sched/Kconfig: Add another layer of menuing to simply this level

This commit is contained in:
Gregory Nutt 2014-03-31 11:32:22 -06:00
parent 4f59bc5878
commit 70815e5673
2 changed files with 340 additions and 305 deletions

View File

@ -7097,4 +7097,6 @@
buffered in memory. From Macs N (2013-3-31).
* Add CONFIG_CLOCK_MONOTONIC that case used to disable CLOCK_MONOTONIC
for a smaller footprint (2013-3-31).
* sched/Kconfig: Menu has gotten too long. And another layer of
menuing in order to simplify this layer (2014-3-31).

View File

@ -3,33 +3,55 @@
# see misc/tools/kconfig-language.txt.
#
config BOARD_INITIALIZE
bool "Custom board/driver initialization"
default n
menuconfig DISABLE_OS_API
bool "Disable NuttX interfaces"
default y
---help---
By default, there are three points in time where you can insert
custom initialization logic:
The following can be used to disable categories of
APIs supported by the OS. If the compiler supports
weak functions, then it should not be necessary to
disable functions unless you want to restrict usage
of those APIs.
1) <arch>_boardinitialize(): This function is used only for
initialization of very low-level things like configuration of
GPIO pins, power setting. The OS has not been initialized
at this point, so you cannot allocate memory or initialize
device drivers at this phase.
There are certain dependency relationships in these
features.
2) The next level of initialization is performed by a call to
up_initialize() (in arch/<arch>/src/common/up_initialize.c).
The OS has been initialized at this point and it is okay to
initialize drivers in this phase.
1) mq_notify logic depends on signals to awaken tasks
waiting for queues to become full or empty.
2) pthread_condtimedwait() depends on signals to wake
up waiting tasks.
3) And, finally, when the user application code starts.
if DISABLE_OS_API
If BOARD_INITIALIZE is selected, then an additional initialization
call will be performed in the boot-up sequence to a function
called board_initialize(). board_initialize() will be
call between phases 2) and 3) above, immediately after
up_initialize() is called. This additional initialization
phase may be used, for example, to initialize board-specific
device drivers.
config DISABLE_CLOCK
bool "Disable clock interfaces"
default n
config DISABLE_POSIX_TIMERS
bool "Disable POSIX timers"
default y if DEFAULT_SMALL
default n if !DEFAULT_SMALL
config DISABLE_PTHREAD
bool "Disable pthread support"
default n
config DISABLE_SIGNALS
bool "Disable signal support"
default n
config DISABLE_MQUEUE
bool "Disable POSIX message queue support"
default n
config DISABLE_ENVIRON
bool "Disable environment variable support"
default y if DEFAULT_SMALL
default n if !DEFAULT_SMALL
endif # DISABLE_OS_API
menu "Clocks and Timers"
config MSEC_PER_TICK
int "Milliseconds per system timer tick"
@ -67,6 +89,57 @@ config CLOCK_MONOTONIC
The value of the CLOCK_MONOTONIC clock cannot be set via clock_settime().
config JULIAN_TIME
bool "Enables Julian time conversions"
default n
---help---
Enables Julian time conversions
config START_YEAR
int "Start year"
default 2014
config START_MONTH
int "Start month"
default 1
config START_DAY
int "Start day"
default 1
config MAX_WDOGPARMS
int "Maximum number of watchdog parameters"
default 4
---help---
Maximum number of parameters that can be passed to a watchdog handler
config PREALLOC_WDOGS
int "Number of pre-allocated watchdog timers"
default 32
---help---
The number of pre-allocated watchdog structures. The system manages a
pool of preallocated watchdog structures to minimize dynamic allocations
config PREALLOC_TIMERS
int "Number of pre-allocated POSIX timers"
default 8
---help---
The number of pre-allocated POSIX timer structures. The system manages a
pool of preallocated timer structures to minimize dynamic allocations. Set to
zero for all dynamic allocations.
endmenu # Clocks and Timers
menu "Tasks and Scheduling"
config USER_ENTRYPOINT
string "Application entry point"
default "user_start"
---help---
The name of the entry point for user applications. For the example
applications this is of the form 'app_main' where 'app' is the application
name. If not defined, USER_ENTRYPOINT defaults to "user_start."
config RR_INTERVAL
int "Round robin timeslice (MSEC)"
default 0
@ -74,6 +147,158 @@ config RR_INTERVAL
The round robin timeslice will be set this number of milliseconds;
Round robin scheduling can be disabled by setting this value to zero.
config TASK_NAME_SIZE
int "Maximum task name size"
default 32
---help---
Spcifies that maximum size of a task name to save in the TCB.
