LPC43 Need to use fractional dividers to get the low-level UART BAUD correct
git-svn-id: svn://svn.code.sf.net/p/nuttx/code/trunk@4931 42af7a65-404d-4744-a932-0658087f49c3
This commit is contained in:
parent
c1cd96fda7
commit
b740e28538
@ -545,134 +545,6 @@ static inline void up_enablebreaks(struct up_dev_s *priv, bool enable)
|
||||
* Private Functions
|
||||
****************************************************************************/
|
||||
|
||||
/****************************************************************************
|
||||
* Name: up_setbaud
|
||||
*
|
||||
* Description:
|
||||
* Configure the U[S]ART divisors to accomplish the desired BAUD given the
|
||||
* U[S]ART base frequency.
|
||||
*
|
||||
* This computationally intensive algorithm is based on the same logic
|
||||
* used in the NXP sample code.
|
||||
*
|
||||
****************************************************************************/
|
||||
|
||||
void up_setbaud(struct up_dev_s *priv)
|
||||
{
|
||||
uint32_t lcr; /* Line control register value */
|
||||
uint32_t dl; /* Best DLM/DLL full value */
|
||||
uint32_t mul; /* Best FDR MULVALL value */
|
||||
uint32_t divadd; /* Best FDR DIVADDVAL value */
|
||||
uint32_t best; /* Error value associated with best {dl, mul, divadd} */
|
||||
uint32_t cdl; /* Candidate DLM/DLL full value */
|
||||
uint32_t cmul; /* Candidate FDR MULVALL value */
|
||||
uint32_t cdivadd; /* Candidate FDR DIVADDVAL value */
|
||||
uint32_t errval; /* Error value associated with the candidate */
|
||||
|
||||
/* The U[S]ART buad is given by:
|
||||
*
|
||||
* Fbaud = Fbase * mul / (mul + divadd) / (16 * dl)
|
||||
* dl = Fbase * mul / (mul + divadd) / Fbaud / 16
|
||||
* = Fbase * mul / ((mul + divadd) * Fbaud * 16)
|
||||
* = ((Fbase * mul) >> 4) / ((mul + divadd) * Fbaud)
|
||||
*
|
||||
* Where the value of MULVAL and DIVADDVAL comply with:
|
||||
*
|
||||
* 0 < mul < 16
|
||||
* 0 <= divadd < mul
|
||||
*/
|
||||
|
||||
best = UINT32_MAX;
|
||||
divadd = 0;
|
||||
mul = 0;
|
||||
dl = 0;
|
||||
|
||||
/* Try each mulitplier value in the valid range */
|
||||
|
||||
for (cmul = 1 ; cmul < 16; cmul++)
|
||||
{
|
||||
/* Try each divider value in the valid range */
|
||||
|
||||
for (cdivadd = 0 ; cdivadd < cmul ; cdivadd++)
|
||||
{
|
||||
/* Candidate:
|
||||
* dl = ((Fbase * mul) >> 4) / ((mul + cdivadd) * Fbaud)
|
||||
* (dl << 32) = (Fbase << 28) * cmul / ((mul + cdivadd) * Fbaud)
|
||||
*/
|
||||
|
||||
uint64_t dl64 = ((uint64_t)priv->basefreq << 28) * cmul /
|
||||
((cmul + cdivadd) * priv->baud);
|
||||
|
||||
/* The lower 32-bits of this value is the error */
|
||||
|
||||
errval = (uint32_t)(dl64 & 0x00000000ffffffffull);
|
||||
|
||||
/* The upper 32-bits is the candidate DL value */
|
||||
|
||||
cdl = (uint32_t)(dl64 >> 32);
|
||||
|
||||
/* Round up */
|
||||
|
||||
if (errval > (1 << 31))
|
||||
{
|
||||
errval = -errval;
|
||||
cdl++;
|
||||
}
|
||||
|
||||
/* Check if the resulting candidate DL value is within range */
|
||||
|
||||
if (cdl < 1 || cdl > 65536)
|
||||
{
|
||||
/* No... try a different divadd value */
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Is this the best combination that we have seen so far? */
|
||||
|
||||
if (errval < best)
|
||||
{
|
||||
/* Yes.. then the candidate is out best guess so far */
|
||||
|
||||
best = errval;
|
||||
dl = cdl;
|
||||
divadd = cdivadd;
|
||||
mul = cmul;
|
||||
|
||||
/* If the new best guess is exact (within our precision), then
|
||||
* we are finished.
