configs/stm32l4r9ai-disco: Fix HSE clock config and clock board to maximum 120 MHz

This commit is contained in:
Juha Niskanen 2018-08-14 06:57:06 -06:00 committed by Gregory Nutt
parent affc50df66
commit cbdcb2deed
4 changed files with 124 additions and 255 deletions

View File

@ -11,11 +11,13 @@ STM32L4R9AI:
Microprocessor: 32-bit ARM Cortex M4 at 120MHz STM32L4R9AI
Memory: 2048 KB Flash and 192+64+384 KB SRAM
ADC: 1x12-bit, 2.4 MSPS A/D converter: up to 24 channels
ADC: 1x12-bit, 5 MSPS A/D converter: up to 14 external channels
DAC: 2 channels
DFSDM: 4 filters, 8 channels
DMA: 16-stream DMA controllers with FIFOs and burst support
Timers: Up to 11 timers: up to eight 16-bit, two 32-bit timers, two
watchdog timers, and a SysTick timer
GPIO: Up to 51 I/O ports with interrupt capability
GPIO: Up to 131 I/O ports with interrupt capability
I2C: Up to 4 x I2C interfaces
USARTs: Up to 3 USARTs, 2 UARTs, 1 LPUART
SPIs: Up to 3 SPIs
@ -23,23 +25,21 @@ STM32L4R9AI:
CAN interface
SDIO interface
OCTOSPI interface
Camera interface
USB: USB 2.0 full-speed device/host/OTG controller with on-chip PHY
CRC calculation unit
RTC
Board features:
Peripherals: 2 led, 1 d-pad joystick, 2 x LED, LCD, USC OTG FS, SAI stereo
Digital Microphone, MEMS Accelerometer, Magnetometer,
Gyroscope, 512 Mbit OCTOSPI Flash, current ammeter
Peripherals: 1 d-pad joystick, 2 x LED, AMOLED display, USC OTG FS,
2 x MEMS Digital Microphones, SAI codec, 16 Mbit PSRAM,
512 Mbit OCTOSPI Flash, current ammeter
Debug: Serial wire debug and JTAG interfaces
Uses a STM32F103 to provide a ST-Link for programming, debug similar to the
OpenOcd FTDI function - USB to JTAG front-end.
See http://mbed.org/platforms/ST-Nucleo-L476RG for more
information about these boards.
Contents
========
@ -56,39 +56,22 @@ Contents
mbed
====
The Nucleo-F401RE includes boot loader from mbed:
The STM32L4R9AI-DISCO includes boot loader from mbed:
https://mbed.org/platforms/ST-Nucleo-F401RE/
https://mbed.org/handbook/Homepage
Using the mbed loader:
1. Connect the Nucleo-F4x1RE to the host PC using the USB connector.
2. A new file system will appear called NUCLEO; open it with Windows
1. Connect the board to the host PC using the USB connector.
2. A new file system will appear called DIS_L4R9AI; open it with Windows
Explorer (assuming that you are using Windows).
3. Drag and drop nuttx.bin into the MBED window. This will load the
nuttx.bin binary into the Nucleo-F4x1RE. The NUCLEO window will
close then re-open and the Nucleo-F4x1RE will be running the new code.
nuttx.bin binary into the board. The DIS_L49RAIO window will
close then re-open and the board will be running the new code.
Hardware
========
GPIO
----
SERIAL_TX=PA_2 USER_BUTTON=PC_13
SERIAL_RX=PA_3 LED1 =PA_5
A0=PA_0 USART2RX D0=PA_3 D8 =PA_9
A1=PA_1 USART2TX D1=PA_2 D9 =PC_7
A2=PA_4 D2=PA_10 WIFI_CS=D10=PB_6 SPI_CS
A3=PB_0 WIFI_INT=D3=PB_3 D11=PA_7 SPI_MOSI
A4=PC_1 SDCS=D4=PB_5 D12=PA_6 SPI_MISO
A5=PC_0 WIFI_EN=D5=PB_4 LED1=D13=PA_5 SPI_SCK
LED2=D6=PB_10 I2C1_SDA=D14=PB_9 Probe
D7=PA_8 I2C1_SCL=D15=PB_8 Probe
From: https://mbed.org/platforms/ST-Nucleo-F401RE/
Buttons
-------
B1 USER: the user button is connected to the I/O PC13 (pin 2) of the STM32
@ -96,17 +79,16 @@ Hardware
LEDs
----
The Nucleo F401RE and Nucleo F411RE provide a single user LED, LD2. LD2
is the green LED connected to Arduino signal D13 corresponding to MCU I/O
PA5 (pin 21) or PB13 (pin 34) depending on the STM32target.
