SAMA5 Tickless: Corrects some logic errors with timer/counter frequency

This commit is contained in:
Gregory Nutt 2014-08-10 19:00:18 -06:00
parent 8855c1369b
commit cd53f96f11
8 changed files with 163 additions and 76 deletions

View File

@ -414,6 +414,7 @@
#define TC_CMR_TCCLKS_SHIFT (0) /* Bits 0-2: Clock Selection */
#define TC_CMR_TCCLKS_MASK (7 << TC_CMR_TCCLKS_SHIFT)
# define TC_CMR_TCCLKS(n) ((uint32_t)(n) << TC_CMR_TCCLKS_SHIFT)
# define TC_CMR_TCCLKS_TCLK1 (0 << TC_CMR_TCCLKS_SHIFT) /* TIMER_CLOCK1 Clock selected */
# define TC_CMR_TCCLKS_TCLK2 (1 << TC_CMR_TCCLKS_SHIFT) /* TIMER_CLOCK2 Clock selected */
# define TC_CMR_TCCLKS_TCLK3 (2 << TC_CMR_TCCLKS_SHIFT) /* TIMER_CLOCK3 Clock selected */

View File

@ -1229,7 +1229,6 @@ static int sam_adc_ioctl(struct adc_dev_s *dev, int cmd, unsigned long arg)
static int sam_adc_settimer(struct sam_adc_s *priv, uint32_t frequency,
int channel)
{
uint32_t ftc;
uint32_t div;
uint32_t tcclks;
uint32_t mode;
@ -1281,7 +1280,7 @@ static int sam_adc_settimer(struct sam_adc_s *priv, uint32_t frequency,
* frequency.
*/
regval = sam_tc_frequency() / fdiv;
regval = sam_tc_infreq() / fdiv;
/* Set up TC_RA and TC_RC. The frequency is determined by RA and RC: TIOA is
* cleared on RA match; TIOA is set on RC match.

View File

@ -198,7 +198,7 @@ int sam_freerun_initialize(struct sam_freerun_s *freerun, int chan,
freerun->chan = chan;
freerun->running = false;
freerun->resolution = resolution;
freerun->overflow = 0;
/* Set up to receive the callback when the counter overflow occurs */
@ -208,7 +208,6 @@ int sam_freerun_initialize(struct sam_freerun_s *freerun, int chan,
/* Start the counter */
sam_tc_start(freerun->tch);
return OK;
}
@ -273,10 +272,15 @@ int sam_freerun_counter(struct sam_freerun_s *freerun, struct timespec *ts)
(unsigned long)counter, (unsigned long)overflow);
}
/* Convert the whole thing to units of microseconds */
/* Convert the whole thing to units of microseconds.
*
* frequency = ticks / second
* seconds = ticks * frequency
* usecs = (ticks * 1000) / frequency;
*/
usec = (((uint64_t)overflow << 32) + (uint64_t)counter) *
freerun->resolution;
usec = ((((uint64_t)overflow << 32) + (uint64_t)counter) * 1000) /
sam_tc_divfreq(freerun->tch);
/* And return the value of the timer */

View File

@ -67,7 +67,6 @@ struct sam_freerun_s
{
uint8_t chan; /* The timer/counter in use */
bool running; /* True: the timer is running */
uint16_t resolution; /* Timer resolution in microseconds */
uint16_t overflow; /* Timer counter overflow */
TC_HANDLE tch; /* Handle returned by sam_tc_initialize() */
};

