Add a directory to hold configurations for the SAM4S Xplained board

This commit is contained in:
Gregory Nutt 2013-06-10 18:20:30 -06:00
parent ff5688486f
commit 8aee2ce8c9
6 changed files with 818 additions and 15 deletions

View File

@ -287,7 +287,7 @@ SAM4L Xplained Pro-specific Configuration Options
CONFIG_ARCH_architecture - For use in C code:
CONFIG_ARCH_CORTEXM3=y
CONFIG_ARCH_CORTEXM4=y
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
@ -431,25 +431,25 @@ SAM4L Xplained Pro-specific Configuration Options
Configurations
^^^^^^^^^^^^^^
Each SAM4L Xplained Pro configuration is maintained in a sub-directory and
can be selected as follow:
Each SAM4L Xplained Pro configuration is maintained in a sub-directory and
can be selected as follow:
cd tools
./configure.shsam4l-xplained/<subdir>
cd -
. ./setenv.sh
Before sourcing the setenv.sh file above, you should examine it and perform
edits as necessary so that BUILDROOT_BIN is the correct path to the directory
than holds your toolchain binaries.
Before sourcing the setenv.sh file above, you should examine it and perform
edits as necessary so that BUILDROOT_BIN is the correct path to the directory
than holds your toolchain binaries.
And then build NuttX by simply typing the following. At the conclusion of
the make, the nuttx binary will reside in an ELF file called, simply, nuttx.
And then build NuttX by simply typing the following. At the conclusion of
the make, the nuttx binary will reside in an ELF file called, simply, nuttx.
make
The <subdir> that is provided above as an argument to the tools/configure.sh
must be is one of the following:
The <subdir> that is provided above as an argument to the tools/configure.sh
must be is one of the following:
ostest:
This configuration directory performs a simple OS test using

