Update README

This commit is contained in:
Gregory Nutt 2016-07-07 16:21:11 -06:00
parent 1a2ee220bb
commit da2d172ff1

View File

@ -43,11 +43,7 @@ Board features:
Contents
========
- Development Environment
- GNU Toolchain Options
- IDEs
- NuttX EABI "buildroot" Toolchain
- NXFLAT Toolchain
- mbed
- Hardware
- Button
- LED
@ -57,230 +53,6 @@ Contents
- Shields
- Configurations
Development Environment
=======================
Either Linux or Cygwin on Windows can be used for the development environment.
The source has been built only using the GNU toolchain (see below). Other
toolchains will likely cause problems.
GNU Toolchain Options
=====================
Toolchain Configurations
------------------------
The NuttX make system has been modified to support the following different
toolchain options.
1. The CodeSourcery GNU toolchain,
2. The Atollic Toolchain,
3. The devkitARM GNU toolchain,
4. Raisonance GNU toolchain, or
5. The NuttX buildroot Toolchain (see below).
All testing has been conducted using the CodeSourcery toolchain for Linux.
To use the Atollic, devkitARM, Raisonance GNU, or NuttX buildroot toolchain,
you simply need to add one of the following configuration options to your
.config (or defconfig) file:
CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYW=n : CodeSourcery under Windows
CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYL=y : CodeSourcery under Linux
CONFIG_ARMV7M_TOOLCHAIN_ATOLLIC=y : The Atollic toolchain under Windows
CONFIG_ARMV7M_TOOLCHAIN_DEVKITARM=n : devkitARM under Windows
CONFIG_ARMV7M_TOOLCHAIN_RAISONANCE=y : Raisonance RIDE7 under Windows
CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT=n : NuttX buildroot under Linux or Cygwin (default)
If you change the default toolchain, then you may also have to modify the PATH in
the setenv.h file if your make cannot find the tools.
NOTE: There are several limitations to using a Windows based toolchain in a
Cygwin environment. The three biggest are:
1. The Windows toolchain cannot follow Cygwin paths. Path conversions are
performed automatically in the Cygwin makefiles using the 'cygpath' utility
but you might easily find some new path problems. If so, check out 'cygpath -w'
2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links
are used in Nuttx (e.g., include/arch). The make system works around these
problems for the Windows tools by copying directories instead of linking them.
But this can also cause some confusion for you: For example, you may edit
a file in a "linked" directory and find that your changes had no effect.
That is because you are building the copy of the file in the "fake" symbolic
directory. If you use a Windows toolchain, you should get in the habit of
making like this:
V=1 make clean_context all 2>&1 |tee mout
An alias in your .bashrc file might make that less painful.
3. Dependencies are not made when using Windows versions of the GCC. This is
because the dependencies are generated using Windows pathes which do not
work with the Cygwin make.
MKDEP = $(TOPDIR)/tools/mknulldeps.sh
The Atollic "Pro" and "Lite" Toolchain
--------------------------------------
One problem that I had with the Atollic toolchains is that the provide a gcc.exe
and g++.exe in the same bin/ file as their ARM binaries. If the Atollic bin/ path
appears in your PATH variable before /usr/bin, then you will get the wrong gcc
when you try to build host executables. This will cause to strange, uninterpretable
errors build some host binaries in tools/ when you first make.
Also, the Atollic toolchains are the only toolchains that have built-in support for
the FPU in these configurations. If you plan to use the Cortex-M4 FPU, you will
need to use the Atollic toolchain for now. See the FPU section below for more
information.
The Atollic "Lite" Toolchain
----------------------------
The free, "Lite" version of the Atollic toolchain does not support C++ nor
does it support ar, nm, objdump, or objdcopy. If you use the Atollic "Lite"
toolchain, you will have to set:
CONFIG_HAVE_CXX=n
In order to compile successfully. Otherwise, you will get errors like:
"C++ Compiler only available in TrueSTUDIO Professional"
The make may then fail in some of the post link processing because of some of
the other missing tools. The Make.defs file replaces the ar and nm with
the default system x86 tool versions and these seem to work okay. Disable all
of the following to avoid using objcopy:
CONFIG_RRLOAD_BINARY=n
CONFIG_INTELHEX_BINARY=n
CONFIG_MOTOROLA_SREC=n
CONFIG_RAW_BINARY=n
devkitARM
---------
The devkitARM toolchain includes a version of MSYS make. Make sure that the
the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
path or will get the wrong version of make.