View File

@ -122,7 +122,7 @@ static void sam_oneshot_handler(TC_HANDLE tch, void *arg, uint32_t sr)
/* Forward the event, clearing out any vestiges */
oneshot_handler = (struct sam_oneshot_s *)oneshot->handler;
oneshot_handler = (oneshot_handler_t)oneshot->handler;
oneshot->handler = NULL;
oneshot_arg = (void *)oneshot->arg;
oneshot->arg = NULL;
@ -158,6 +158,7 @@ int sam_oneshot_initialize(struct sam_oneshot_s *oneshot, int chan,
uint16_t resolution)
{
uint32_t frequency;
uint32_t divisor;
uint32_t cmr;
int ret;
@ -170,7 +171,7 @@ int sam_oneshot_initialize(struct sam_oneshot_s *oneshot, int chan,
/* The pre-calculate values to use when we start the timer */
ret = sam_tc_divisor(frequency, &oneshot->divisor, &cmr);
ret = sam_tc_divisor(frequency, &divisor, &cmr);
if (ret < 0)
{
tcdbg("ERROR: sam_tc_divisor failed: %d\n", ret);
@ -178,7 +179,7 @@ int sam_oneshot_initialize(struct sam_oneshot_s *oneshot, int chan,
}
tcvdbg("frequency=%lu, divisor=%lu, cmr=%08lx\n",
(unsigned long)frequency, (unsigned long)oneshot->divisor,
(unsigned long)frequency, (unsigned long)divisor,
(unsigned long)cmr);
/* Allocate the timer/counter and select its mode of operation
@ -223,7 +224,6 @@ int sam_oneshot_initialize(struct sam_oneshot_s *oneshot, int chan,
oneshot->chan = chan;
oneshot->running = false;
oneshot->resolution = resolution;
oneshot->handler = NULL;
oneshot->arg = NULL;
return OK;
@ -275,13 +275,18 @@ int sam_oneshot_start(struct sam_oneshot_s *oneshot, oneshot_handler_t handler,
oneshot->handler = handler;
oneshot->arg = arg;
/* We configured the counter to run with an LSB of the specified
* resolution. We now must need need to set RC to the number
* of resolution units corresponding to the requested delay.
*/
/* Express the delay in microseconds */
usec = (uint64_t)ts->tv_sec * 1000000 + (uint64_t)(ts->tv_nsec / 1000);
regval = usec / oneshot->resolution;
/* Get the timer counter frequency and determine the number of counts need to achieve the requested delay.
*
* frequency = ticks / second
* ticks = seconds * frequency
* = (usecs * frequency) / 1000000;
*/
regval = (usec * (uint64_t)sam_tc_divfreq(oneshot->tch)) / 1000000;
tcvdbg("usec=%lu regval=%08lx\n",
(unsigned long)usec, (unsigned long)regval);
@ -339,10 +344,11 @@ int sam_oneshot_start(struct sam_oneshot_s *oneshot, oneshot_handler_t handler,
int sam_oneshot_cancel(struct sam_oneshot_s *oneshot, struct timespec *ts)
{
irqstate_t flags;
uint64_t usec;
uint64_t sec;
uint64_t nsec;
uint32_t count;
uint32_t rc;
uint32_t usec;
uint32_t sec;
/* Was the timer running? */
@ -364,9 +370,11 @@ int sam_oneshot_cancel(struct sam_oneshot_s *oneshot, struct timespec *ts)
* the counter expires while we are doing this, the counter clock will be
* stopped, but the clock will not be disabled.
*
* NOTE: This is not documented, but I have observed in this case that the
* counter register freezes at a value equal to the RC register. The
* following logic depends on this fact.
* The expected behavior is that the the counter register will freezes at
* a value equal to the RC register when the timer expires. The counter
* should have values between 0 and RC in all other cased.
*
* REVISIT: This does not appear to be the case.
*/
tcvdbg("Cancelling...\n");
@ -374,14 +382,8 @@ int sam_oneshot_cancel(struct sam_oneshot_s *oneshot, struct timespec *ts)
count = sam_tc_getcounter(oneshot->tch);
rc = sam_tc_getregister(oneshot->tch, TC_REGC);
/* Now we can disable the interrupt and stop the timer.
*
* REVISIT: The assertion is there because I do no not know if the
* counter will be reset when the RC match occurs. The counter
* clock will be disabled, so I am hoping not.
*/
/* Now we can disable the interrupt and stop the timer. */
DEBUGASSERT(count > 0 || (sam_tc_getpending(oneshot->tch) & TC_INT_CPCS) == 0);
sam_tc_attach(oneshot->tch, NULL, NULL, 0);
sam_tc_stop(oneshot->tch);
@ -390,22 +392,53 @@ int sam_oneshot_cancel(struct sam_oneshot_s *oneshot, struct timespec *ts)
oneshot->arg = NULL;
irqrestore(flags);
/* The total time remaining is the difference */
/* Did the caller provide us with a location to return the time
* remaining?
*/
DEBUGASSERT(rc >= count);
if (ts)
{
usec = (rc - count) * oneshot->resolution;
/* Yes.. then calculate and return the time remaining on the
* oneshot timer.
*/
tcvdbg("rc=%lu count=%lu resolution=%u usec=%lu\n",
(unsigned long)rc, (unsigned long)count, oneshot->resolution,
(unsigned long)usec);
/* REVISIT: I am not certain why the timer counter value sometimes
* exceeds RC. Might be a bug, or perhaps the counter does not stop
* in all cases.
*/
if (count >= rc)
{
/* No time remaining (?) */
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
else
{
/* The total time remaining is the difference. Convert the that
* to units of microseconds.
*
* frequency = ticks / second
* seconds = ticks * frequency
* usecs = (ticks * 1000) / frequency;
*/
usec = (((uint64_t)(rc - count)) * 1000) /
sam_tc_divfreq(oneshot->tch);
/* Return the time remaining in the correct form */
sec = usec / 1000000;
ts->tv_sec = sec;
ts->tv_nsec = ((usec) - (sec * 1000000)) * 1000;
nsec = ((usec) - (sec * 1000000)) * 1000;
ts->tv_sec = (time_t)sec;
ts->tv_nsec = (unsigned long)nsec;
}
tcvdbg("remaining (%lu, %lu)\n",
(unsigned long)ts->tv_sec, (unsigned long)ts->tv_nsec);