Useful if scheduler instrumentation is selected. Set to zero to
disable.
config MAX_TASK_ARGS
int "Maximum number of task arguments"
default 4
---help---
This controls the maximum number of of parameters that a task may
receive (i.e., maxmum value of 'argc')
config MAX_TASKS
int "Max number of tasks"
default 32
---help---
The maximum number of simultaneously active tasks. This value must be
a power of two.
config SCHED_HAVE_PARENT
bool "Support parent/child task relationships"
default n
---help---
Remember the ID of the parent task when a new child task is
created. This support enables some additional features (such as
SIGCHLD) and modifies the behavior of other interfaces. For
example, it makes waitpid() more standards complete by restricting
the waited-for tasks to the children of the caller. Default:
disabled.
config SCHED_CHILD_STATUS
bool "Retain child exit status"
default n
depends on SCHED_HAVE_PARENT
---help---
If this option is selected, then the exit status of the child task
will be retained after the child task exits. This option should be
selected if you require knowledge of a child process' exit status.
Without this setting, wait(), waitpid() or waitid() may fail. For
example, if you do:
1) Start child task
2) Wait for exit status (using wait(), waitpid(), or waitid()).
This can fail because the child task may run to completion before
the wait begins. There is a non-standard work-around in this case:
The above sequence will work if you disable pre-emption using
sched_lock() prior to starting the child task, then re-enable pre-
emption with sched_unlock() after the wait completes. This works
because the child task is not permitted to run until the wait is in
place.
The standard solution would be to enable SCHED_CHILD_STATUS. In
this case the exit status of the child task is retained after the
child exits and the wait will successful obtain the child task's
exit status whether it is called before the child task exits or not.
Warning: If you enable this feature, then your application must
either (1) take responsibility for reaping the child status with wait(),
waitpid(), or waitid(), or (2) suppress retention of child status.
If you do not reap the child status, then you have a memory leak and
your system will eventually fail.
Retention of child status can be suppressed on the parent using logic like:
struct sigaction sa;
sa.sa_handler = SIG_IGN;
sa.sa_flags = SA_NOCLDWAIT;
int ret = sigaction(SIGCHLD, &sa, NULL);
if SCHED_CHILD_STATUS
config PREALLOC_CHILDSTATUS
int "Number of pre-allocated child status"
default 0
---help---
To prevent runaway child status allocations and to improve
allocation performance, child task exit status structures are pre-
allocated when the system boots. This setting determines the number
of child status structures that will be pre-allocated. If this
setting is not defined or if it is defined to be zero then a value
of 2*MAX_TASKS is used.
Note that there cannot be more that MAX_TASKS tasks in total.
However, the number of child status structures may need to be
significantly larger because this number includes the maximum number
of tasks that are running PLUS the number of tasks that have exit'ed
without having their exit status reaped (via wait(), waitid(), or
waitpid()).
Obviously, if tasks spawn children indefinitely and never have the
exit status reaped, then you may have a memory leak! If you enable
the SCHED_CHILD_STATUS feature, then your application must take
responsibility for either (1) reaping the child status with wait(),
waitpid(), or waitid() or it must (2) suppress retention of child
status. Otherwise, your system will eventually fail.
Retention of child status can be suppressed on the parent using logic like:
struct sigaction sa;
sa.sa_handler = SIG_IGN;
sa.sa_flags = SA_NOCLDWAIT;
int ret = sigaction(SIGCHLD, &sa, NULL);
config DEBUG_CHILDSTATUS
bool "Enable Child Status Debug Output"
default n
depends on SCHED_CHILD_STATUS && DEBUG
---help---
Very detailed... I am sure that you do not want this.
endif # SCHED_CHILD_STATUS
config SCHED_WAITPID
bool "Enable waitpid() API"
default n
---help---
Enables the waitpid() interface in a default, non-standard mode
(non-standard in the sense that the waited for PID need not be child
of the caller). If SCHED_HAVE_PARENT is also defined, then this
setting will modify the behavior or waitpid() (making more spec
compliant) and will enable the waitid() and wait() interfaces as
well.
endmenu # Tasks and Scheduling
menu "Pthread Options"
depends on !DISABLE_PTHREAD
config MUTEX_TYPES:
bool "Enable mutex types"
default n
---help---
Set to enable support for recursive and errorcheck mutexes. Enables
pthread_mutexattr_settype().
config NPTHREAD_KEYS
int "Maximum number of pthread keys"
default 4
---help---
The number of items of thread-
specific data that can be retained
endmenu # Pthread Options
menu "Performance Monitoring"
config SCHED_CPULOAD
bool "Enable CPU load monitoring"
default n
@ -138,7 +363,7 @@ config SCHED_CPULOAD_TIMECONSTANT
endif # SCHED_CPULOAD
config SCHED_INSTRUMENTATION
bool "Monitor system performance"
bool "System performance monitor hooks"
default n
---help---
Enables instrumentation in scheduler to monitor system performance.