IDEs
====
NuttX is built using command-line make. It can be used with an IDE, but some
effort will be required to create the project.
Makefile Build
--------------
Under Eclipse, it is pretty easy to set up an "empty makefile project" and
simply use the NuttX makefile to build the system. That is almost for free
under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
there is a lot of help on the internet).
Using Sourcery CodeBench from http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/overview
Download and install the latest version (as of this writting it was
sourceryg++-2013.05-64-arm-none-eabi)
Import the project from git.
File->import->Git-URI, then import a Exiting code as a Makefile progject
from the working directory the git clone was done to.
Select the Sourcery CodeBench for ARM EABI. N.B. You must do one command line
build, before the make will work in CodeBench.
Native Build
------------
Here are a few tips before you start that effort:
1) Select the toolchain that you will be using in your .config file
2) Start the NuttX build at least one time from the Cygwin command line
before trying to create your project. This is necessary to create
certain auto-generated files and directories that will be needed.
3) Set up include pathes: You will need include/, arch/arm/src/stm32,
arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
4) All assembly files need to have the definition option -D __ASSEMBLY__
on the command line.
Startup files will probably cause you some headaches. The NuttX startup file
is arch/arm/src/stm32/stm32_vectors.S. With RIDE, I have to build NuttX
one time from the Cygwin command line in order to obtain the pre-built
startup object needed by RIDE.
NuttX EABI "buildroot" Toolchain
================================
A GNU GCC-based toolchain is assumed. The files */setenv.sh should
be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
different from the default in your PATH variable).
If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
Bitbucket download site (https://bitbucket.org/nuttx/buildroot/downloads/).
This GNU toolchain builds and executes in the Linux or Cygwin environment.
1. You must have already configured Nuttx in <some-dir>/nuttx.
$ (cd tools; ./configure.sh nucleo-f4x1re/f401-nsh)
$ make qconfig
$ V=1 make context all 2>&1 | tee mout
Use the f411-nsh configuration if you have the Nucleo-F411RE board.
2. Download the latest buildroot package into <some-dir>
3. unpack the buildroot tarball. The resulting directory may
have versioning information on it like buildroot-x.y.z. If so,
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
4. cd <some-dir>/buildroot
5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config
6. make oldconfig
7. make
8. Edit setenv.h, if necessary, so that the PATH variable includes
the path to the newly built binaries.
See the file configs/README.txt in the buildroot source tree. That has more
details PLUS some special instructions that you will need to follow if you are
building a Cortex-M3 toolchain for Cygwin under Windows.
NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for
more information about this problem. If you plan to use NXFLAT, please do not
use the GCC 4.6.3 EABI toolchain; instead use the GCC 4.3.3 EABI toolchain.
NXFLAT Toolchain
================
If you are *not* using the NuttX buildroot toolchain and you want to use
the NXFLAT tools, then you will still have to build a portion of the buildroot
tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can
be downloaded from the NuttX Bitbucket download site
(https://bitbucket.org/nuttx/nuttx/downloads/).
This GNU toolchain builds and executes in the Linux or Cygwin environment.
1. You must have already configured Nuttx in <some-dir>/nuttx.
cd tools
./configure.sh lpcxpresso-lpc1768/<sub-dir>
2. Download the latest buildroot package into <some-dir>
3. unpack the buildroot tarball. The resulting directory may
have versioning information on it like buildroot-x.y.z. If so,
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
4. cd <some-dir>/buildroot
5. cp configs/cortexm3-defconfig-nxflat .config
6. make oldconfig
7. make
8. Edit setenv.h, if necessary, so that the PATH variable includes
the path to the newly builtNXFLAT binaries.
mbed
====
@ -568,8 +340,8 @@ Shields
Configurations
==============
f401-nsh:
---------
nsh:
---
Configures the NuttShell (nsh) located at apps/examples/nsh for the
Nucleo-F401RE board. The Configuration enables the serial interfaces
on UART2. Support for builtin applications is enabled, but in the base
@ -586,26 +358,76 @@ Configurations
b. Execute 'make menuconfig' in nuttx/ in order to start the
reconfiguration process.