|
||||
*/
|
||||
|
||||
if (best == 0)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
DEBUGASSERT(dl > 0);
|
||||
|
||||
/* Enter DLAB=1 */
|
||||
|
||||
lcr = up_serialin(priv, LPC43_UART_LCR_OFFSET);
|
||||
up_serialout(priv, LPC43_UART_LCR_OFFSET, lcr | UART_LCR_DLAB);
|
||||
|
||||
/* Save then divider values */
|
||||
|
||||
up_serialout(priv, LPC43_UART_DLM_OFFSET, dl >> 8);
|
||||
up_serialout(priv, LPC43_UART_DLL_OFFSET, dl & 0xff);
|
||||
|
||||
/* Clear DLAB */
|
||||
|
||||
up_serialout(priv, LPC43_UART_LCR_OFFSET, lcr & ~UART_LCR_DLAB);
|
||||
|
||||
/* Then save the fractional divider values */
|
||||
|
||||
up_serialout(priv, LPC43_UART_FDR_OFFSET,
|
||||
(mul << UART_FDR_MULVAL_SHIFT) | (divadd << UART_FDR_DIVADDVAL_SHIFT));
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Name: up_setup
|
||||
*
|
||||
@ -733,7 +605,7 @@ static int up_setup(struct uart_dev_s *dev)
|
||||
|
||||
/* Set the BAUD divisor */
|
||||
|
||||
up_setbaud(priv);
|
||||
lpc43_setbaud(priv->uartbase, priv->basefreq, priv->baud);
|
||||
|
||||
/* Configure the FIFOs */
|
||||
|
||||
|
@ -70,21 +70,21 @@
|
||||
# define CONSOLE_2STOP CONFIG_USART0_2STOP
|
||||
#elif defined(CONFIG_UART1_SERIAL_CONSOLE)
|
||||
# define CONSOLE_BASE LPC43_UART1_BASE
|
||||
# define CONSOLE_BASEFREQ BOARD_USART0_BASEFREQ
|
||||
# define CONSOLE_BASEFREQ BOARD_UART1_BASEFREQ
|
||||
# define CONSOLE_BAUD CONFIG_UART1_BAUD
|
||||
# define CONSOLE_BITS CONFIG_UART1_BITS
|
||||
# define CONSOLE_PARITY CONFIG_UART1_PARITY
|
||||
# define CONSOLE_2STOP CONFIG_UART1_2STOP
|
||||
#elif defined(CONFIG_USART2_SERIAL_CONSOLE)
|
||||
# define CONSOLE_BASE LPC43_USART2_BASE
|
||||
# define CONSOLE_BASEFREQ BOARD_USART0_BASEFREQ
|
||||
# define CONSOLE_BASEFREQ BOARD_USART2_BASEFREQ
|
||||
# define CONSOLE_BAUD CONFIG_USART2_BAUD
|
||||
# define CONSOLE_BITS CONFIG_USART2_BITS
|
||||
# define CONSOLE_PARITY CONFIG_USART2_PARITY
|
||||
# define CONSOLE_2STOP CONFIG_USART2_2STOP
|
||||
#elif defined(CONFIG_USART3_SERIAL_CONSOLE)
|
||||
# define CONSOLE_BASE LPC43_USART3_BASE
|
||||
# define CONSOLE_BASEFREQ BOARD_USART0_BASEFREQ
|
||||
# define CONSOLE_BASEFREQ BOARD_USART3_BASEFREQ
|
||||
# define CONSOLE_BAUD CONFIG_USART3_BAUD
|
||||
# define CONSOLE_BITS CONFIG_USART3_BITS
|
||||
# define CONSOLE_PARITY CONFIG_USART3_PARITY
|
||||
@ -133,100 +133,11 @@
|
||||
|
||||
/* LCR and FCR values for the console */
|
||||
|
||||
#define CONSOLE_LCR_VALUE (CONSOLE_LCR_WLS | CONSOLE_LCR_PAR | CONSOLE_LCR_STOP)
|
||||
#define CONSOLE_LCR_VALUE (CONSOLE_LCR_WLS | CONSOLE_LCR_PAR | \
|
||||
CONSOLE_LCR_STOP)
|
||||
#define CONSOLE_FCR_VALUE (UART_FCR_RXTRIGGER_8 | UART_FCR_TXRST |\
|
||||
UART_FCR_RXRST | UART_FCR_FIFOEN)
|
||||
|
||||
/* We cannot allow the DLM/DLL divisor to become to small or will will lose too
|
||||
* much accuracy. This following is a "fudge factor" that represents the minimum
|
||||
* value of the divisor that we will permit.