@ -149,124 +374,9 @@ config SCHED_INSTRUMENTATION
void sched_note_stop(FAR struct tcb_s *tcb);
void sched_note_switch(FAR struct tcb_s *pFromTcb, FAR struct tcb_s *pToTcb);
config TASK_NAME_SIZE
int "Maximum task name size"
default 32
---help---
Spcifies that maximum size of a task name to save in the TCB.
Useful if scheduler instrumentation is selected. Set to zero to
disable.
endmenu # Performance Monitoring
config SCHED_HAVE_PARENT
bool "Support parent/child task relationships"
default n
---help---
Remember the ID of the parent task when a new child task is
created. This support enables some additional features (such as
SIGCHLD) and modifies the behavior of other interfaces. For
example, it makes waitpid() more standards complete by restricting
the waited-for tasks to the children of the caller. Default:
disabled.
config SCHED_CHILD_STATUS
bool "Retain child exit status"
default n
depends on SCHED_HAVE_PARENT
---help---
If this option is selected, then the exit status of the child task
will be retained after the child task exits. This option should be
selected if you require knowledge of a child process' exit status.
Without this setting, wait(), waitpid() or waitid() may fail. For
example, if you do:
1) Start child task
2) Wait for exit status (using wait(), waitpid(), or waitid()).
This can fail because the child task may run to completion before
the wait begins. There is a non-standard work-around in this case:
The above sequence will work if you disable pre-emption using
sched_lock() prior to starting the child task, then re-enable pre-
emption with sched_unlock() after the wait completes. This works
because the child task is not permitted to run until the wait is in
place.
The standard solution would be to enable SCHED_CHILD_STATUS. In
this case the exit status of the child task is retained after the
child exits and the wait will successful obtain the child task's
exit status whether it is called before the child task exits or not.
Warning: If you enable this feature, then your application must
either (1) take responsibility for reaping the child status with wait(),
waitpid(), or waitid(), or (2) suppress retention of child status.
If you do not reap the child status, then you have a memory leak and
your system will eventually fail.
Retention of child status can be suppressed on the parent using logic like:
struct sigaction sa;
sa.sa_handler = SIG_IGN;
sa.sa_flags = SA_NOCLDWAIT;
int ret = sigaction(SIGCHLD, &sa, NULL);
config PREALLOC_CHILDSTATUS
int "Number of pre-allocated child status"
default 0
depends on SCHED_CHILD_STATUS
---help---
To prevent runaway child status allocations and to improve
allocation performance, child task exit status structures are pre-
allocated when the system boots. This setting determines the number
of child status structures that will be pre-allocated. If this
setting is not defined or if it is defined to be zero then a value
of 2*MAX_TASKS is used.
Note that there cannot be more that MAX_TASKS tasks in total.
However, the number of child status structures may need to be
significantly larger because this number includes the maximum number
of tasks that are running PLUS the number of tasks that have exit'ed
without having their exit status reaped (via wait(), waitid(), or
waitpid()).
Obviously, if tasks spawn children indefinitely and never have the
exit status reaped, then you may have a memory leak! If you enable
the SCHED_CHILD_STATUS feature, then your application must take
responsibility for either (1) reaping the child status with wait(),
waitpid(), or waitid() or it must (2) suppress retention of child
status. Otherwise, your system will eventually fail.
