Update TODO list; remove issues from old board ports

This commit is contained in:
Gregory Nutt 2015-05-06 07:01:33 -06:00
parent 4a8fbd8817
commit 9aa9d661ac
4 changed files with 87 additions and 723 deletions

753
TODO
View File

@ -2,9 +2,10 @@ NuttX TODO List (Last updated May 3, 2015)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This file summarizes known NuttX bugs, limitations, inconsistencies with
standards, things that could be improved, and ideas for enhancements. See
also individual README.txt files in the configs/ sub-directories for each
board port.
standards, things that could be improved, and ideas for enhancements. This
TODO list does not include issues associated with individual boar ports. See
altheso individual README.txt files in the configs/ sub-directories for
issues reated to each board port.
nuttx/
@ -16,7 +17,7 @@ nuttx/
(4) C++ Support
(6) Binary loaders (binfmt/)
(12) Network (net/, drivers/net)
(3) USB (drivers/usbdev, drivers/usbhost)
(4) USB (drivers/usbdev, drivers/usbhost)
(12) Libraries (libc/, libm/)
(11) File system/Generic drivers (fs/, drivers/)
(8) Graphics subsystem (graphics/)
@ -24,26 +25,6 @@ nuttx/
(2) Build system / Toolchains
(3) Linux/Cywgin simulation (arch/sim)
(5) ARM (arch/arm/)
(1) ARM/C5471 (arch/arm/src/c5471/)
(3) ARM/DM320 (arch/arm/src/dm320/)
(2) ARM/i.MX (arch/arm/src/imx/)
(3) ARM/LPC17xx (arch/arm/src/lpc17xx/)
(7) ARM/LPC214x (arch/arm/src/lpc214x/)
(2) ARM/LPC313x (arch/arm/src/lpc313x/)
(0) ARM/LPC43x (arch/arm/src/lpc43xx/)
(2) ARM/STR71x (arch/arm/src/str71x/)
(2) ARM/LM3S6918 (arch/arm/src/tiva/)
(x) ARM/SAMA5D3/4 ((arch/arm/src/sama5/)
(x) ARM/SAMV7 ((arch/arm/src/samv7/)
(5) ARM/STM32 (arch/arm/src/stm32/)
(3) AVR (arch/avr)
(0) Intel x86 (arch/x86)
(3) MIPS/PIC32 (arch/mips)
(1) Hitachi/Renesas SH-1 (arch/sh/src/sh1)
(4) Renesas M16C/26 (arch/sh/src/m16c)
(11) z80/z8/ez80/z180 (arch/z80/)
(9) z16 (arch/z16/)
(1) mc68hc1x (arch/hc)
apps/
@ -1090,6 +1071,31 @@ o USB (drivers/usbdev, drivers/usbhost)
CDC/ACM serial driver might need the line coding data (that
data is not used currently, but it might be).
Title: IMPROVED USAGE of STM32 USB RESOURCES
Description: The STM32 platforms use a non-standard, USB host peripheral
that uses "channels" to implement data transfers the current
logic associates each channel with an pipe/endpoint (with two
channels for bi-directional control endpoints). The OTGFS
peripheral has 8 channels and the OTGHS peripheral has 12
channels.
This works okay until you add a hub and try connect multiple
devices. A typical device will require 3-4 pipe and, hence,
4-5 channels. This effectively prevents using a hub with the
STM32 devices. This also applies to the EFM32 which uses the
same IP.
It should be possible to redesign the STM32 F4 OTGHS/OTGFS and
EFM32 host driver so that channels are dynamically assigned to
pipes as needed for individual transfers. Then you could have
more "apparent" pipes and make better use of channels.
Although there are only 8 or 12 channels, transfers are not
active all of the time on all channels so it ought to be
possible to have an unlimited number of "pipes" but with no
more than 8 or 12 active transfers.
Status: Open
Priority: Medium-Low
o Libraries (libc/)
^^^^^^^^^^^^^^^^^
@ -1670,705 +1676,6 @@ o ARM (arch/arm/)
Status: Open
Priority: Low-ish, but a good opportunity for performance improvement.
o ARM/C5471 (arch/arm/src/c5471/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Title: UART RECONFIGURATION
Description: UART re-configuration is untested and conditionally compiled out.
