Update OpenOCD notes and scripts
git-svn-id: svn://svn.code.sf.net/p/nuttx/code/trunk@3088 42af7a65-404d-4744-a932-0658087f49c3
This commit is contained in:
parent
a4e888b714
commit
d2e2668275
@ -12,6 +12,7 @@ Contents
|
||||
IDEs
|
||||
NuttX buildroot Toolchain
|
||||
LEDs
|
||||
Using OpenOCD and GDB with an FT2232 JTAG emulator
|
||||
Olimex LPC1766-STK Configuration Options
|
||||
Configurations
|
||||
|
||||
@ -287,6 +288,155 @@ LEDs
|
||||
of a signal or interrupt handler.
|
||||
ON Flashing Ooops! We crashed sometime after initialization.
|
||||
|
||||
Using OpenOCD and GDB with an FT2232 JTAG emulator
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Downloading OpenOCD
|
||||
|
||||
You can get information about OpenOCD here: http://openocd.berlios.de/web/
|
||||
and you can download it from here. http://sourceforge.net/projects/openocd/files/.
|
||||
To get the latest OpenOCD with more mature lpc17xx, you have to download
|
||||
from the GIT archive.
|
||||
|
||||
git clone git://openocd.git.sourceforge.net/gitroot/openocd/openocd
|
||||
|
||||
At present, there is only the older, frozen 0.4.0 version. These, of course,
|
||||
may have changed since I wrote this.
|
||||
|
||||
Building OpenOCD under Cygwin:
|
||||
|
||||
You can build OpenOCD for Windows using the Cygwin tools. Below are a
|
||||
few notes that worked as of November 7, 2010. Things may have changed
|
||||
by the time you read this, but perhaps the following will be helpful to
|
||||
you:
|
||||
|
||||
1. Install Cygwin (http://www.cygwin.com/). My recommendation is to install
|
||||
everything. There are many tools you will need and it is best just to
|
||||
waste a little disk space and have everthing you need. Everything will
|
||||
require a couple of gigbytes of disk space.
|
||||
|
||||
2. Create a directory /home/OpenOCD.
|
||||
|
||||
3. Get the FT2232 drivr from http://www.ftdichip.com/Drivers/D2XX.htm and
|
||||
extract it into /home/OpenOCD/ftd2xx
|
||||
|
||||
$ pwd
|
||||
/home/OpenOCD
|
||||
$ ls
|
||||
CDM20802 WHQL Certified.zip
|
||||
$ mkdir ftd2xx
|
||||
$ cd ftd2xx
|
||||
$ unzip ..CDM20802\ WHQL\ Certified.zip
|
||||
Archive: CDM20802 WHQL Certified.zip
|
||||
...
|
||||
|
||||
3. Get the latest OpenOCD source
|
||||
|
||||
$ pwd
|
||||
/home/OpenOCD
|
||||
$ git clone git://openocd.git.sourceforge.net/gitroot/openocd/openocd
|
||||
|
||||
You will then have the source code in /home/OpenOCD/openocd
|
||||
|
||||
4. Build OpenOCD for the FT22322 interface
|
||||
|
||||
$ pwd
|
||||
/home/OpenOCD/openocd
|
||||
$ ./bootstrap
|
||||
|
||||
Jim is a tiny version of the Tcl scripting language. It is needed
|
||||
by more recent versions of OpenOCD. Build libjim.a using the following
|
||||
instructions:
|
||||
|
||||
$ git submodule init
|
||||
$ git submodule update
|
||||
$ cd jimtcl
|
||||
$./configure --with-jim-ext=nvp
|
||||
$ make
|
||||
$ make install
|
||||
|
||||
Configure OpenOCD:
|
||||
|
||||
.$ /configure --enable-maintainer-mode --disable-werror --disable-shared \
|
||||
--enable-ft2232_ftd2xx --with-ftd2xx-win32-zipdir=/home/OpenOCD/ftd2xx \
|
||||
LDFLAGS="-L/home/OpenOCD/openocd/jimtcl"
|
||||
|
||||
Then build OpenOCD and its HTML documentation:
|
||||
|
||||
$ make
|
||||
$ make html
|
||||
|
||||
The result of the first make will be the "openocd.exe" will be
|
||||
created in the folder /home/openocd/src. The following command
|
||||
will install OpenOCD to a standard location (/usr/local/bin)
|
||||
using using this command:
|
||||
|
||||
$ make install
|
||||
|
||||
Helper Scripts.