View File

@ -0,0 +1,509 @@
README
^^^^^^
This README discusses issues unique to NuttX configurations for the
Atmel SAM4S Xplained development board. This board features the
ATSAM4S16C MCU with 1MB FLASH and 128KB.
The SAM4S Xplained features:
- 12MHz crystal (no 32.768KHz crystal)S
- Segger J-Link JTAG emulator on-board for program and debug
- MICRO USB A/B connector for USB connectivity
- IS66WV51216DBLL ISSI SRAM 8Mb 512K x 16 55ns PSRAM 2.5v-3.6v
- Four Atmel QTouch buttons
- External voltage input
- Four LEDs, two controllable from software
- Xplained expansion headers
- Footprint for external serial Flash (not fitted)
Contents
^^^^^^^^
- PIO Muxing
- Development Environment
- GNU Toolchain Options
- IDEs
- NuttX EABI "buildroot" Toolchain
- NuttX OABI "buildroot" Toolchain
- NXFLAT Toolchain
- Buttons and LEDs
- Serial Consoles
- SAM4S Xplained-specific Configuration Options
- Configurations
PIO Muxing
^^^^^^^^^^
PA0 SMC_A17 PB0 J2.3 default PC0 SMC_D0
PA1 SMC_A18 PB1 J2.4 PC1 SMC_D1
PA2 J3.7 default PB2 J1.3 & J4.3 PC2 SMC_D2
PA3 J1.1 & J4.1 PB3 J1.4 & J4.4 PC3 SMC_D3
PA4 J1.2 & J4.2 PB4 JTAG PC4 SMC_D4
PA5 User_button BP2 PB5 JTAG PC5 SMC_D5
PA6 J3.7 optional PB6 JTAG PC6 SMC_D6
PA7 CLK_32K PB7 JTAG PC7 SMC_D7
PA8 CLK_32K PB8 CLK_12M PC8 SMC_NWE
PA9 RX_UART0 PB9 CLK_12M PC9 Power on detect
PA10 TX_UART0 PB10 USB_DDM PC10 User LED D9
PA11 J3.2 default PB11 USB_DDP PC11 SMC_NRD
PA12 MISO PB12 ERASE PC12 J2.2
PA13 MOSI PB13 J2.3 optional PC13 J2.7
PA14 SPCK PB14 N/A PC14 SMC_NCS0
PA15 J3.5 PC15 SMC_NSC1
PA16 J3.6 PC16 N/A
PA17 J2.5 PC17 User LED D10
PA18 J3.4 & SMC_A14 PC18 SMC_A0
PA19 J3.4 optional & SMC_A15 PC19 SMC_A1
PA20 J3.1 & SMC_A16 PC20 SMC_A2
PA21 J2.6 PC21 SMC_A3
PA22 J2.1 PC22 SMC_A4
PA23 J3.3 PC23 SMC_A5
PA24 TSLIDR_SL_SN PC24 SMC_A6
PA25 TSLIDR_SL_SNSK PC25 SMC_A7
PA26 TSLIDR_SM_SNS PC26 SMC_A8
PA27 TSLIDR_SM_SNSK PC27 SMC_A9
PA28 TSLIDR_SR_SNS PC28 SMC_A10
PA29 TSLIDR_SR_SNSK PC29 SMC_A11
PA30 J4.5 PC30 SMC_A12
PA31 J1.5 PC31 SMC_A13
Development Environment
^^^^^^^^^^^^^^^^^^^^^^^
Either Linux or Cygwin on Windows can be used for the development environment.
The source has been built only using the GNU toolchain (see below). Other
toolchains will likely cause problems. Testing was performed using the Cygwin
environment.
GNU Toolchain Options
^^^^^^^^^^^^^^^^^^^^^
The NuttX make system has been modified to support the following different
toolchain options.
1. The CodeSourcery GNU toolchain,
2. The devkitARM GNU toolchain, ok
4. The NuttX buildroot Toolchain (see below).
All testing has been conducted using the NuttX buildroot toolchain. However,
the make system is setup to default to use the devkitARM toolchain. To use
the CodeSourcery, devkitARM or Raisonance GNU toolchain, you simply need to
add one of the following configuration options to your .config (or defconfig)
file:
CONFIG_SAM34_CODESOURCERYW=y : CodeSourcery under Windows
CONFIG_SAM34_CODESOURCERYL=y : CodeSourcery under Linux
CONFIG_SAM34_DEVKITARM=y : devkitARM under Windows
CONFIG_SAM34_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default)
If you are not using CONFIG_SAM34_BUILDROOT, then you may also have to modify
the PATH in the setenv.h file if your make cannot find the tools.
NOTE: the CodeSourcery (for Windows), devkitARM, and Raisonance toolchains are
Windows native toolchains. The CodeSourcey (for Linux) and NuttX buildroot
toolchains are Cygwin and/or Linux native toolchains. There are several limitations
to using a Windows based toolchain in a Cygwin environment. The three biggest are:
1. The Windows toolchain cannot follow Cygwin paths. Path conversions are
performed automatically in the Cygwin makefiles using the 'cygpath' utility
but you might easily find some new path problems. If so, check out 'cygpath -w'
2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links
are used in Nuttx (e.g., include/arch). The make system works around these
problems for the Windows tools by copying directories instead of linking them.
But this can also cause some confusion for you: For example, you may edit
a file in a "linked" directory and find that your changes had no effect.
That is because you are building the copy of the file in the "fake" symbolic
directory. If you use a Windows toolchain, you should get in the habit of
making like this:
make clean_context all
An alias in your .bashrc file might make that less painful.
3. Dependencies are not made when using Windows versions of the GCC. This is
because the dependencies are generated using Windows pathes which do not
work with the Cygwin make.
MKDEP = $(TOPDIR)/tools/mknulldeps.sh
NOTE 1: The CodeSourcery toolchain (2009q1) does not work with default optimization
level of -Os (See Make.defs). It will work with -O0, -O1, or -O2, but not with
-Os.
NOTE 2: The devkitARM toolchain includes a version of MSYS make. Make sure that
the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
path or will get the wrong version of make.
IDEs
^^^^
NuttX is built using command-line make. It can be used with an IDE, but some
effort will be required to create the project (There is a simple RIDE project
in the RIDE subdirectory).
Makefile Build
--------------
Under Eclipse, it is pretty easy to set up an "empty makefile project" and
simply use the NuttX makefile to build the system. That is almost for free