Status: Open
Priority: Medium. ttyS1 is not configured, but not used; ttyS0 is configured
by the bootloader
o ARM/DM320 (arch/arm/src/dm320/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Title: DEBUG ISSUES
Description: config/ntos-dm320: It seems that when a lot of debug statements
are added, the system no longer boots. This is suspected to be
a stack problem: Making the stack bigger or removing arrays on
the stack seems to fix the problem (might also be the
bootloader overwriting memory)
Status: Open
Priority: Medium
Title: USB DEVICE DRIVER UNTESTED
Description: A USB device controller driver was added but has never been tested.
Status: Open
Priority: Medium
Title: FRAMEBUFFER DRIVER UNTESTED
Description: A framebuffer "driver" was added, however, it remains untested.
Status: Open
Priority: Medium
Title: VIDEO ENCODER DRIVER
Description: In order to use the framebuffer "driver" additional video encoder
logic is required to setup composite video output or to interface
with an LCD.
Status: Open
Priority: Medium (high if you need to use the framebuffer driver)
o ARM/i.MX (arch/arm/src/imx/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Title: PORT IS INCOMPLETE
Description: The basic port of the i.MX1 architecture was never finished. The port
is incomplete (as of this writing, is still lacks a timer, interrupt
decoding, USB, network) and untested.
Status: Open
Priority: Medium (high if you need i.MX1/L support)
Title: SPI METHODS ARE NOT THREAD SAFE
Description: SPI methods are not thread safe. Needs a semaphore to protect from re-entrancy.
Status: Open
Priority: Medium -- Will be very high if you do SPI access from multiple threads.
o ARM/LPC17xx (arch/arm/src/lpc17xx/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Title: USB DMA INCOMPLETE
Description: USB DMA not fully implemented. Partial logic is in place but it is
fragmentary and bogus. (Leveraged from the lpc214x)
Status: Open
Priority: Low
Title: SSP DRIVER IMPROVEMENTS
Description: a) At present the SSP driver is polled. Should it be interrupt driven?
Look at arch/arm/src/imx/imx_spi.c -- that is a good example of an
interrupt driven SPI driver. Should be very easy to part that architecture
to the LPC.
b) See other SSP (SPI) driver issues listed under ARM/LPC214x. The LPC17xx
driver is a port of the LPC214x driver and probably has the same issues.
b) Other SSP driver improvements: Add support for multiple devices on the
SSP bus, use DMA data transfers
Status: Open
Priority: Medium
Title: NOKIA LCD DRIVER NONFUNCTIONAL
Description: An LCD driver for the Olimex LPC1766STK has been developed. However, that
driver is not yet functional on the board: The backlight comes on, but
nothing is visible on the display.
Status: Open
Priority: Medium-Low (unless you need the display on the LPC1766STK!)
o ARM/LPC214x (arch/arm/src/lpc214x/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Title: VECTOR INTERRUPTS
Description: Should use Vector Interrupts
Status: Open
Priority: Low
Title: USB DMA INCOMPLETE
Description: USB DMA not fully implemented. Partial logic is in place but it is
fragmentary and bogus.
Status: Open
Priority: Low
Title: USB SERIAL DRIVER REPORTS WRONG ERROR
Description: USB Serial Driver reports wrong error when opened before the
USB is connected (reports EBADF instead of ENOTCONN)
Status: Open
Priority: Low
Title: SPI DRIVER IMPROVEMENTS
Description: At present the SPI driver is polled. Should it be interrupt driven?
Look at arch/arm/src/imx/imx_spi.c -- that is a good example of an
interrupt driven SPI driver. Should be very easy to part that architecture
to the LPC.
Status: Open
Priority: Medium
Title: SPI METHODS ARE NOT THREAD SAFE
Description: SPI methods are not thread safe. Needs a semaphore to protect from re-entrancy.
Status: Open
Priority: Medium -- Will be very high if you do SPI access from multiple threads.