The STM32L4R9AI-DISCO board provides two user LEDs, LD1 (orange) and LD2 (green).
PB0 is LD1 (orange)
PH4 is LD2 (green)
- When the I/O is HIGH value, the LED is on.
- When the I/O is LOW, the LED is off.
These LEDs are not used by the board port unless CONFIG_ARCH_LEDS is
defined. In that case, the usage by the board port is defined in
include/board.h and src/sam_leds.c. The LEDs are used to encode OS-related
events as follows when the red LED (PE24) is available:
include/board.h and src/stm32_autoleds.c. The LEDs are used to encode OS-related
events as follows when the green LED (PH4) is available:
SYMBOL Meaning LD2
------------------- ----------------------- -----------
@ -120,8 +102,8 @@ Hardware
LED_PANIC The system has crashed Blinking
LED_IDLE MCU is is sleep mode Not used
Thus if LD2, NuttX has successfully booted and is, apparently, running
normally. If LD2 is flashing at approximately 2Hz, then a fatal error
Thus if LD2 is on, NuttX has successfully booted and is, apparently,
running normally. If LD2 is flashing at approximately 2Hz, then a fatal error
has been detected and the system has halted.
Serial Consoles
@ -150,7 +132,7 @@ Serial Consoles
To configure USART1 as the console:
CONFIG_STM32_USART1=y
CONFIG_STM32L4_USART1=y
CONFIG_USART1_SERIALDRIVER=y
CONFIG_USART1_SERIAL_CONSOLE=y
CONFIG_USART1_RXBUFSIZE=256
@ -169,8 +151,6 @@ Serial Consoles
TXD: PA2 CN9 pin 2(See SB13, 14, 62, 63). CN10 pin 35
PD5
UART2 is the default in all of these configurations.
TTL to RS-232 converter connection:
Nucleo CN9 STM32F4x1RE
@ -189,7 +169,7 @@ Serial Consoles
To configure USART2 as the console:
CONFIG_STM32_USART2=y
CONFIG_STM32L4_USART2=y
CONFIG_USART2_SERIALDRIVER=y
CONFIG_USART2_SERIAL_CONSOLE=y
CONFIG_USART2_RXBUFSIZE=256
@ -199,26 +179,24 @@ Serial Consoles
CONFIG_USART2_PARITY=0
CONFIG_USART2_2STOP=0
USART6
UART4
------
Pins and Connectors:
RXD: PC7 CN5 pin2, CN10 pin 19
PA12 CN10, pin 12
TXD: PC6 CN10, pin 4
PA11 CN10, pin 14
RXD: PA1 -> CN11 D5
TXD: PA0 -> CN17 A4
To configure USART6 as the console:
To configure USART4 as the console:
CONFIG_STM32_USART6=y
CONFIG_USART6_SERIALDRIVER=y
CONFIG_USART6_SERIAL_CONSOLE=y
CONFIG_USART6_RXBUFSIZE=256
CONFIG_USART6_TXBUFSIZE=256
CONFIG_USART6_BAUD=115200
CONFIG_USART6_BITS=8
CONFIG_USART6_PARITY=0
CONFIG_USART6_2STOP=0
CONFIG_STM32L4_UART4=y
CONFIG_USART4_SERIALDRIVER=y
CONFIG_USART4_SERIAL_CONSOLE=y
CONFIG_USART4_RXBUFSIZE=512
CONFIG_USART4_TXBUFSIZE=256
CONFIG_USART4_BAUD=2000000
CONFIG_USART4_BITS=8
CONFIG_USART4_PARITY=0
CONFIG_USART4_2STOP=0
Virtual COM Port
----------------
@ -246,97 +224,6 @@ Serial Consoles
As shipped, SB62 and SB63 are open and SB13 and SB14 closed, so the
virtual COM port is enabled.