under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
there is a lot of help on the internet).
Native Build
------------
Here are a few tips before you start that effort:
1) Select the toolchain that you will be using in your .config file
2) Start the NuttX build at least one time from the Cygwin command line
before trying to create your project. This is necessary to create
certain auto-generated files and directories that will be needed.
3) Set up include pathes: You will need include/, arch/arm/src/sam34,
arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
4) All assembly files need to have the definition option -D __ASSEMBLY__
on the command line.
Startup files will probably cause you some headaches. The NuttX startup file
is arch/arm/src/sam34/sam_vectors.S. You may need to build NuttX
one time from the Cygwin command line in order to obtain the pre-built
startup object needed by RIDE.
NuttX EABI "buildroot" Toolchain
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A GNU GCC-based toolchain is assumed. The files */setenv.sh should
be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
different from the default in your PATH variable).
If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/).
This GNU toolchain builds and executes in the Linux or Cygwin environment.
1. You must have already configured Nuttx in <some-dir>/nuttx.
cd tools
./configure.shsam4s-xplained/<sub-dir>
2. Download the latest buildroot package into <some-dir>
3. unpack the buildroot tarball. The resulting directory may
have versioning information on it like buildroot-x.y.z. If so,
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
4. cd <some-dir>/buildroot
5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config
6. make oldconfig
7. make
8. Edit setenv.h, if necessary, so that the PATH variable includes
the path to the newly built binaries.
See the file configs/README.txt in the buildroot source tree. That has more
details PLUS some special instructions that you will need to follow if you are
building a Cortex-M3 toolchain for Cygwin under Windows.
NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for
more information about this problem. If you plan to use NXFLAT, please do not
use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain.
See instructions below.
NuttX OABI "buildroot" Toolchain
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The older, OABI buildroot toolchain is also available. To use the OABI
toolchain:
1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3
configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI
configuration such as cortexm3-defconfig-4.3.3
2. Modify the Make.defs file to use the OABI conventions:
+CROSSDEV = arm-nuttx-elf-
+ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft
+NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections
-CROSSDEV = arm-nuttx-eabi-
-ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft
-NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections
NXFLAT Toolchain
^^^^^^^^^^^^^^^^
If you are *not* using the NuttX buildroot toolchain and you want to use
the NXFLAT tools, then you will still have to build a portion of the buildroot
tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can
be downloaded from the NuttX SourceForge download site
(https://sourceforge.net/projects/nuttx/files/).
This GNU toolchain builds and executes in the Linux or Cygwin environment.
1. You must have already configured Nuttx in <some-dir>/nuttx.
cd tools
./configure.sh lpcxpresso-lpc1768/<sub-dir>
2. Download the latest buildroot package into <some-dir>
3. unpack the buildroot tarball. The resulting directory may
have versioning information on it like buildroot-x.y.z. If so,
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
4. cd <some-dir>/buildroot
5. cp configs/cortexm3-defconfig-nxflat .config
6. make oldconfig
7. make
8. Edit setenv.h, if necessary, so that the PATH variable includes
the path to the newly builtNXFLAT binaries.
Buttons and LEDs
^^^^^^^^^^^^^^^^
Buttons
-------
There is one user button labeld BP2 and connected to PA5.
LEDs
----
There are four LEDs on board the SAM4X Xplained board, two of these can be
controlled by software in the SAM4S:
LED GPIO
---------------- -----
D9 Yellow LED PC10
D10 Yellow LED PC17
Both can be illuminated by driving the GPIO output to ground (low).
These LEDs are not used by the board port unless CONFIG_ARCH_LEDS is
defined. In that case, the usage by the board port is defined in
include/board.h and src/up_leds.c. The LEDs are used to encode OS-related
events as follows:
SYMBOL Meaning LED state
D9 D10
------------------- ----------------------- -------- --------
LED_STARTED NuttX has been started OFF OFF
LED_HEAPALLOCATE Heap has been allocated OFF OFF
LED_IRQSENABLED Interrupts enabled OFF OFF
LED_STACKCREATED Idle stack created ON OFF
LED_INIRQ In an interrupt No change
LED_SIGNAL In a signal handler No change
LED_ASSERTION An assertion failed No change
LED_PANIC The system has crashed OFF Blinking
LED_IDLE MCU is is sleep mode Not used
Serial Consoles
^^^^^^^^^^^^^^^
USART0
------
If you have a TTL to RS-232 convertor then this is the most convenient
serial console to use. It is the default in all of these configurations.
An option is to use the virtual COM port.
Virtual COM Port
----------------
The SAM4S Xplained contains an Embedded Debugger (EDBG) that can be