Title: SPI DRIVER DELAYS
Description: At present the SPI driver is polled -AND- there is a rather large, arbitrary,
delay in one of the block access routines. The purpose of the delay is to
avoid a race conditions. This begs for a re-design -OR- at a minimum, some
optimization of the delay time.
Status: Open
Priority: Medium
Title: 2GB SD CARD ISSUES
Desription: I am unable to initialize a 2Gb SanDisk microSD card (in adaptor) on the
the mcu123 board. The card fails to accept CMD0. Doesn't seem like a software
issue, but if anyone else sees the problem, I'd like to know.
Related: Fixes were recently made for the SDIO-based MMC/SD driver to
support 2Gb cards -- the block size was forced to 512 in all cases. The SPI-
based driver may also have this problem (but I don't think this would have
anything to do with CMD0).
Status: Open
Priority: Uncertain
Title: USB BROKEN?
Description: I tried to bring up the new configuration at configs/mcu123-214x/composite,
and Linux failed to enumerate the device. I don't know if this is
a problem with the lpc214x USB driver (bit rot), or due to recent
changed (e.g., -r4359 is suspicious), or an incompatibility between the
Composite driver and the LPC214x USB driver. It will take more work
to find out which -- like checking if the other USB configurations are
also broken.
Status: Open
Priority: It would be high if the LPC2148 were a current, main stream architecture.
I am not aware of anyone using LPC2148 now so I think the priority has
to be low.
o ARM/LPC31xx (arch/arm/src/lpc31xx/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Title: PLATFORM-SPECIFIC LOGIC
Description: arch/arm/src/lpc313x/lpc313x_spi.c contains logic that is specific to the
Embedded Artist's ea3131 board. We need to abstract the assignment of SPI
chip selects and logic SPI functions (like SPIDEV_FLASH). My thoughts are:
- Remove lpc313x_spiselect and lpc313x_spistatus from lpc313x_internal.h
- Remove configs/ea3131/src/up_spi.c
- Add configurations CONFIG_LPC3131x_CSOUT1DEV, CONFIG_LPC3131x_CSOUT2DEV,
and CONFIG_LPC3131x_CSOUT3DEV that maps the lpc313x SPI chip selects to
SPIDEV_* values.
- Change arch/arm/src/lpc313x/lpc313x_spi.c to use those configuration
settings.
Status: Open
Priority: High if you want to use SPI on any board other than the ea3131.
Title: SPI DRIVER
Description: arch/arm/src/lpc313x/lpc313x_spi.c may or may not be functional. It was
reported to be working, but I was unable to get it working with the
Atmel at45dbxx serial FLASH driver.
Status: Open
Priority: High if you need to use SPI.
o ARM/LPC43x (arch/arm/src/lpc43xx/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
See comments in configs/lpc4330-xplorer/README.txt
o ARM/STR71x (arch/arm/src/str71x/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Title: UNVERIFIED MMC SUPPORT
Description: Verify SPI driver and integrate with MMC support. This effort is stalled
at the moment because the slot on the Olimex board only accepts MMC card;
I have no MMC cards, only SD cards which won't fit into the slot.
Status: Open
Priority: Medium
Title: SPI METHODS ARE NOT THREAD SAFE
Description: SPI methods are not thread safe. Needs a semaphore to protect from re-entrancy.
Status: Open
Priority: Medium -- Will be very high if you do SPI access from multiple threads.
o ARM/LM3S6918 (arch/arm/src/tiva/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Title: SSI OVERRUNS
Description: Should terminate SSI/SPI transfer if an Rx FIFO overrun occurs.
Right now, if an Rx FIFO overrun occurs, the SSI driver hangs.
Status: Open
Priority: Medium, If the transfer is properly tuned, then there should not
be any Rx FIFO overruns.
Title: THTTPD BUGS
Description: There are some lingering bugs in THTTPD, possibly race conditions. This
is covered above under Network Utilities, but is duplicated here
to point out that the LM3S suffers from this bug.
Status: Open.
UPDATE: I have found that increasing the size of the CGI program stack
from 1024 to 2048 (on the LM3S) eliminates the problem. So the most
likely cause is probably a stack overflow, not a hard software bug.
Priority: Probably Low
o ARM/SAMA5D3 ((arch/arm/src/sama5/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Issues related to the SAMA5D3 port are in configs/sama5d3x-ek/README.txt.
Issues related to the SAMA5D4 port are in configs/sama5d4-ek/README.txt.
o ARM/SAMV7 ((arch/arm/src/samv7/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Issues related to the SAMA5D3 port are in configs/samv71-xult/README.txt.
o ARM/STM32 (arch/arm/src/stm32/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Title: USBSERIAL ISSUES
Description A USB device-side driver is in place but not well tested. At
present, the apps/examples/usbserial test sometimes fails. The situation
that causes the failure is:
- Host-side of the test started after the target side sends the
first serial message.
The general failure is as follows:
- The target message pends in the endpoint packet memory
- When the host-side of the test is stated, it correctly
reads this pending data.
- an EP correct transfer interrupt occurs and the next
pending outgoing message is setup
- But, the host never receives the next message
If the host-side driver is started before the first target message
is sent, the driver works fine.
Status: Open
Priority: Medium-High
Title: DMA EXTENSIONS F1/3
Description: DMA logic needs to be extended. DMA2, Channel 5, will not work
because the DMA2 channels 4 & 5 share the same interrupt.
Status: Open
Priority: Low until someone needs DMA1, Channel 5 (ADC3, UART4_TX, TIM5_CH1, or
TIM8_CH2).
Title: F4 SDIO MULTI-BLOCK TRANSFER FAILURES
Description: If you use a large I/O buffer to access the file system, then the
MMCSD driver will perform multiple block SD transfers. With DMA
ON, this seems to result in CRC errors detected by the hardware
during the transfer. Workaround: CONFIG_MMCSD_MULTIBLOCK_DISABLE=y.
Status: Open
Priority: Medium
Title: DMA BOUNDARY CROSSING
Description: I see this statement in the reference manual: "The burst
configuration has to be selected in order to respect the AHB protocol,
where bursts must not cross the 1 KB address boundary because the
minimum address space that can be allocated to a single slave
is 1 KB. This means that the 1 KB address boundary should not be crossed
by a burst block transfer, otherwise an AHB error would be generated,
that is not reported by the DMA registers."
The implication is that there may be some unenforced alignment
requirements for some DMAs. There is nothing in the DMA driver to
prevent this now.
Status: Open
Priority: Low (I am not even sure if this is a problem yet).
Title: DMA FROM EXTERNAL, FSMC MEMORY
Description: I have seen a problem on F1 where all SDIO DMAs work exist for
write DMAs from FSMC memory (i.e., from FSMC memory to SDIO).
Read transfers work fine (SDIO to FSMC memory). The failure is
a data underrun error with zero bytes of data transferred. The
workaround for now is to use DMA buffers allocated from internal
SRAM.
Status: Open
Priority: Low
o AVR (arch/avr)
^^^^^^^^^^^^^^
Title: AMBER WEB SERVER UNTESTED
Description: There is a port for the Amber Web Server ATMega128, however this is
completely untested due to the lack to compatible, functional test
equipment.
Status: Open
Priority: The priority might as well be low since there is nothing I can do about
it anyway.
Title: STRINGS IN RAM
Description: Many printf-intensive examples (such as the OS test) cannot be executed
on most AVR platforms. The reason is because these tests/examples
generate a lot of string data. The build system currently places all
string data in RAM and the string data can easily overflow the tiny
SRAMs on these parts. A solution would be to put the string data
into the more abundant FLASH memory, but this would require modification
to the printf logic to access the strings from program memory.
Status: Open
Priority: Low. The AVR is probably not the architecture that you want to use
for extensive string operations.
Title: SPI AND USB DRIVERS UNTESTED
Description: An SPI driver and a USB device driver exist for the AT90USB (as well
as a USB mass storage example). However, this configuration is not
fully debugged as of the NuttX-6.5 release.
Update 7/11: (1) The SPI/SD driver has been verified, however, (2) I
believe that the current teensy/usbmsc configuration uses too
much SRAM for the system to behave sanely. A lower memory footprint
version of the mass storage driver will be required before this can
be debugged
Status: Open
Priority: Medium-High.
Title: AVR32 PORT IS NOT FULLY TESTED
Description: A complete port for the AVR32 is provided and has been partially
debugged. There may still be some issues with the serial port
driver.
Status: Open
Priority: Medium
o Intel x86 (arch/x86)
^^^^^^^^^^^^^^^^^^^^
o MIPS/PIC32(arch/mips)
^^^^^^^^^^^^^^^^^^^^^
Title: PIC32 USB DRIVER DOES NOT WORK WITH MASS STORAGE CLASS
UPDATE: ** ONLY USING RAM DISK FOR EXPORTED VOLUME ***
Description: The PIC32 USB driver either crashes or hangs when used with
the mass storage class when trying to write files to the target
storage device. This usually works with debug on, but does not
work with debug OFF (implying some race condition?)
Here are some details of what I see in debugging:
1. The USB MSC device completes processing of a read request
and returns the read request to the driver.
2. Before the MSC device can even begin the wait for the next
driver, many packets come in at interrupt level. The MSC
device goes to sleep (on pthread_cond_wait) with all of the
read buffers ready (16 in my test case).
3. The pthread_cond_wait() does not wake up. This implies
a problem with pthread_con_wait(?). But in other cases,
the MSC device does wake up, but then immediately crashes
because its stack is bad.
4. If I force the pthread_cond_wait to wake up (by using
pthread_cond_timedwait instead), then the thread wakes
up and crashes with a bad stack.
So far, I have no clue why this is failing.
UPDATE: This bug was recorded using the PIC32 Ethernet
Starter kit with a RAM disk (that board has no SD card slot).
However, using the USB mass storage device with the
Mikroelektronika using a real SD card, there is no such
problem -- the mass storage device seems quite stable.
UPDATE: Hmmm.. retesting with the Mikroelektronika board
shows problems again. I think that there are some subtle
timing bugs whose effects can very from innocuous to severe.
Status: Open
Priority: Originally, High BUT reduced to very Low based on the
UPDATED comments.
Title: PIC32 USB MASS STORAGE DEVICE FAILS TO RE-CONNECT
Description: Found using configuration configs/pic32mx7mmb/nsh.
In this configuration, the NSH 'msconn' command will connect the
mass storage device to the host; the 'msdis' command will
disconnect the device. The first 'msconn' works perfectly.
However, when attempting to re-connect, the second 'msconn'
command does not command properly: Windows reports an
unrecognized device. Apparently, some state is being properly
reset when the mass storage device is disconnected. Shouldn't
be hard to fix.
Status: Open
Priority: Medium
Title: POSSIBLE INTERRUPT CONTROL ISSUE
Description: There is a kludge in the file arch/mips/src/common/up_idle.c.
Basically, if there is nothing else going on in the IDLE loop,
you have to disable then re-enable interrupts. Logically nothing
changes, but if you don't do this interrupts will be be disabled
in the IDLE loop which is a very bad thing to happen.
Some odd behavior in the interrupt setup on the IDLE loop is
not really a big concern, but what I do not understand is if
this behavior is occurring on all threads after all context
switches: Are interrupts always disabled until re-enabled?
This requires some further investigation at some point; it
may be nothing but may also be a symptom of some changes
required to the interrupt return logic (perhaps some CP0
status hazard?)
Status: Open
Priority: Low. Puzzling and needs some investigation, but there there
is no known misbehavior.
o Hitachi/Renesas SH-1 (arch/sh/src/sh1)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Title: SH-1 IS UNUSABLE
Description: There are instabilities that make the SH-1 port un-usable. The
nature of these is not understood; the behavior is that certain SH-1
instructions stop working as advertised. I have seen the following
examples:
412b jmp @r1 - Set a return address in PR, i.e., it behaved like
410b jsr @r1. Normally 412b works correctly, but in the failure
condition, it reliably set the PR.
69F6 mov.l @r15+,r9 - wrote the value of R1 to @r15+. This behavior
does not correspond to any known SH-1 instruction
This could be a silicon problem, some pipeline issue that is not
handled properly by the gcc 3.4.5 toolchain (which has very limit
SH-1 support to begin with), or perhaps with the CMON debugger. At
any rate, I have exhausted all of the energy that I am willing to put
into this cool old processor for the time being.
Update: This bug will probably never be addressed now. I just
cleaned house and my old SH-1 was one of the things that went.
Status: Open
Priority: Low -- because the SH-1, SH7032, is very old and only of historical
interest.
o Renesas M16C/26 (arch/sh/src/m16c)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Title: M16C DOES NOT BUILD
Description: The M16C target cannot be built. The GNU m16c-elf-ld link fails with
the following message:
m32c-elf-ld: BFD (GNU Binutils) 2.19 assertion fail /home/Owner/projects/nuttx/buildroot/toolchain_build_m32c/binutils-2.19/bfd/elf32-m32c.c:482
Where the reference line is:
/* If the symbol is out of range for a 16-bit address,
we must have allocated a plt entry. */
BFD_ASSERT (*plt_offset != (bfd_vma) -1);
No workaround is known at this time.
Status: Open
Priority: High -- this is a show stopper for M16C.
Title: M16C PORT UNTESTED
Description: Coding of the initial port is complete, but is untested.
Status: Open
Priority: Low
Title: NO SERIAL CONNECTOR
Description: Serial drivers were developed for the M16C, however, the SKP16C26
StarterKit has no serial connectors.
Status: Open
Priority: Low
Title: UNIMPLEMENTED M16C DRIVERS
Description: Should implement SPI, I2C, Virtual EEPROM, FLASH, RTC drivers
Status: Open
Priority: Medium
o z80/z8/ez80/z180 (arch/z80)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Title: SDCC INTEGER OVERFLOWS
Description: The SDCC version the same problems with integer overflow during
compilation for certain 8-bit platform. At typical cause is code like
usleep(500*1000) which exceeds the range of a 16-bit integer.
Status: These have probably been fixed but have not yet been verified on these
affected platforms.
Priority: Low for now
Title: Z80 SIMULATED CONSOLE
Description: The simulated Z80 serial console (configs/z80sim/src/z80_serial.c +
driver/serial.c) does not work. This is because there are
no interrupts in the simulation so there is never any serial
traffic.
Status: Open
Priority: Low -- the simulated console is not critical path and the designs
to solve the problem are complex.
Title: ZDS-II LIBRARIAN WARNINGS
Description: ZDS-II Librarian complains that the source for the .obj file
is not in the library.
Status: Open
Priority: Low, thought to be cosmetic. I think this is a consequence of
replacing vs. inserting the library.
Title: ZDS-II COMPILER PROBLEMS
Description: The ZDS-II compiler (version 4.10.1) fails with an internal error
while compiling mm/mm_initialize.c. This has been reported as
incident 81509.
I have found the following workaround that I use to build for the
time being:
--- mm/mm_initialize.c.SAVE 2008-02-13 08:06:46.833857700 -0600
+++ mm/mm_initialize.c 2008-02-13 08:07:26.367608900 -0600
@@ -94,8 +94,11 @@
{
int i;
+#if 0 /* DO NOT CHECK IN */
CHECK_ALLOCNODE_SIZE;
CHECK_FREENODE_SIZE;
+#endif
/* Set up global variables */
Status: Open
Priority: High
Title: EZ8 PRIORITY INTERRUPTS
Description: Add support for prioritized ez8 interrupts. Currently logic supports
only nominal interrupt priority.
Status: Open
Priority: Low
Title: Z8ENCORE ONLY VERIFIED ON SIMULATOR
Description: The z8Encore! port has only been verified on the ZDS-II instruction
set simulator.
Status: Open
Priority: Medium
Title: XTRS CLEAN
Description: The XTRS target (configs/xtrs) has a clean problem. The clean
rule removes .asm files. This works because there are no .asm
files except in sub-directories that are provided from 'make clean' --
except for XTRS: It has a .asm file in its src/ directory that
gets removed every time clean is performed.
Status: Open
Priority: High if you happen to be working with XTRS.
Title: SPI/I2C UNTESTED
Description: A "generic" SPI and I2C drivers have been coded for the eZ80Acclaim!
However, these remains untested since I have no SPI or I2C devices for
the board (yet).
Status: Open
Priority: Med
Title: SPI METHODS ARE NOT THREAD SAFE
Description: SPI methods are not thread safe. Needs a semaphore to protect from re-entrancy.
Status: Open
Priority: Medium -- Will be very high if you do SPI access from multiple threads.
Title: I2C UNTESTED
Description: A "generic" I2C driver has been coded for the eZ8Encore!
However, this remains untested since I have no I2C devices for
the board (yet).
Status: Open
Priority: Med
Title: UNFINISHED Z180 LOGIC NEEDED BY THE P112 BOARD
Description: 1) Need to revisit the start-up logic. Looking at the P112 Bios
(Bios.mcd), I see that quite of bit of register setup is done
there.
2) Finish ESCC driver logic.
Status: Open
Priority: Low (at least until I get P112 hardware)
o z16 (arch/z16)
^^^^^^^^^^^^^^^^
Title: ZDS-II LIBRARIAN WARNINGS
Description: ZDS-II Librarian complains that the source for the .obj file
is not in the library.
Status: Open
Priority: Low, thought to be cosmetic. I think this is a consequence of
replacing vs. inserting the library.
Title: SYSTEM DELAYS
Description: The system delays do not appear to be correct with the
apps/examples/ostest/timedmqueue.c test.
Status: Open
Priority: Medium-High
Title: PROBLEMS WHEN DEBUG DISABLED
Description: At present, the z16f port does not run properly when CONFIG_DEBUG
is disabled: The obvious symptom is that there is no printf()
output. I have isolated with problem to errors in optimization.
With -reduceopt on the command line, I can get the printf output.
However, there are still errors in the compiled code -- specifically
in sched/timer_create.c.
I have submitted a bug report to ZiLOG for this (support incident
81400). You can see the status of the bug report (and lots more
technical detail) here:
http://support.zilog.com/support/incident/incident_support.asp?iIncidentId=81400&iSiteId=1&chLanguageCode=ENG
Summary of ZiLOG analysis: "This is a ZNEO compiler problem. ... [a] workaround
is to replace:
if ( !timerid || (clockid != 0) )
By:
if ((clockid != 0) || !timerid)"
Status: Open
Priority: Medium-High
Title: PASCAL ADD-ON
Description: The pascal add-on does not work with the z16f (that is
configuration z16f2800100zcog/pashello). This appears to be
another ZDS-II error: when executing the instruction
SYSIO 0, WRITESTR a large case statement is executed. This
involves a call into the ZiLOG runtime library to __uwcase().
__uwcase is passed a pointer to a structure containing jump
information. The cause of the failure appears to be that
the referenced switch data is bad.
This is submitted as ZiLOG support incident 81459.
Summary of ZiLOG analysis: "This is a ZNEO run time library problem.
One workaround is to replace the line 58 in uwcase.asm
From:
ADD R9,#4 ; Skip handler
To:
ADD R9,#2 ; Skip handler
And add uwcase.asm to the project.
If the customer does not want to modify uwcase.asm then the other
workaround is to add a dummy case and make it same as default:
case 0x8000:
default:
This will make sure that uwcase is not called but ulcase is called."
Status: Open. Due to licensing issues, I cannot include the modified
uwcase in the NuttX code base.
Priority: Medium
Title: USE SPOV
Description: Add support to maintain SPOV in context switching. This
improvement will provide protection against stack overflow
and make a safer system solution.
Status: Open
Priority: Low
Title: PRIORITIZED INTERRUPTS
Description: Add support for prioritized interrupts. Currently logic supports
only nominal interrupt priority.
Status: Open
Priority: Low
Title: ZDS-II COMPILER PROBLEMS
Description: The file drivers/mmcsd/mmcsd_sdio.c generates an internal compiler
error like:
mmcsd\mmcsd_sdio.c
Internal Error(0503) On line 2504 of "MMCSD\MMCSD_SDIO.C"
File <c3>, Args(562,46)
Status: Open. Recommended workaround: remove mmcsd_sdio.c from
drivers/mmcsd/Make.defs. There is no SDIO support for the Z16 anyway
Priority: Low
Title: NATIVE BUILD PROBLEMS
Description: When last tested (ca.12/12), there were some missing .obj files in
arch/z16/src. A little additional TLC will be needed to get a
reliable Windows native build.