Shields
=======
RS-232 from Cutedigi.com
------------------------
Supports a single RS-232 connected via
Nucleo CN9 STM32F4x1RE Cutedigi
----------- ------------ --------
Pin 1 PA3 USART2_RX RXD
Pin 2 PA2 USART2_TX TXD
Support for this shield is enabled by selecting USART2 and configuring
SB13, 14, 62, and 63 as described above under "Serial Consoles"
Itead Joystick Shield
---------------------
See http://imall.iteadstudio.com/im120417014.html for more information
about this joystick.
Itead Joystick Connection:
--------- ----------------- ---------------------------------
ARDUINO ITEAD NUCLEO-F4x1
PIN NAME SIGNAL SIGNAL
--------- ----------------- ---------------------------------
D3 Button E Output PB3
D4 Button D Output PB5
D5 Button C Output PB4
D6 Button B Output PB10
D7 Button A Output PA8
D8 Button F Output PA9
D9 Button G Output PC7
A0 Joystick Y Output PA0 ADC1_0
A1 Joystick X Output PA1 ADC1_1
--------- ----------------- ---------------------------------
All buttons are pulled on the shield. A sensed low value indicates
when the button is pressed.
NOTE: Button F cannot be used with the default USART1 configuration
because PA9 is configured for USART1_RX by default. Use select
different USART1 pins in the board.h file or select a different
USART or select CONFIG_NUCLEO_F401RE_AJOY_MINBUTTONS which will
eliminate all but buttons A, B, and C.
Itead Joystick Signal interpretation:
--------- ----------------------- ---------------------------
BUTTON TYPE NUTTX ALIAS
--------- ----------------------- ---------------------------
Button A Large button A JUMP/BUTTON 3
Button B Large button B FIRE/BUTTON 2
Button C Joystick select button SELECT/BUTTON 1
Button D Tiny Button D BUTTON 6
Button E Tiny Button E BUTTON 7
Button F Large Button F BUTTON 4
Button G Large Button G BUTTON 5
--------- ----------------------- ---------------------------
Itead Joystick configuration settings:
System Type -> STM32 Peripheral Support
CONFIG_STM32_ADC1=y : Enable ADC1 driver support
Drivers
CONFIG_ANALOG=y : Should be automatically selected
CONFIG_ADC=y : Should be automatically selected
CONFIG_INPUT=y : Select input device support
CONFIG_AJOYSTICK=y : Select analog joystick support
There is nothing in the configuration that currently uses the joystick.
For testing, you can add the following configuration options to enable the
analog joystick example at apps/examples/ajoystick:
CONFIG_NSH_ARCHINIT=y
CONFIG_EXAMPLES_AJOYSTICK=y
CONFIG_EXAMPLES_AJOYSTICK_DEVNAME="/dev/ajoy0"
CONFIG_EXAMPLES_AJOYSTICK_SIGNO=13
STATUS:
2014-12-04:
- Without ADC DMA support, it is not possible to sample both X and Y
with a single ADC. Right now, only one axis is being converted.
- There is conflicts with some of the Arduino data pins and the
default USART1 configuration. I am currently running with USART1
but with CONFIG_NUCLEO_F401RE_AJOY_MINBUTTONS to eliminate the
conflict.
- Current showstopper: I appear to be getting infinite interrupts as
soon as joystick button interrupts are enabled.
Configurations
==============
@ -424,8 +311,8 @@ Configurations
nsh:
---
Configures the NuttShell (nsh) located at apps/examples/nsh for the
Nucleo-F401RE board. The Configuration enables the serial interfaces
on UART2. Support for builtin applications is enabled, but in the base
STM32L4R9AI-DISCO board. The Configuration enables the serial interfaces
on UART4. Support for builtin applications is enabled, but in the base
configuration no builtin applications are selected (see NOTES below).
NOTES:
@ -433,10 +320,7 @@ Configurations
1. This configuration uses the mconf-based configuration tool. To
change this configuration using that tool, you should:
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
see additional README.txt files in the NuttX tools repository.
b. Execute 'make menuconfig' in nuttx/ in order to start the
Execute 'make menuconfig' in nuttx/ in order to start the
reconfiguration process.
2. By default, this configuration uses the Generic ARM EABI toolchain
@ -445,14 +329,11 @@ Configurations
CONFIG_HOST_LINUX=y : Builds under Linux
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIL=y : Generic EABI toolchain for Linux
3. Although the default console is USART2 (which would correspond to
the Virtual COM port) I have done all testing with the console
device configured for USART1 (see instruction above under "Serial
Consoles). I have been using a TTL-to-RS-232 converter.