|
||||
|
||||
I have been using the Olimex ARM-USB-OCD JTAG debugger with the
|
||||
LPC1766-STK (http://www.olimex.com). OpenOCD requires a configuration
|
||||
file. I keep the one I used last here:
|
||||
|
||||
configs/olimex-lpc1766stk/tools/olimex.cfg
|
||||
|
||||
However, the "correct" configuration script to use with OpenOCD may
|
||||
change as the features of OpenOCD evolve. So you should at least
|
||||
compare that olimex.cfg file with configuration files in
|
||||
/usr/local/share/openocd/scripts/target (or /home/OpenOCD/openocd/tcl/target).
|
||||
As of this writing, there is no script for the lpc1766, but the
|
||||
lpc1768 configurtion can be used after changing the flash size to
|
||||
256Kb. That is, change:
|
||||
|
||||
flash bank $_FLASHNAME lpc2000 0x0 0x80000 0 0 $_TARGETNAME ...
|
||||
|
||||
To:
|
||||
|
||||
flash bank $_FLASHNAME lpc2000 0x0 0x40000 0 0 $_TARGETNAME ...
|
||||
|
||||
There is also a script on the tools/ directory that I use to start
|
||||
the OpenOCD daemon on my system called oocd.sh. That script will
|
||||
probably require some modifications to work in another environment:
|
||||
|
||||
- Possibly the value of OPENOCD_PATH and TARGET_PATH
|
||||
- It assumes that the correct script to use is the one at
|
||||
configs/olimex-lpc1766stk/tools/olimex.cfg
|
||||
|
||||
Starting OpenOCD
|
||||
|
||||
Then you should be able to start the OpenOCD daemon like:
|
||||
|
||||
configs/olimex-lpc1766stk/tools/oocd.sh $PWD
|
||||
|
||||
If you use the setenv.sh file, that the path to oocd.sh will be added
|
||||
to your PATH environment variabl. So, in that case, the command simplifies
|
||||
to just:
|
||||
|
||||
oocd.sh $PWD
|
||||
|
||||
Where it is assumed that you are executing oocd.sh from the top-level
|
||||
directory where NuttX is installed. $PWD will be the path to the
|
||||
top-level NuttX directory.
|
||||
|
||||
Connecting GDB
|
||||
|
||||
Once the OpenOCD daemon has been started, you can connect to it via
|
||||
GDB using the following GDB command:
|
||||
|
||||
arm-elf-gdb
|
||||
(gdb) target remote localhost:3333
|
||||
|
||||
And you can load the NuttX ELF file:
|
||||
|
||||
(gdb) symbol-file nuttx
|
||||
(gdb) load nuttx
|
||||
|
||||
OpenOCD will support several special 'monitor' commands:
|
||||
|
||||
(gdb) monitor reset
|
||||
(gdb) monitor halt
|
||||
|
||||
Olimex LPC1766-STK Configuration Options
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
|
@ -1,3 +1,5 @@
|
||||
# NXP LPC1766 Cortex-M3 with 256kB Flash and 32kB+32kB Local On-Chip SRAM,
|
||||
|
||||
#daemon configuration
|
||||
telnet_port 4444
|
||||
gdb_port 3333
|
||||
@ -8,7 +10,9 @@ ft2232_device_desc "Olimex OpenOCD JTAG A"
|
||||
ft2232_layout "olimex-jtag"