used to program and debug the ATSAM4S16C using Serial Wire Debug (SWD).
The Embedded debugger also include a Virtual Com port interface over
USART1. Virtual COM port connections:
AT91SAM4S16 ATSAM3U4CAU
-------------- --------------
PA9 RX_UART0 PA9_4S PA12
PA10 TX_UART0 RX_3U PA11
SAM4S Xplained-specific Configuration Options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
CONFIG_ARCH - Identifies the arch/ subdirectory. This should
be set to:
CONFIG_ARCH=arm
CONFIG_ARCH_family - For use in C code:
CONFIG_ARCH_ARM=y
CONFIG_ARCH_architecture - For use in C code:
CONFIG_ARCH_CORTEXM4=y
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
CONFIG_ARCH_CHIP="sam34"
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
chip:
CONFIG_ARCH_CHIP_SAM34
CONFIG_ARCH_CHIP_SAM4S
CONFIG_ARCH_CHIP_ATSAM4S16C
CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
hence, the board that supports the particular chip or SoC.
CONFIG_ARCH_BOARD=sam4s-xplained (for the SAM4S Xplained development board)
CONFIG_ARCH_BOARD_name - For use in C code
CONFIG_ARCH_BOARD_SAM4S_XPLAINED=y
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
of delay loops
CONFIG_ENDIAN_BIG - define if big endian (default is little
endian)
CONFIG_DRAM_SIZE - Describes the installed DRAM (SRAM in this case):
CONFIG_DRAM_SIZE=0x00008000 (32Kb)
CONFIG_DRAM_START - The start address of installed DRAM
CONFIG_DRAM_START=0x20000000
CONFIG_ARCH_IRQPRIO - The SAM3UF103Z supports interrupt prioritization
CONFIG_ARCH_IRQPRIO=y
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
have LEDs
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
stack. If defined, this symbol is the size of the interrupt
stack in bytes. If not defined, the user task stacks will be
used during interrupt handling.
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
cause a 100 second delay during boot-up. This 100 second delay
serves no purpose other than it allows you to calibratre
CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure
the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
the delay actually is 100 seconds.
Individual subsystems can be enabled:
Some subsystems can be configured to operate in different ways. The drivers
need to know how to configure the subsystem.
CONFIG_GPIOA_IRQ
CONFIG_GPIOB_IRQ
CONFIG_GPIOC_IRQ
CONFIG_USART0_ISUART
CONFIG_USART1_ISUART
CONFIG_USART2_ISUART
CONFIG_USART3_ISUART
ST91SAM4S specific device driver settings
CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=0,1,2,3) or UART
m (m=4,5) for the console and ttys0 (default is the USART1).
CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received.
This specific the size of the receive buffer
CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before
being sent. This specific the size of the transmit buffer
CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART. Must be
CONFIG_U[S]ARTn_BITS - The number of bits. Must be either 7 or 8.
CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
CONFIG_U[S]ARTn_2STOP - Two stop bits
Configurations
^^^^^^^^^^^^^^
Each SAM4S Xplained configuration is maintained in a sub-directory and
can be selected as follow:
cd tools
./configure.shsam4s-xplained/<subdir>
cd -
. ./setenv.sh
Before sourcing the setenv.sh file above, you should examine it and perform
edits as necessary so that BUILDROOT_BIN is the correct path to the directory
than holds your toolchain binaries.
And then build NuttX by simply typing the following. At the conclusion of
the make, the nuttx binary will reside in an ELF file called, simply, nuttx.
make
The <subdir> that is provided above as an argument to the tools/configure.sh
must be is one of the following:
ostest:
This configuration directory performs a simple OS test using
examples/ostest.
NOTES:
1. This configuration provides test output on USART0 which is available
on EXT1 or EXT4 (see the section "Serial Consoles" above). The
virtual COM port could be used, instead, by reconfiguring to use
USART1 instead of USART0:
System Type -> AT91SAM3/4 Peripheral Support
CONFIG_SAM_USART0=y
CONFIG_SAM_USART1=n
Device Drivers -> Serial Driver Support -> Serial Console
CONFIG_USART0_SERIAL_CONSOLE=y
Device Drivers -> Serial Driver Support -> USART0 Configuration
CONFIG_USART0_2STOP=0
CONFIG_USART0_BAUD=115200
CONFIG_USART0_BITS=8
CONFIG_USART0_PARITY=0
CONFIG_USART0_RXBUFSIZE=256
CONFIG_USART0_TXBUFSIZE=256
2. This configuration is set up to use the NuttX OABI toolchain (see
above). Of course this can be reconfigured if you prefer a different
toolchain.
nsh:
This configuration directory will built the NuttShell.
NOTES:
1. This configuration provides test output on USART0 which is available
on EXT1 or EXT4 (see the section "Serial Consoles" above). The
virtual COM port could be used, instead, by reconfiguring to use
USART1 instead of USART0:
System Type -> AT91SAM3/4 Peripheral Support
CONFIG_SAM_USART0=y
CONFIG_SAM_USART1=n
Device Drivers -> Serial Driver Support -> Serial Console
CONFIG_USART0_SERIAL_CONSOLE=y
Device Drivers -> Serial Driver Support -> USART0 Configuration
CONFIG_USART0_2STOP=0
CONFIG_USART0_BAUD=115200
CONFIG_USART0_BITS=8
CONFIG_USART0_PARITY=0
CONFIG_USART0_RXBUFSIZE=256
CONFIG_USART0_TXBUFSIZE=256
2. This configuration is set up to use the NuttX OABI toolchain (see
above). Of course this can be reconfigured if you prefer a different
toolchain.

View File

@ -0,0 +1,155 @@
/****************************************************************************
* configs/sam4s-xplained/src/sam_autoleds.c
*
* Copyright (C) 2013 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdint.h>
#include <stdbool.h>
#include <debug.h>
#include <arch/board/board.h>
#include "chip.h"
#include "sam_gpip.h"
#include "sam4s-xplained.h"
#ifdef CONFIG_ARCH_LEDS
/****************************************************************************
* Definitions
****************************************************************************/
/* If CONFIG_ARCH_LEDs is defined, then NuttX will control the two LEDs on
* board the SAM4S Xplained. The following definitions describe how NuttX
* controls the LEDs:
*
* SYMBOL Meaning LED state
* D9 D10
* ------------------- ----------------------- -------- --------
* LED_STARTED NuttX has been started OFF OFF
* LED_HEAPALLOCATE Heap has been allocated OFF OFF
* LED_IRQSENABLED Interrupts enabled OFF OFF
* LED_STACKCREATED Idle stack created ON OFF
* LED_INIRQ In an interrupt No change
* LED_SIGNAL In a signal handler No change
* LED_ASSERTION An assertion failed No change
* LED_PANIC The system has crashed OFF Blinking
* LED_IDLE MCU is is sleep mode Not used
*/
/* CONFIG_DEBUG_LEDS enables debug output from this file (needs CONFIG_DEBUG
* with CONFIG_DEBUG_VERBOSE too)
*/
#ifdef CONFIG_DEBUG_LEDS
# define leddbg lldbg
# define ledvdbg llvdbg
#else
# define leddbg(x...)
# define ledvdbg(x...)
#endif
/****************************************************************************
* Private Data
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: up_ledinit
****************************************************************************/
void up_ledinit(void)
{
/* Configure LED1-2 GPIOs for output */
sam_configgpio(GPIO_D9);
sam_configgpio(GPIO_D10);
}
/****************************************************************************
* Name: up_ledon
****************************************************************************/
void up_ledon(int led)
{
bool led1on = false;
bool led2on = false;
switch (led)
{
case 0: /* LED_STARTED, LED_HEAPALLOCATE, LED_IRQSENABLED */
break;
case 1: /* LED_STACKCREATED */
led1on = true;
break;
default:
case 2: /* LED_INIRQ, LED_SIGNAL, LED_ASSERTION */
return;
case 3: /* LED_PANIC */
led2on = true;
break;
}
sam_gpiowrite(GPIO_D9, led1on);
sam_gpiowrite(GPIO_D10, led2on);
}
/****************************************************************************
* Name: up_ledoff
****************************************************************************/
void up_ledoff(int led)
{
if (led != 2)
{
sam_gpiowrite(GPIO_D9, false);
sam_gpiowrite(GPIO_D10, false);
}
}
#endif /* CONFIG_ARCH_LEDS */

View File

@ -0,0 +1,141 @@
/****************************************************************************
* configs/sam4s-xplained/src/sam_userleds.c
*
* Copyright (C) 2013 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdint.h>
#include <stdbool.h>
#include <debug.h>
#include <arch/board/board.h>
#include "chip.h"
#include "sam_gpio.h"
#include "sam4s-xplained.h"
#ifndef CONFIG_ARCH_LEDS
/****************************************************************************
* Definitions
****************************************************************************/
/* CONFIG_DEBUG_LEDS enables debug output from this file (needs CONFIG_DEBUG
* with CONFIG_DEBUG_VERBOSE too)
*/
#ifdef CONFIG_DEBUG_LEDS
# define leddbg lldbg
# define ledvdbg llvdbg
#else
# define leddbg(x...)
# define ledvdbg(x...)
#endif
/****************************************************************************
* Private Data
****************************************************************************/
/****************************************************************************
* Private Function Protototypes
****************************************************************************/
/****************************************************************************
* Private Data
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: sam_ledinit
****************************************************************************/
void sam_ledinit(void)
{
/* Configure LED1-2 GPIOs for output */
sam_configgpio(GPIO_D9);
sam_configgpio(GPIO_D10);
}
/****************************************************************************
* Name: sam_setled
****************************************************************************/
void sam_setled(int led, bool ledon)
{
uint32_t ledcfg;
if (led == BOARD_LED1)
{
ledcfg = GPIO_D9;
}
else if (led == BOARD_LED2)
{
ledcfg = GPIO_D10;
}
else
{
return;
}
sam_gpiowrite(ledcfg, ledon);
}
/****************************************************************************
* Name: sam_setleds
****************************************************************************/
void sam_setleds(uint8_t ledset)
{
bool ledon;
ledon = ((ledset & BOARD_LED1_BIT) != 0);
sam_gpiowrite(GPIO_D9, ledon);
ledon = ((ledset & BOARD_LED2_BIT) != 0);
sam_gpiowrite(GPIO_D10, ledon);
}
#endif /* !CONFIG_ARCH_LEDS */

View File

@ -1,6 +1,5 @@
/****************************************************************************
* configs/stm32ldiscovery/src/up_autoleds.c
* arch/arm/src/board/up_autoleds.c
* configs/stm32ldiscovery/src/stm32_autoleds.c
*
* Copyright (C) 2013 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
@ -55,7 +54,7 @@
/****************************************************************************
* Definitions
****************************************************************************/
/* If CONFIG_ARCH_LEDs is defined, then NuttX will control the 8 LEDs on
/* If CONFIG_ARCH_LEDs is defined, then NuttX will control the 2 LEDs on
* board the STM32L-Discovery. The following definitions describe how NuttX
* controls the LEDs:
*

View File

@ -1,6 +1,5 @@
/****************************************************************************
* configs/stm32ldiscovery/src/up_leds.c
* arch/arm/src/board/up_leds.c
* configs/stm32ldiscovery/src/stm32_userleds.c
*
* Copyright (C) 2013 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>