View File

@ -75,8 +75,6 @@ struct sam_oneshot_s
{
uint8_t chan; /* The timer/counter in use */
volatile bool running; /* True: the timer is running */
uint16_t resolution; /* Timer resolution in microseconds */
uint32_t divisor; /* TC divisor derived from resolution */
TC_HANDLE tch; /* Handle returned by
* sam_tc_initialize() */
volatile oneshot_handler_t handler; /* Oneshot expiration callback */

View File

@ -184,8 +184,8 @@ static int sam_tc678_interrupt(int irq, void *context);
#ifdef SAMA5_HAVE_PMC_PCR_DIV
static int sam_tc_mckdivider(uint32_t mck);
#endif
static int sam_tc_freqdiv(uint32_t ftc, int ndx);
static uint32_t sam_tc_divfreq(uint32_t ftc, int ndx);
static int sam_tc_freqdiv_lookup(uint32_t ftcin, int ndx);
static uint32_t sam_tc_divfreq_lookup(uint32_t ftcin, int ndx);
static inline struct sam_chan_s *sam_tc_initialize(int channel);
/****************************************************************************
@ -822,28 +822,28 @@ static int sam_tc_mckdivider(uint32_t mck)
#endif
/****************************************************************************
* Name: sam_tc_freqdiv
* Name: sam_tc_freqdiv_lookup
*
* Description:
* Given the TC input frequency (Ftc) and a divider index, return the value of
* the Ftc divider.
* Given the TC input frequency (Ftcin) and a divider index, return the value of
* the Ftcin divider.
*
* Input Parameters:
* ftc - TC input frequency
* ftcin - TC input frequency
* ndx - Divider index
*
* Returned Value:
* The ftc input divider value
* The Ftcin input divider value
*
****************************************************************************/
static int sam_tc_freqdiv(uint32_t ftc, int ndx)
static int sam_tc_freqdiv_lookup(uint32_t ftcin, int ndx)
{
/* The final option is to use the SLOW clock */
if (ndx >= TC_NDIVIDERS)
{
return ftc / BOARD_SLOWCLK_FREQUENCY;
return ftcin / BOARD_SLOWCLK_FREQUENCY;
}
else
{
@ -852,14 +852,14 @@ static int sam_tc_freqdiv(uint32_t ftc, int ndx)
}
/****************************************************************************
* Name: sam_tc_divfreq
* Name: sam_tc_divfreq_lookup
*
* Description:
* Given the TC input frequency (Ftc) and a divider index, return the value of
* Given the TC input frequency (Ftcin) and a divider index, return the value of
* the divided frequency
*
* Input Parameters:
* ftc - TC input frequency
* ftcin - TC input frequency
* ndx - Divider index
*
* Returned Value:
@ -867,7 +867,7 @@ static int sam_tc_freqdiv(uint32_t ftc, int ndx)
*
****************************************************************************/
static uint32_t sam_tc_divfreq(uint32_t ftc, int ndx)
static uint32_t sam_tc_divfreq_lookup(uint32_t ftcin, int ndx)
{
/* The final option is to use the SLOW clock */
@ -877,7 +877,7 @@ static uint32_t sam_tc_divfreq(uint32_t ftc, int ndx)
}
else
{
return ftc >> g_log2divider[ndx];
return ftcin >> g_log2divider[ndx];
}
}
@ -1359,10 +1359,10 @@ uint32_t sam_tc_getcounter(TC_HANDLE handle)
}
/****************************************************************************
* Name: sam_tc_frequency
* Name: sam_tc_infreq
*
* Description:
* Return the timer input frequency (Ftc), that is, the MCK frequency
* Return the timer input frequency (Ftcin), that is, the MCK frequency