|
||||
*/
|
||||
|
||||
#define UART_MINDL 32
|
||||
|
||||
/* Select a CCLK divider to produce the UART BASEFREQ. The strategy is to select the
|
||||
* smallest divisor that results in an solution within range of the 16-bit
|
||||
* DLM and DLL divisor:
|
||||
*
|
||||
* BAUD = BASEFREQ / (16 * DL), or
|
||||
* DL = BASEFREQ / BAUD / 16
|
||||
*
|
||||
* Where:
|
||||
*
|
||||
* BASEFREQ = CCLK / divisor
|
||||
*
|
||||
* Ignoring the fractional divider for now (the console UART will be reconfigured
|
||||
* later in the boot sequencye, then the fractional dividers will be set properly).
|
||||
*
|
||||
* Check divisor == 1. This works if the upper limit is met
|
||||
*
|
||||
* DL < 0xffff, or
|
||||
* BASEFREQ / BAUD / 16 < 0xffff, or
|
||||
* CCLK / BAUD / 16 < 0xffff, or
|
||||
* CCLK < BAUD * 0xffff * 16
|
||||
* BAUD > CCLK / 0xffff / 16
|
||||
*
|
||||
* And the lower limit is met (we can't allow DL to get very close to one).
|
||||
*
|
||||
* DL >= MinDL
|
||||
* CCLK / BAUD / 16 >= MinDL, or
|
||||
* BAUD <= CCLK / 16 / MinDL
|
||||
*/
|
||||
|
||||
#if CONSOLE_BAUD < (LPC43_CCLK / 16 / UART_MINDL)
|
||||
# define CONSOLE_CCLKDIV SYSCON_PCLKSEL_CCLK
|
||||
# define CONSOLE_NUMERATOR (LPC43_CCLK)
|
||||
|
||||
/* Check divisor == 2. This works if:
|
||||
*
|
||||
* 2 * CCLK / BAUD / 16 < 0xffff, or
|
||||
* BAUD > CCLK / 0xffff / 8
|
||||
*
|
||||
* And
|
||||
*
|
||||
* 2 * CCLK / BAUD / 16 >= MinDL, or
|
||||
* BAUD <= CCLK / 8 / MinDL
|
||||
*/
|
||||
|
||||
#elif CONSOLE_BAUD < (LPC43_CCLK / 8 / UART_MINDL)
|
||||
# define CONSOLE_CCLKDIV SYSCON_PCLKSEL_CCLK2
|
||||
# define CONSOLE_NUMERATOR (LPC43_CCLK / 2)
|
||||
|
||||
/* Check divisor == 4. This works if:
|
||||
*
|
||||
* 4 * CCLK / BAUD / 16 < 0xffff, or
|
||||
* BAUD > CCLK / 0xffff / 4
|
||||
*
|
||||
* And
|
||||
*
|
||||
* 4 * CCLK / BAUD / 16 >= MinDL, or
|
||||
* BAUD <= CCLK / 4 / MinDL
|
||||
*/
|
||||
|
||||
#elif CONSOLE_BAUD < (LPC43_CCLK / 4 / UART_MINDL)
|
||||
# define CONSOLE_CCLKDIV SYSCON_PCLKSEL_CCLK4
|
||||
# define CONSOLE_NUMERATOR (LPC43_CCLK / 4)
|
||||
|
||||
/* Check divisor == 8. This works if:
|
||||
*
|
||||
* 8 * CCLK / BAUD / 16 < 0xffff, or
|
||||
* BAUD > CCLK / 0xffff / 2
|
||||
*
|
||||
* And
|
||||
*
|
||||
* 8 * CCLK / BAUD / 16 >= MinDL, or
|
||||
* BAUD <= CCLK / 2 / MinDL
|
||||
*/
|
||||
|
||||
#else /* if CONSOLE_BAUD < (LPC43_CCLK / 2 / UART_MINDL) */
|
||||
# define CONSOLE_CCLKDIV SYSCON_PCLKSEL_CCLK8
|
||||
# define CONSOLE_NUMERATOR (LPC43_CCLK / 8)
|
||||
#endif
|
||||
|
||||
/* Then this is the value to use for the DLM and DLL registers */
|
||||
|
||||
#define CONSOLE_DL (CONSOLE_NUMERATOR / (CONSOLE_BAUD << 4))
|
||||
|
||||
/**************************************************************************
|
||||
* Private Types
|
||||
**************************************************************************/
|
||||
@ -331,18 +242,13 @@ void lpc43_lowsetup(void)
|
||||
|
||||
putreg32(UART_FCR_FIFOEN|UART_FCR_RXTRIGGER_8, CONSOLE_BASE+LPC43_UART_FCR_OFFSET);
|
||||
|
||||
/* Set up the LCR and set DLAB=1 */
|
||||
/* Set up the LCR */
|
||||
|
||||
putreg32(CONSOLE_LCR_VALUE|UART_LCR_DLAB, CONSOLE_BASE+LPC43_UART_LCR_OFFSET);
|
||||
putreg32(CONSOLE_LCR_VALUE, CONSOLE_BASE+LPC43_UART_LCR_OFFSET);
|
||||
|
||||
/* Set the BAUD divisor */
|
||||
|
||||
putreg32(CONSOLE_DL >> 8, CONSOLE_BASE+LPC43_UART_DLM_OFFSET);
|
||||
putreg32(CONSOLE_DL & 0xff, CONSOLE_BASE+LPC43_UART_DLL_OFFSET);