Retention of child status can be suppressed on the parent using logic like:
struct sigaction sa;
sa.sa_handler = SIG_IGN;
sa.sa_flags = SA_NOCLDWAIT;
int ret = sigaction(SIGCHLD, &sa, NULL);
config DEBUG_CHILDSTATUS
bool "Enable Child Status Debug Output"
default n
depends on SCHED_CHILD_STATUS && DEBUG
---help---
Very detailed... I am sure that you do not want this.
config JULIAN_TIME
bool "Enables Julian time conversions"
default n
---help---
Enables Julian time conversions
config START_YEAR
int "Start year"
default 2014
config START_MONTH
int "Start month"
default 1
config START_DAY
int "Start day"
default 1
menu "Files and I/O"
config DEV_CONSOLE
bool "Enable /dev/console"
@ -275,42 +385,6 @@ config DEV_CONSOLE
Set if architecture-specific logic provides /dev/console. Enables
stdout, stderr, stdin.
config MUTEX_TYPES:
bool "Enable mutex types"
default n
---help---
Set to enable support for recursive and errorcheck mutexes. Enables
pthread_mutexattr_settype().
config PRIORITY_INHERITANCE
bool "Enable priority inheritance "
default n
---help---
Set to enable support for priority inheritance on mutexes and semaphores.
config SEM_PREALLOCHOLDERS
int "Number of pre-allocated holders"
default 16
depends on PRIORITY_INHERITANCE
---help---
This setting is only used if priority inheritance is enabled.
It defines the maximum number of different threads (minus one) that
can take counts on a semaphore with priority inheritance support.
This may be set to zero if priority inheritance is disabled OR if you
are only using semaphores as mutexes (only one holder) OR if no more
than two threads participate using a counting semaphore.
config SEM_NNESTPRIO
int "Maximum number of higher priority threads"
default 16
depends on PRIORITY_INHERITANCE
---help---
If priority inheritance is enabled, then this setting is the
maximum number of higher priority threads (minus 1) than can be
waiting for another thread to release a count on a semaphore.
This value may be set to zero if no more than one thread is
expected to wait for a semaphore.
config FDCLONE_DISABLE
bool "Disable cloning of file descriptors"
default n
@ -336,16 +410,86 @@ config SDCLONE_DISABLE
desciptors by task_create() when a new task is started. If
set, all sockets will appear to be closed in the new task.
config SCHED_WAITPID
bool "Enable waitpid() API"
config NFILE_DESCRIPTORS
int "Maximum number of file descriptors per task"
default 16
---help---
The maximum number of file descriptors per task (one for each open)
config NFILE_STREAMS
int "Maximum number of FILE streams"
default 16
---help---
The maximum number of streams that can be fopen'ed
config NAME_MAX
int "Maximum size of a file name"
default 32
---help---
The maximum size of a file name.
endmenu # Files and I/O
menuconfig PRIORITY_INHERITANCE
bool "Enable priority inheritance "
default n
---help---
Enables the waitpid() interface in a default, non-standard mode
(non-standard in the sense that the waited for PID need not be child
of the caller). If SCHED_HAVE_PARENT is also defined, then this
setting will modify the behavior or waitpid() (making more spec
compliant) and will enable the waitid() and wait() interfaces as
well.
Set to enable support for priority inheritance on mutexes and semaphores.
if PRIORITY_INHERITANCE
config SEM_PREALLOCHOLDERS
int "Number of pre-allocated holders"
default 16
---help---
This setting is only used if priority inheritance is enabled.
It defines the maximum number of different threads (minus one) that
can take counts on a semaphore with priority inheritance support.
This may be set to zero if priority inheritance is disabled OR if you
are only using semaphores as mutexes (only one holder) OR if no more
than two threads participate using a counting semaphore.
config SEM_NNESTPRIO
int "Maximum number of higher priority threads"
default 16
---help---
If priority inheritance is enabled, then this setting is the
maximum number of higher priority threads (minus 1) than can be
waiting for another thread to release a count on a semaphore.
This value may be set to zero if no more than one thread is
expected to wait for a semaphore.
endif # PRIORITY_INHERITANCE
menu "RTOS hooks"
config BOARD_INITIALIZE
bool "Custom board/driver initialization"
default n
---help---
By default, there are three points in time where you can insert
custom initialization logic:
1) <arch>_boardinitialize(): This function is used only for
initialization of very low-level things like configuration of
GPIO pins, power setting. The OS has not been initialized
at this point, so you cannot allocate memory or initialize
device drivers at this phase.
2) The next level of initialization is performed by a call to
up_initialize() (in arch/<arch>/src/common/up_initialize.c).
The OS has been initialized at this point and it is okay to
initialize drivers in this phase.
3) And, finally, when the user application code starts.