Status: Open
Priority: Low -- I don't think anyone uses the Z16 port with the native build.
Title: COMPILER BUG
Description: There is a bug in the ZDS II 5.0.1 compiler. It generates incorrect
code when calling through a function pointer if (1) the function
pointer is a field in a structure, and (2) the function pointer has
a variable number of arguments.
The exact name of the bug is this: Normally, when a function is
called, parameters are passed in registers. When calling a
function with a variable number of arguments, parameters must
instead be passed on the stack. In this failure case3, parameters
are erroneously passed in registers while the receive function
expects the parameters on the stack. This usually results in a
crash.
Unfortunately, NSH does have this exact kind of function call and
because of this compiler bug, NSH cannot be used with the ZNEO
Status: The bug has been reported to ZiLOG and they have reproduced the
problem. There is, however, no schedule for correction of the bug.
Priority: High if you are using ZNEO
o mc68hc1x (arch/hc)
^^^^^^^^^^^^^^^^^^
Title: BANKED MODE
Description: There is no script for building in banked mode (more correctly, there
is a script, but logic inside the script has not yet been implemented).
It would be necessary to implement banked mode to able to access more
the 48K of FLASH.
Status: Open.
Priority: Medium/Low
o Network Utilities (apps/netutils/)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

View File

@ -31,6 +31,15 @@ Toolchain
8. Edit setenv.h so that the PATH variable includes the path to the
newly built binaries.
Issues
^^^^^^
Title: UART RECONFIGURATION
Description: UART re-configuration is untested and conditionally compiled out.
Status: Open
Priority: Medium. ttyS1 is not configured, but not used; ttyS0 is configured
by the bootloader
ARM/C5471-specific Configuration Options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

View File

@ -31,6 +31,22 @@ Toolchain
8. Edit setenv.h so that the PATH variable includes the path to the
newly built binaries.
Issues
^^^^^^
Title: PORT IS INCOMPLETE
Description: The basic port of the i.MX1 architecture was never finished. The port
is incomplete (as of this writing, is still lacks a timer, interrupt
decoding, USB, network) and untested.
Status: Open
Priority: Medium (high if you need i.MX1/L support)
Title: SPI METHODS ARE NOT THREAD SAFE
Description: SPI methods are not thread safe. Needs a semaphore to protect from re-entrancy.
Status: Open
Priority: Medium -- Will be very high if you do SPI access from multiple threads.
ARM/i.MX1-specific Configuration Options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

View File

@ -13,6 +13,7 @@ CONTENTS
- ARM/DM320-specific Configuration Options
- Configurations
- Configuration Options
- Issues
Dev vs. Production Neuros OSD v1.0 boards
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@ -395,3 +396,34 @@ Neuros OSD Configuration Options
CONFIG_ARCH_NTOSD_DEVBOARD - Selects the old NTOSD development board.
The default is the production OSD board which differs in
several ways.
Issues
^^^^^^
Title: DEBUG ISSUES
Description: config/ntos-dm320: It seems that when a lot of debug statements
are added, the system no longer boots. This is suspected to be
a stack problem: Making the stack bigger or removing arrays on
the stack seems to fix the problem (might also be the
bootloader overwriting memory)
Status: Open
Priority: Medium
Title: USB DEVICE DRIVER UNTESTED
Description: A USB device controller driver was added but has never been tested.
Status: Open
Priority: Medium
Title: FRAMEBUFFER DRIVER UNTESTED
Description: A framebuffer "driver" was added, however, it remains untested.
Status: Open
Priority: Medium
Title: VIDEO ENCODER DRIVER
Description: In order to use the framebuffer "driver" additional video encoder
logic is required to setup composite video output or to interface
with an LCD.
Status: Open
Priority: Medium (high if you need to use the framebuffer driver)