3. The default console is UART4
4. This example has been used to verify the OTGFS functionality. USB is
4. This example can be used to verify the OTGFS functionality. USB is
not enabled in the default configuration but can be enabled with the
following settings:
following settings: (TODO: need to test!)
CONFIG_STM32L4_OTGFS=y

View File

@ -158,51 +158,12 @@
#define GPIO_SPI1_MOSI GPIO_SPI1_MOSI_1
#define GPIO_SPI1_SCK GPIO_SPI1_SCK_1
/* SPI2 is used for several peripherals on the Discovery board, including
* L3GD20 - 3 axis Gyroscope
* LSM303CTR - eCompass, comprising an accelerometer and magnetometer
*/
/* XXX is SPI2 used on Disco? */
#define GPIO_SPI2_MISO GPIO_SPI2_MISO_3
#define GPIO_SPI2_MOSI GPIO_SPI2_MOSI_3
#define GPIO_SPI2_SCK GPIO_SPI2_SCK_3
/* PD7; gyroscope CS */
#define GPIO_SPI_CS_GYRO_OFF \
(GPIO_INPUT | GPIO_PULLDOWN | GPIO_SPEED_2MHz | \
GPIO_PORTD | GPIO_PIN7)
#define GPIO_SPI_CS_GYRO \
(GPIO_OUTPUT | GPIO_PUSHPULL | GPIO_SPEED_2MHz | \
GPIO_OUTPUT_SET | GPIO_PORTD | GPIO_PIN7)
/* PE0; accelerometer CS */
#define GPIO_SPI_CS_ACCEL_OFF \
(GPIO_INPUT | GPIO_PULLDOWN | GPIO_SPEED_2MHz | \
GPIO_PORTE | GPIO_PIN0)
#define GPIO_SPI_CS_ACCEL \
(GPIO_OUTPUT | GPIO_PUSHPULL | GPIO_SPEED_2MHz | \
GPIO_OUTPUT_SET | GPIO_PORTE | GPIO_PIN0)
/* PC0; magnetometer CS */
#define GPIO_SPI_CS_MAGNETO_OFF \
(GPIO_INPUT | GPIO_PULLDOWN | GPIO_SPEED_2MHz | \
GPIO_PORTC | GPIO_PIN0)
#define GPIO_SPI_CS_MAGNETO \
(GPIO_OUTPUT | GPIO_PUSHPULL | GPIO_SPEED_2MHz | \
GPIO_OUTPUT_SET | GPIO_PORTC | GPIO_PIN0)
/* XXX these will need to be set up when these get implemented:
* PD2 gyro INT1
* PB8 gyro INT2/DRDY
*
* PE1 accel INT
* PC2 magneto DRDY
* PC1 magneto INT
*/
/* LEDs
*
* The STM32L4R9AI-DISCO board provides two user LEDs, LD1 (orange) and LD2 (green).

View File

@ -52,22 +52,30 @@
/* Clocking *************************************************************************/
/* The stm32l4r9ai-disco supports both HSE and LSE crystals. As shipped, the HSE
* crystal is not populated. Therefore the stm32l4r9ai-disco will need to run off the
* 16MHz HSI clock, or the 32khz-synced MSI, unless you install the HSE xtal.
* is a 16 MHz crystal X2. Therefore the stm32l4r9ai-disco can run off the 16MHz
* HSI clock, or the MSI, or the HSE. Here we configure HSE to give us 120MHz system
* clock (maximum supported for STM32L4+ chips) instead of the more traditional 80MHz
* that is used by most STM32L4 boards supported by NuttX.