|
||||
ft2232_vid_pid 0x15BA 0x0003
|
||||
|
||||
# NXP LPC1766 Cortex-M3 with 256kB Flash and 32kB+32kB Local On-Chip SRAM, clocked with 4MHz internal RC oscillator
|
||||
# LPC17xx chips support both JTAG and SWD transports.
|
||||
# Adapt based on what transport is active.
|
||||
source [find target/swj-dp.tcl]
|
||||
|
||||
if { [info exists CHIPNAME] } {
|
||||
set _CHIPNAME $CHIPNAME
|
||||
@ -16,12 +20,18 @@ if { [info exists CHIPNAME] } {
|
||||
set _CHIPNAME lpc1766
|
||||
}
|
||||
|
||||
if { [info exists ENDIAN] } {
|
||||
set _ENDIAN $ENDIAN
|
||||
# After reset the chip is clocked by the ~4MHz internal RC oscillator.
|
||||
# When board-specific code (reset-init handler or device firmware)
|
||||
# configures another oscillator and/or PLL0, set CCLK to match; if
|
||||
# you don't, then flash erase and write operations may misbehave.
|
||||
# (The ROM code doing those updates cares about core clock speed...)
|
||||
#
|
||||
# CCLK is the core clock frequency in KHz
|
||||
if { [info exists CCLK ] } {
|
||||
set _CCLK $CCLK
|
||||
} else {
|
||||
set _ENDIAN little
|
||||
set _CCLK 4000
|
||||
}
|
||||
|
||||
if { [info exists CPUTAPID ] } {
|
||||
set _CPUTAPID $CPUTAPID
|
||||
} else {
|
||||
@ -29,33 +39,45 @@ if { [info exists CPUTAPID ] } {
|
||||
}
|
||||
|
||||
#delays on reset lines
|
||||
jtag_nsrst_delay 200
|
||||
adapter_nsrst_delay 200
|
||||
jtag_ntrst_delay 200
|
||||
|
||||
# LPC2000 & LPC1700 -> SRST causes TRST
|
||||
reset_config trst_and_srst srst_pulls_trst
|
||||
|
||||
jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
|
||||
#jtag newtap $_CHIPNAME cpu -irlen 4 -expected-id $_CPUTAPID
|
||||
swj_newdap $_CHIPNAME cpu -irlen 4 -expected-id $_CPUTAPID
|
||||
|
||||
set _TARGETNAME $_CHIPNAME.cpu
|
||||
target create $_TARGETNAME cortex_m3 -endian $_ENDIAN -chain-position $_TARGETNAME
|
||||
target create $_TARGETNAME cortex_m3 -chain-position $_TARGETNAME
|
||||
|
||||
# LPC1766 has 32kB of SRAM on its main system bus (so-called Local On-Chip SRAM)
|
||||
$_TARGETNAME configure -work-area-phys 0x10000000 -work-area-size 0x8000 -work-area-backup 0