* divided down so that the timer/counter is driven within its maximum
* frequency.
*
@ -1374,7 +1374,7 @@ uint32_t sam_tc_getcounter(TC_HANDLE handle)
*
****************************************************************************/
uint32_t sam_tc_frequency(void)
uint32_t sam_tc_infreq(void)
{
#ifdef SAMA5_HAVE_PMC_PCR_DIV
uint32_t mck = BOARD_MCK_FREQUENCY;
@ -1385,6 +1385,42 @@ uint32_t sam_tc_frequency(void)
#endif
}
/****************************************************************************
* Name: sam_tc_divfreq
*
* Description:
* Return the divided timer input frequency that is currently driving the
* the timer counter.
*
* Input Parameters:
* handle Channel handle previously allocated by sam_tc_allocate()
*
* Returned Value:
* The timer counter frequency.
*
****************************************************************************/
uint32_t sam_tc_divfreq(TC_HANDLE handle)
{
struct sam_chan_s *chan = (struct sam_chan_s *)handle;
uint32_t ftcin = sam_tc_infreq();
uint32_t regval;
int tcclks;
DEBUGASSERT(chan);
/* Get the the TC_CMR register contents for this channel and extract the
* TCCLKS index.
*/
regval = sam_chan_getreg(chan, SAM_TC_CMR_OFFSET);
tcclks = (regval & TC_CMR_TCCLKS_MASK) >> TC_CMR_TCCLKS_SHIFT;
/* And use the TCCLKS index to calculate the timer counter frequency */
return sam_tc_divfreq_lookup(ftcin, tcclks);
}
/****************************************************************************
* Name: sam_tc_divisor
*
@ -1392,11 +1428,11 @@ uint32_t sam_tc_frequency(void)
* Finds the best MCK divisor given the timer frequency and MCK. The
* result is guaranteed to satisfy the following equation:
*
* (Ftc / (div * 65536)) <= freq <= (Ftc / dev)
* (Ftcin / (div * 65536)) <= freq <= (Ftcin / dev)
*
* where:
* freq - the desired frequency
* Ftc - The timer/counter input frequency
* Ftcin - The timer/counter input frequency
* div - With DIV being the highest possible value.
*
* Input Parameters:
@ -1412,17 +1448,17 @@ uint32_t sam_tc_frequency(void)
int sam_tc_divisor(uint32_t frequency, uint32_t *div, uint32_t *tcclks)
{
uint32_t ftc = sam_tc_frequency();
uint32_t ftcin = sam_tc_infreq();
int ndx = 0;
tcvdbg("frequency=%d\n", frequency);
/* Satisfy lower bound. That is, the value of the divider such that:
*
* frequency >= tc_input_frequency / divider.
* frequency >= (tc_input_frequency * 65536) / divider.
*/
while (frequency < (sam_tc_divfreq(ftc, ndx) >> 16))
while (frequency < (sam_tc_divfreq_lookup(ftcin, ndx) >> 16))
{
if (++ndx > TC_NDIVOPTIONS)
{
@ -1441,7 +1477,7 @@ int sam_tc_divisor(uint32_t frequency, uint32_t *div, uint32_t *tcclks)
for (; ndx < (TC_NDIVOPTIONS-1); ndx++)
{
if (frequency > sam_tc_divfreq(ftc, ndx + 1))
if (frequency > sam_tc_divfreq_lookup(ftcin, ndx + 1))
{
break;
}
@ -1451,7 +1487,7 @@ int sam_tc_divisor(uint32_t frequency, uint32_t *div, uint32_t *tcclks)
if (div)
{
uint32_t value = sam_tc_freqdiv(ftc, ndx);
uint32_t value = sam_tc_freqdiv_lookup(ftcin, ndx);
tcvdbg("return div=%lu\n", (unsigned long)value);
*div = value;
}
@ -1460,8 +1496,8 @@ int sam_tc_divisor(uint32_t frequency, uint32_t *div, uint32_t *tcclks)
if (tcclks)
{
tcvdbg("return tcclks=%d\n", ndx);
*tcclks = ndx;
tcvdbg("return tcclks=%08lx\n", (unsigned long)TC_CMR_TCCLKS(ndx));
*tcclks = TC_CMR_TCCLKS(ndx);
}
return OK;