If BOARD_INITIALIZE is selected, then an additional initialization
call will be performed in the boot-up sequence to a function
called board_initialize(). board_initialize() will be
call between phases 2) and 3) above, immediately after
up_initialize() is called. This additional initialization
phase may be used, for example, to initialize board-specific
device drivers.
config SCHED_STARTHOOK
bool "Enable startup hook"
@ -396,66 +540,10 @@ config SCHED_ONEXIT_MAX
on top of the on_exit() implementation. In that case, SCHED_ONEXIT_MAX
determines the size of the combined number of atexit(0) and on_exit calls.
config USER_ENTRYPOINT
string "Application entry point"
default "user_start"
---help---
The name of the entry point for user applications. For the example
applications this is of the form 'app_main' where 'app' is the application
name. If not defined, USER_ENTRYPOINT defaults to "user_start."
endmenu # RTOS hooks
config DISABLE_OS_API
bool "Disable NuttX interfaces"
default y
---help---
The following can be used to disable categories of
APIs supported by the OS. If the compiler supports
weak functions, then it should not be necessary to
disable functions unless you want to restrict usage
of those APIs.
There are certain dependency relationships in these
features.
1) mq_notify logic depends on signals to awaken tasks
waiting for queues to become full or empty.
2) pthread_condtimedwait() depends on signals to wake
up waiting tasks.
config DISABLE_CLOCK
bool "Disable clock interfaces"
depends on DISABLE_OS_API
default n
config DISABLE_POSIX_TIMERS
bool "Disable POSIX timers"
depends on DISABLE_OS_API
default y if DEFAULT_SMALL
default n if !DEFAULT_SMALL
config DISABLE_PTHREAD
bool "Disable pthread support"
depends on DISABLE_OS_API
default n
config DISABLE_SIGNALS
bool "Disable signal support"
depends on DISABLE_OS_API
default n
config DISABLE_MQUEUE
bool "Disable POSIX message queue support"
depends on DISABLE_OS_API
default n
config DISABLE_ENVIRON
bool "Disable environment variable support"
depends on DISABLE_OS_API
default y if DEFAULT_SMALL
default n if !DEFAULT_SMALL
if !DISABLE_SIGNALS
comment "Signal Numbers"
menu "Signal Numbers"
depends on !DISABLE_SIGNALS
config SIG_SIGUSR1
int "SIGUSR1"
@ -502,48 +590,10 @@ config SIG_SIGWORK
worker thread. This setting specifies the signal number that will be
used for SIGWORK. Default: 17
endif
endmenu # Signal Numbers
comment "Sizes of configurable things (0 disables)"
config MAX_TASKS
int "Max number of tasks"
default 32
---help---
The maximum number of simultaneously active tasks. This value must be
a power of two.
config MAX_TASK_ARGS
int "Maximum number of task arguments"
default 4
---help---
This controls the maximum number of of parameters that a task may
receive (i.e., maxmum value of 'argc')
config NPTHREAD_KEYS
int "Maximum number of pthread keys"
default 4
---help---
The number of items of thread-
specific data that can be retained
config NFILE_DESCRIPTORS
int "Maximum number of file descriptors per task"
default 16
---help---
The maximum number of file descriptors per task (one for each open)
config NFILE_STREAMS
int "Maximum number of FILE streams"
default 16
---help---
The maximum number of streams that can be fopen'ed
config NAME_MAX
int "Maximum size of a file name"
default 32
---help---
The maximum size of a file name.
menu "POSIX Message Queue Options"
depends on !DISABLE_MQUEUE
config PREALLOC_MQ_MSGS
int "Number of pre-allocated messages"
@ -559,28 +609,9 @@ config MQ_MAXMSGSIZE
Message structures are allocated with a fixed payload size given by this
setting (does not include other message structure overhead.
config MAX_WDOGPARMS
int "Maximum number of watchdog parameters"
default 4
---help---
Maximum number of parameters that can be passed to a watchdog handler
endmenu # POSIX Message Queue Options
config PREALLOC_WDOGS
int "Number of pre-allocated watchdog timers"
default 32
---help---
The number of pre-allocated watchdog structures. The system manages a
pool of preallocated watchdog structures to minimize dynamic allocations
config PREALLOC_TIMERS
int "Number of pre-allocated POSIX timers"
default 8
---help---
The number of pre-allocated POSIX timer structures. The system manages a
pool of preallocated timer structures to minimize dynamic allocations. Set to
zero for all dynamic allocations.
comment "Stack and heap information"
menu "Stack and heap information"
config IDLETHREAD_STACKSIZE
int "Idle thread stack size"
@ -609,3 +640,5 @@ config PTHREAD_STACK_DEFAULT
default 2048
---help---
Default pthread stack size
endmenu # Stack and heap information