*/
/* HSI - 16 MHz RC factory-trimmed
* LSI - 32 KHz RC
* MSI - variable up to 48 MHz, synchronized to LSE
* HSE - not installed
* HSE - 16 MHz installed
* LSE - 32.768 kHz installed
*/
#define STM32L4_HSI_FREQUENCY 16000000ul
#define STM32L4_LSI_FREQUENCY 32000
#define STM32L4_LSE_FREQUENCY 32768
#define STM32L4_HSE_FREQUENCY 16000000ul
#define BOARD_AHB_FREQUENCY 80000000ul
#define STM32L4_SYSCLK_FREQUENCY 120000000ul
#define BOARD_AHB_FREQUENCY STM32L4_SYSCLK_FREQUENCY
/* Higher SYSCLK reguires more flash wait states. */
#define BOARD_FLASH_WAITSTATES 5
/* XXX there needs to be independent selections for the System Clock Mux and
* the PLL Source Mux; currently System Clock Mux always is PLL, and PLL
@ -77,10 +85,8 @@
#if 0
# define HSI_CLOCK_CONFIG 1 /* HSI-16 clock configuration */
#elif 0
/* Make sure you actually installed one! */
# define HSE_CLOCK_CONFIG 1 /* HSE with 8 MHz xtal */
#elif 1
# define HSE_CLOCK_CONFIG 1 /* HSE with 16 MHz xtal */
#else
# define MSI_CLOCK_CONFIG 1 /* MSI @ 4 MHz autotrimmed via LSE */
#endif
@ -89,20 +95,19 @@
#define STM32L4_BOARD_USEHSI 1
/* Prescaler common to all PLL inputs; will be 1 (XXX source is implicitly
as per comment above HSI) */
/* Prescaler common to all PLL inputs; will be 1 */
#define STM32L4_PLLCFG_PLLM RCC_PLLCFG_PLLM(1)
/* 'main' PLL config; we use this to generate our system clock via the R
* output. We set it up as 16 MHz / 1 * 10 / 2 = 80 MHz
* output. We set it up as 16 MHz / 1 * 15 / 2 = 120 MHz
*
* XXX NOTE: currently the main PLL is implicitly turned on and is implicitly
* the system clock; this should be configurable since not all applications may
* want things done this way.
*/
#define STM32L4_PLLCFG_PLLN RCC_PLLCFG_PLLN(10)
#define STM32L4_PLLCFG_PLLN RCC_PLLCFG_PLLN(15)
#define STM32L4_PLLCFG_PLLP 0
#undef STM32L4_PLLCFG_PLLP_ENABLED
#define STM32L4_PLLCFG_PLLQ RCC_PLLCFG_PLLQ_2
@ -138,8 +143,6 @@
#define STM32L4_PLLSAI2CFG_PLLR 0
#undef STM32L4_PLLSAI2CFG_PLLR_ENABLED
#define STM32L4_SYSCLK_FREQUENCY 80000000ul
/* CLK48 will come from PLLSAI1 (implicitly Q) */
#define STM32L4_USE_CLK48 1
@ -149,31 +152,35 @@
#define STM32L4_USE_LSE 1
/* AHB clock (HCLK) is SYSCLK (80MHz) */
/* AHB clock (HCLK) is SYSCLK (120 MHz) */
#define STM32L4_RCC_CFGR_HPRE RCC_CFGR_HPRE_SYSCLK /* HCLK = SYSCLK / 1 */
#define STM32L4_HCLK_FREQUENCY STM32L4_SYSCLK_FREQUENCY
#define STM32L4_BOARD_HCLK STM32L4_HCLK_FREQUENCY /* Same as above, to satisfy compiler */
/* APB1 clock (PCLK1) is HCLK/1 (80MHz) */
/* APB1 clock (PCLK1) is HCLK/1 (120 MHz) */
#define STM32L4_RCC_CFGR_PPRE1 RCC_CFGR_PPRE1_HCLK /* PCLK1 = HCLK / 1 */
#define STM32L4_PCLK1_FREQUENCY (STM32L4_HCLK_FREQUENCY/1)
#define STM32L4_PCLK1_FREQUENCY (STM32L4_HCLK_FREQUENCY / 1)
/* Timers driven from APB1 will be twice PCLK1 */
/* REVISIT : this can be configured */
/* The timer clock frequencies are automatically defined by hardware.
* If the APB prescaler equals 1, the timer clock frequencies are set to the
* same frequency as that of the APB domain. Otherwise they are set to twice.
*
* REVISIT : this can be configured
*/
#define STM32L4_APB1_TIM2_CLKIN (2*STM32L4_PCLK1_FREQUENCY)
#define STM32L4_APB1_TIM3_CLKIN (2*STM32L4_PCLK1_FREQUENCY)
#define STM32L4_APB1_TIM4_CLKIN (2*STM32L4_PCLK1_FREQUENCY)
#define STM32L4_APB1_TIM5_CLKIN (2*STM32L4_PCLK1_FREQUENCY)
#define STM32L4_APB1_TIM6_CLKIN (2*STM32L4_PCLK1_FREQUENCY)
#define STM32L4_APB1_TIM7_CLKIN (2*STM32L4_PCLK1_FREQUENCY)
#define STM32L4_APB1_TIM2_CLKIN (STM32L4_PCLK1_FREQUENCY)
#define STM32L4_APB1_TIM3_CLKIN (STM32L4_PCLK1_FREQUENCY)
#define STM32L4_APB1_TIM4_CLKIN (STM32L4_PCLK1_FREQUENCY)
#define STM32L4_APB1_TIM5_CLKIN (STM32L4_PCLK1_FREQUENCY)
#define STM32L4_APB1_TIM6_CLKIN (STM32L4_PCLK1_FREQUENCY)
#define STM32L4_APB1_TIM7_CLKIN (STM32L4_PCLK1_FREQUENCY)
/* APB2 clock (PCLK2) is HCLK (80MHz) */
/* APB2 clock (PCLK2) is HCLK (120 MHz) */
#define STM32L4_RCC_CFGR_PPRE2 RCC_CFGR_PPRE2_HCLK /* PCLK2 = HCLK / 1 */
#define STM32L4_PCLK2_FREQUENCY (STM32L4_HCLK_FREQUENCY/1)
#define STM32L4_PCLK2_FREQUENCY (STM32L4_HCLK_FREQUENCY / 1)
/* The timer clock frequencies are automatically defined by hardware.
* If the APB prescaler equals 1, the timer clock frequencies are set to the
@ -191,30 +198,42 @@
#define STM32L4_BOARD_USEHSE 1
/* XXX sysclk mux = pllclk */
/* XXX pll source mux = hse */
/* Prescaler common to all PLL inputs */
#define STM32L4_PLLCFG_PLLM RCC_PLLCFG_PLLM(1)
/* 'main' PLL config; we use this to generate our system clock */
/* 'main' PLL config; we use this to generate our system clock via the R
* output. We set it up as 16 MHz / 1 * 15 / 2 = 120 MHz
*
* XXX NOTE: currently the main PLL is implicitly turned on and is implicitly
* the system clock; this should be configurable since not all applications may
* want things done this way.
*/
#define STM32L4_PLLCFG_PLLN RCC_PLLCFG_PLLN(20)
#define STM32L4_PLLCFG_PLLN RCC_PLLCFG_PLLN(15)
#define STM32L4_PLLCFG_PLLP 0
#undef STM32L4_PLLCFG_PLLP_ENABLED
#define STM32L4_PLLCFG_PLLQ 0
#undef STM32L4_PLLCFG_PLLQ_ENABLED
#define STM32L4_PLLCFG_PLLQ RCC_PLLCFG_PLLQ_2
#define STM32L4_PLLCFG_PLLQ_ENABLED
#define STM32L4_PLLCFG_PLLR RCC_PLLCFG_PLLR_2
#define STM32L4_PLLCFG_PLLR_ENABLED
/* 'SAIPLL1' is used to generate the 48 MHz clock */
/* 'SAIPLL1' is used to generate the 48 MHz clock, since we can't
* do that with the main PLL's N value. We set N = 12, and enable
* the Q output (ultimately for CLK48) with /4. So,
* 16 MHz / 1 * 12 / 4 = 48 MHz
*
* XXX NOTE: currently the SAIPLL /must/ be explicitly selected in the
* menuconfig, or else all this is a moot point, and the various 48 MHz
* peripherals will not work (RNG at present). I would suggest removing
* that option from Kconfig altogether, and simply making it an option
* that is selected via a #define here, like all these other params.
*/
#define STM32L4_PLLSAI1CFG_PLLN RCC_PLLSAI1CFG_PLLN(12)
#define STM32L4_PLLSAI1CFG_PLLP 0
#undef STM32L4_PLLSAI1CFG_PLLP_ENABLED
#define STM32L4_PLLSAI1CFG_PLLQ RCC_PLLSAI1CFG_PLLQ_2
#define STM32L4_PLLSAI1CFG_PLLQ RCC_PLLSAI1CFG_PLLQ_4
#define STM32L4_PLLSAI1CFG_PLLQ_ENABLED
#define STM32L4_PLLSAI1CFG_PLLR 0
#undef STM32L4_PLLSAI1CFG_PLLR_ENABLED
@ -227,11 +246,9 @@
#define STM32L4_PLLSAI2CFG_PLLR 0
#undef STM32L4_PLLSAI2CFG_PLLR_ENABLED
#define STM32L4_SYSCLK_FREQUENCY 80000000ul
/* Enable CLK48; get it from PLLSAI1 */
#define STM32L4_USE_CLK48
#define STM32L4_USE_CLK48 1
#define STM32L4_CLK48_SEL RCC_CCIPR_CLK48SEL_PLLSAI1
/* Enable LSE (for the RTC) */
@ -271,25 +288,37 @@
#define STM32L4_BOARD_USEMSI 1
#define STM32L4_BOARD_MSIRANGE RCC_CR_MSIRANGE_4M
/* XXX sysclk mux = pllclk */
/* XXX pll source mux = msi */
/* Prescaler common to all PLL inputs */
#define STM32L4_PLLCFG_PLLM RCC_PLLCFG_PLLM(1)
/* 'main' PLL config; we use this to generate our system clock */
/* 'main' PLL config; we use this to generate our system clock via the R
* output. We set it up as 4 MHz / 1 * 60 / 2 = 120 MHz
*
* XXX NOTE: currently the main PLL is implicitly turned on and is implicitly
* the system clock; this should be configurable since not all applications may
* want things done this way.
*/
#define STM32L4_PLLCFG_PLLN RCC_PLLCFG_PLLN(40)
#define STM32L4_PLLCFG_PLLN RCC_PLLCFG_PLLN(60)
#define STM32L4_PLLCFG_PLLP 0
#undef STM32L4_PLLCFG_PLLP_ENABLED
#define STM32L4_PLLCFG_PLLQ 0
#undef STM32L4_PLLCFG_PLLQ_ENABLED
#define STM32L4_PLLCFG_PLLQ RCC_PLLCFG_PLLQ_2
#define STM32L4_PLLCFG_PLLQ_ENABLED
#define STM32L4_PLLCFG_PLLR RCC_PLLCFG_PLLR_2
#define STM32L4_PLLCFG_PLLR_ENABLED
/* 'SAIPLL1' is used to generate the 48 MHz clock */
/* 'SAIPLL1' is used to generate the 48 MHz clock, since we can't
* do that with the main PLL's N value. We set N = 12, and enable
* the Q output (ultimately for CLK48) with /4. So,
* 4 MHz / 1 * 24 / 2 = 48 MHz
*
* XXX NOTE: currently the SAIPLL /must/ be explicitly selected in the
* menuconfig, or else all this is a moot point, and the various 48 MHz
* peripherals will not work (RNG at present). I would suggest removing
* that option from Kconfig altogether, and simply making it an option
* that is selected via a #define here, like all these other params.
*/
#define STM32L4_PLLSAI1CFG_PLLN RCC_PLLSAI1CFG_PLLN(24)
#define STM32L4_PLLSAI1CFG_PLLP 0
@ -307,11 +336,9 @@
#define STM32L4_PLLSAI2CFG_PLLR 0
#undef STM32L4_PLLSAI2CFG_PLLR_ENABLED
#define STM32L4_SYSCLK_FREQUENCY 80000000ul
/* Enable CLK48; get it from PLLSAI1 */
#define STM32L4_USE_CLK48
#define STM32L4_USE_CLK48 1
#define STM32L4_CLK48_SEL RCC_CCIPR_CLK48SEL_PLLSAI1
/* Enable LSE (for the RTC) */
@ -344,7 +371,7 @@
#define STM32L4_APB2_TIM1_CLKIN (STM32L4_PCLK2_FREQUENCY)
#define STM32L4_APB2_TIM8_CLKIN (STM32L4_PCLK2_FREQUENCY)
#endif
#endif /* clock selection */
/* The timer clock frequencies are automatically defined by hardware.
* If the APB prescaler equals 1, the timer clock frequencies are set to the same

View File

@ -14,7 +14,7 @@ CONFIG_ARCH_STACKDUMP=y
CONFIG_BOARDCTL_IOCTL=y
CONFIG_BOARDCTL_UNIQUEID=y
CONFIG_BOARDCTL_UNIQUEID_SIZE=12
CONFIG_BOARD_LOOPSPERMSEC=8499
CONFIG_BOARD_LOOPSPERMSEC=9234
CONFIG_BUILTIN=y
CONFIG_DEV_LOOP=y
CONFIG_DEV_ZERO=y