|
||||
|
||||
# REVISIT is there any good reason to have this reset-init event handler??
|
||||
# Normally they should set up (board-specific) clocking then probe the flash...
|
||||
$_TARGETNAME configure -event reset-init {
|
||||
# Force NVIC.VTOR to point to flash at 0 ...
|
||||
# WHY? This is it's reset value; we run right after reset!!
|
||||
mwb 0xE000ED08 0x00
|
||||
}
|
||||
|
||||
# LPC1766 has 256kB of user-available FLASH (bootloader is located in separate dedicated region).
|
||||
# flash bank lpc1700 <base> <size> 0 0 <target#> <variant> <cclk> [calc_checksum]
|
||||
# LPC1766 has 32kB of SRAM In the ARMv7-M "Code" area (at 0x10000000)
|
||||
# and 32K more on AHB, in the ARMv7-M "SRAM" area, (at 0x2007c000).
|
||||
$_TARGETNAME configure -work-area-phys 0x10000000 -work-area-size 0x8000
|
||||
|
||||
# LPC1766 has 256kB of flash memory, managed by ROM code (including a
|
||||
# boot loader which verifies the flash exception table's checksum).
|
||||
# flash bank <name> lpc2000 <base> <size> 0 0 <target#> <variant> <clock> [calc checksum]
|
||||
set _FLASHNAME $_CHIPNAME.flash
|
||||
flash bank $_FLASHNAME lpc2000 0x0 0x40000 0 0 $_TARGETNAME lpc1700 80000 calc_checksum
|
||||
flash bank $_FLASHNAME lpc2000 0x0 0x40000 0 0 $_TARGETNAME \
|
||||
lpc1700 $_CCLK calc_checksum
|
||||
|
||||
# 4MHz / 6 = 666kHz, so use 500
|
||||
jtag_khz 100
|
||||
# Run with *real slow* clock by default since the
|
||||
# boot rom could have been playing with the PLL, so
|
||||
# we have no idea what clock the target is running at.
|
||||
jtag_khz 10
|
||||
|
||||
$_TARGETNAME configure -event reset-init {
|
||||
# Do not remap 0x0000-0x0020 to anything but the flash (i.e. select
|
||||
# "User Flash Mode" where interrupt vectors are _not_ remapped,
|
||||
# and reside in flash instead).
|
||||
#
|
||||
# See Table 612. Memory Mapping Control register (MEMMAP - 0x400F C040) bit description
|
||||
# Bit Symbol Value Description Reset
|
||||
# value
|
||||
# 0 MAP Memory map control. 0
|
||||
# 0 Boot mode. A portion of the Boot ROM is mapped to address 0.
|
||||
# 1 User mode. The on-chip Flash memory is mapped to address 0.
|
||||
# 31:1 - Reserved. The value read from a reserved bit is not defined. NA
|
||||
#
|
||||
# http://ics.nxp.com/support/documents/microcontrollers/?scope=LPC1766&type=user
|
||||
|
||||
mww 0x400FC040 0x01
|
||||
}
|
||||
|
@ -1,4 +1,7 @@
|
||||
#!/bin/sh
|
||||
#
|
||||
# See configs/olimex-lpc1766stk/README.txt for information about
|
||||
# this file.
|
||||
|
||||
TOPDIR=$1
|
||||
USAGE="$0 <TOPDIR> [-d]"
|
||||
@ -8,10 +11,16 @@ if [ -z "${TOPDIR}" ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
OPENOCD_PATH="/cygdrive/c/OpenOCD/openocd-0.4.0/src"
|
||||
# Assume that OpenOCD was installed and at /usr/local/bin. Uncomment
|
||||
# the following to run directly from the build directory
|
||||
#OPENOCD_PATH="/home/OpenOCD/openocd/src"
|
||||
#TARGET_PATH="/home/OpenOCD/openocd/tcl"
|
||||
OPENOCD_PATH="/usr/local/bin"
|
||||
TARGET_PATH="/usr/local/share/openocd/scripts"
|
||||
|
||||
OPENOCD_EXE=openocd.exe
|
||||
OPENOCD_CFG="${TOPDIR}/configs/olimex-lpc1766stk/tools/olimex.cfg"
|
||||
OPENOCD_ARGS="-f `cygpath -w ${OPENOCD_CFG}`"
|
||||
OPENOCD_ARGS="-f ${OPENOCD_CFG} -s ${TARGET_PATH}"
|
||||
|
||||
if [ "X$2" = "X-d" ]; then
|
||||
OPENOCD_ARGS=$OPENOCD_ARGS" -d3"
|
||||
@ -32,7 +41,8 @@ if [ ! -f ${OPENOCD_CFG} ]; then
|
||||
fi
|
||||
|
||||
echo "Starting OpenOCD"
|
||||
${OPENOCD_PATH}/${OPENOCD_EXE} ${OPENOCD_ARGS} &
|
||||
cd ${OPENOCD_PATH} || { echo "Failed to CD to ${OPENOCD_PATH}"; exit 1; }
|
||||
${OPENOCD_EXE} ${OPENOCD_ARGS} &
|
||||
echo "OpenOCD daemon started"
|
||||
ps -ef | grep openocd
|
||||
echo "In GDB: target remote localhost:3333"
|
||||
|
Loading…
Reference in New Issue
Block a user