View File

@ -297,7 +297,7 @@ uint32_t sam_tc_getregister(TC_HANDLE handle, int regid);
uint32_t sam_tc_getcounter(TC_HANDLE handle);
/****************************************************************************
* Name: sam_tc_frequency
* Name: sam_tc_infreq
*
* Description:
* Return the timer input frequency, that is, the MCK frequency divided
@ -311,7 +311,24 @@ uint32_t sam_tc_getcounter(TC_HANDLE handle);
*
****************************************************************************/
uint32_t sam_tc_frequency(void);
uint32_t sam_tc_infreq(void);
/****************************************************************************
* Name: sam_tc_divfreq
*
* Description:
* Return the divided timer input frequency that is currently driving the
* the timer counter.
*
* Input Parameters:
* handle Channel handle previously allocated by sam_tc_allocate()
*
* Returned Value:
* The timer counter frequency.
*
****************************************************************************/
uint32_t sam_tc_divfreq(TC_HANDLE handle);
/****************************************************************************
* Name: sam_tc_divisor
@ -320,11 +337,11 @@ uint32_t sam_tc_frequency(void);
* Finds the best MCK divisor given the timer frequency and MCK. The
* result is guaranteed to satisfy the following equation:
*
* (Ftc / (div * 65536)) <= freq <= (Ftc / div)
* (Ftcin / (div * 65536)) <= freq <= (Ftcin / div)
*
* where:
* freq - the desired frequency
* Ftc - The timer/counter input frequency
* Ftcin - The timer/counter input frequency
* div - With DIV being the highest possible value.
*
* Input Parameters: