`` for additional information.
|
Loading…
Reference in New Issue
Block a user