|
||||
|
||||
/* Clear DLAB */
|
||||
|
||||
putreg32(CONSOLE_LCR_VALUE, CONSOLE_BASE+LPC43_UART_LCR_OFFSET);
|
||||
lpc43_setbaud(CONSOLE_BASE, CONSOLE_BASEFREQ, CONSOLE_BAUD);
|
||||
|
||||
/* Configure the FIFOs */
|
||||
|
||||
@ -528,3 +434,132 @@ void lpc43_usart3_setup(void)
|
||||
irqrestore(flags);
|
||||
};
|
||||
#endif
|
||||
|
||||
/****************************************************************************
|
||||
* Name: lpc43_setbaud
|
||||
*
|
||||
* Description:
|
||||
* Configure the U[S]ART divisors to accomplish the desired BAUD given the
|
||||
* U[S]ART base frequency.
|
||||
*
|
||||
* This computationally intensive algorithm is based on the same logic
|
||||
* used in the NXP sample code.
|
||||
*
|
||||
****************************************************************************/
|
||||
|
||||
void lpc43_setbaud(uintptr_t uartbase, uint32_t basefreq, uint32_t baud)
|
||||
{
|
||||
uint32_t lcr; /* Line control register value */
|
||||
uint32_t dl; /* Best DLM/DLL full value */
|
||||
uint32_t mul; /* Best FDR MULVALL value */
|
||||
uint32_t divadd; /* Best FDR DIVADDVAL value */
|
||||
uint32_t best; /* Error value associated with best {dl, mul, divadd} */
|
||||
uint32_t cdl; /* Candidate DLM/DLL full value */
|
||||
uint32_t cmul; /* Candidate FDR MULVALL value */
|
||||
uint32_t cdivadd; /* Candidate FDR DIVADDVAL value */
|
||||
uint32_t errval; /* Error value associated with the candidate */
|
||||
|
||||
/* The U[S]ART buad is given by:
|
||||
*
|
||||
* Fbaud = Fbase * mul / (mul + divadd) / (16 * dl)
|
||||
* dl = Fbase * mul / (mul + divadd) / Fbaud / 16
|
||||
* = Fbase * mul / ((mul + divadd) * Fbaud * 16)
|
||||
* = ((Fbase * mul) >> 4) / ((mul + divadd) * Fbaud)
|
||||
*
|
||||
* Where the value of MULVAL and DIVADDVAL comply with:
|
||||
*
|
||||
* 0 < mul < 16
|
||||
* 0 <= divadd < mul
|
||||
*/
|
||||
|
||||
best = UINT32_MAX;
|
||||
divadd = 0;
|
||||
mul = 0;
|
||||
dl = 0;
|
||||
|
||||
/* Try each mulitplier value in the valid range */
|
||||
|
||||
for (cmul = 1 ; cmul < 16; cmul++)
|
||||
{
|
||||
/* Try each divider value in the valid range */
|
||||
|
||||
for (cdivadd = 0 ; cdivadd < cmul ; cdivadd++)
|
||||
{
|
||||
/* Candidate:
|
||||
* dl = ((Fbase * mul) >> 4) / ((mul + cdivadd) * Fbaud)
|
||||
* (dl << 32) = (Fbase << 28) * cmul / ((mul + cdivadd) * Fbaud)
|
||||
*/
|
||||
|
||||
uint64_t dl64 = ((uint64_t)basefreq << 28) * cmul /
|
||||
((cmul + cdivadd) * baud);
|
||||
|
||||
/* The lower 32-bits of this value is the error */
|
||||
|
||||
errval = (uint32_t)(dl64 & 0x00000000ffffffffull);
|
||||
|
||||
/* The upper 32-bits is the candidate DL value */
|
||||
|
||||
cdl = (uint32_t)(dl64 >> 32);
|
||||
|
||||
/* Round up */
|
||||
|
||||
if (errval > (1 << 31))
|
||||
{
|
||||
errval = -errval;
|
||||
cdl++;
|
||||
}
|
||||
|
||||
/* Check if the resulting candidate DL value is within range */
|
||||
|
||||
if (cdl < 1 || cdl > 65536)
|
||||
{
|
||||
/* No... try a different divadd value */
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Is this the best combination that we have seen so far? */
|
||||
|
||||
if (errval < best)
|
||||
{
|
||||
/* Yes.. then the candidate is out best guess so far */
|
||||
|
||||
best = errval;
|
||||
dl = cdl;
|
||||
divadd = cdivadd;
|
||||
mul = cmul;
|
||||
|
||||
/* If the new best guess is exact (within our precision), then
|
||||
* we are finished.
|
||||
*/
|
||||
|
||||
if (best == 0)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
DEBUGASSERT(dl > 0);
|
||||
|
||||
/* Enter DLAB=1 */
|
||||
|
||||
lcr = getreg32(uartbase + LPC43_UART_LCR_OFFSET);
|
||||
putreg32(lcr | UART_LCR_DLAB, uartbase + LPC43_UART_LCR_OFFSET);
|
||||
|
||||
/* Save then divider values */
|
||||
|
||||
putreg32(dl >> 8, uartbase + LPC43_UART_DLM_OFFSET);
|
||||
putreg32(dl & 0xff, uartbase + LPC43_UART_DLL_OFFSET);
|
||||
|
||||
/* Clear DLAB */
|
||||
|
||||
putreg32(lcr & ~UART_LCR_DLAB, uartbase + LPC43_UART_LCR_OFFSET);
|
||||
|
||||
/* Then save the fractional divider values */
|
||||
|
||||
putreg32((mul << UART_FDR_MULVAL_SHIFT) | (divadd << UART_FDR_DIVADDVAL_SHIFT),
|
||||
uartbase + LPC43_UART_FDR_OFFSET);
|
||||
}
|
||||
|
||||
|
@ -133,6 +133,20 @@ EXTERN void lpc43_usart2_setup(void);
|
||||
EXTERN void lpc43_usart3_setup(void);
|
||||
#endif
|
||||
|
||||
/****************************************************************************
|
||||
* Name: lpc43_setbaud
|
||||
*
|
||||
* Description:
|
||||
* Configure the U[S]ART divisors to accomplish the desired BAUD given the
|
||||
* U[S]ART base frequency.
|
||||
*
|
||||
* This computationally intensive algorithm is based on the same logic
|
||||
* used in the NXP sample code.
|
||||
*
|
||||
****************************************************************************/
|
||||
|
||||
EXTERN void lpc43_setbaud(uintptr_t uartbase, uint32_t basefreq, uint32_t baud);
|
||||
|
||||
#undef EXTERN
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
|
@ -806,11 +806,12 @@ Where <subdir> is one of the following:
|
||||
|
||||
ostest:
|
||||
------
|
||||
This configuration directory, performs a simple OS test using
|
||||
This configuration of this directory performs a simple OS test using
|
||||
examples/ostest. By default, this project assumes that you are
|
||||
using the DFU bootloader.
|
||||
executing directly from SRAM.
|
||||
|
||||
CONFIG_LPC43_CODESOURCERYW=y : CodeSourcery under Windows
|
||||
CONFIG_BOOT_SRAM=y : Executing in SRAM
|
||||
CONFIG_LPC32_CODEREDW=y : Code Red under Windows
|
||||
|
||||
This configuration directory, performs a simple test of the USB host
|
||||
HID keyboard class driver using the test logic in examples/hidkbd.
|
||||
@ -843,3 +844,11 @@ Where <subdir> is one of the following:
|
||||
|
||||
+CONFIG_EXAMPLES_OSTEST_FPUSIZE=(4*33)
|
||||
|
||||
nsh:
|
||||
----
|
||||
This configuration is the NuttShell (NSH) example at examples/nsh/
|
||||
examples/ostest. By default, this project assumes that you are
|
||||
executing directly from SRAM.
|
||||
|
||||
CONFIG_BOOT_SRAM=y : Executing in SRAM
|
||||
CONFIG_LPC32_CODEREDW=y : Code Red under Windows
|
||||
|
Loading…
Reference in New Issue
Block a user