2. By default, this configuration uses the CodeSourcery toolchain
2. By default, this configuration uses the Generic ARM EABI toolchain
for Linux. That can easily be reconfigured, of course.
CONFIG_HOST_LINUX=y : Builds under Linux
CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYL=y : CodeSourcery for Linux
CONFIG_HOST_LINUX=y : Builds under Linux
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIL=y : Generic EABI toolchain for Linux
3. Although the default console is USART2 (which would correspond to
the Virtual COM port) I have done all testing with the console
device configured for USART1 (see instruction above under "Serial
Consoles). I have been using a TTL-to-RS-232 converter connected
as shown below:
Consoles). I have been using a TTL-to-RS-232 converter.
Nucleo CN10 STM32F4x1RE
----------- ------------
Pin 21 PA9 USART1_RX *Warning you make need to reverse RX/TX on
Pin 33 PA10 USART1_TX some RS-232 converters
Pin 20 GND
Pin 8 U5V
4. This example has been used to verify the OTGFS functionality. USB is
not enabled in the default configuration but can be enabled with the
following settings:
f411-nsh
--------
This configuration is the same as the f401-nsh configuration, except
that it is configured to support the Nucleo-F411RE.
CONFIG_STM32L4_OTGFS=y
CONFIG_USBDEV=y
CONFIG_USBDEV_SELFPOWERED=y
These will enable the USB CDC/ACM serial device
CONFIG_CDCACM=y
CONFIG_CDCACM_EP0MAXPACKET=64
CONFIG_CDCACM_EPINTIN=1
CONFIG_CDCACM_EPINTIN_FSSIZE=64
CONFIG_CDCACM_EPINTIN_HSSIZE=64
CONFIG_CDCACM_EPBULKOUT=3
CONFIG_CDCACM_EPBULKOUT_FSSIZE=64
CONFIG_CDCACM_EPBULKOUT_HSSIZE=512
CONFIG_CDCACM_EPBULKIN=2
CONFIG_CDCACM_EPBULKIN_FSSIZE=64
CONFIG_CDCACM_EPBULKIN_HSSIZE=512
CONFIG_CDCACM_NRDREQS=4
CONFIG_CDCACM_NWRREQS=4
CONFIG_CDCACM_BULKIN_REQLEN=96
CONFIG_CDCACM_RXBUFSIZE=257
CONFIG_CDCACM_TXBUFSIZE=193
CONFIG_CDCACM_VENDORID=0x0525
CONFIG_CDCACM_PRODUCTID=0xa4a7
CONFIG_CDCACM_VENDORSTR="NuttX"
CONFIG_CDCACM_PRODUCTSTR="CDC/ACM Serial"
CONFIG_SERIAL_REMOVABLE=y
These will enable the USB serial example at apps/examples/usbserial
CONFIG_BOARDCTL_USBDEVCTRL=y
CONFIG_EXAMPLES_USBSERIAL=y
CONFIG_EXAMPLES_USBSERIAL_BUFSIZE=512
CONFIG_EXAMPLES_USBSERIAL_TRACEINIT=y
CONFIG_EXAMPLES_USBSERIAL_TRACECLASS=y
CONFIG_EXAMPLES_USBSERIAL_TRACETRANSFERS=y
CONFIG_EXAMPLES_USBSERIAL_TRACECONTROLLER=y
CONFIG_EXAMPLES_USBSERIAL_TRACEINTERRUPTS=y
Optional USB debug features:
CONFIG_DEBUG_FEATURES=y
CONFIG_DEBUG_USB=y
CONFIG_ARCH_USBDUMP=y
CONFIG_USBDEV_TRACE=y
CONFIG_USBDEV_TRACE_NRECORDS=128
CONFIG_USBDEV_TRACE_STRINGS=y
CONFIG_USBDEV_TRACE_INITIALIDSET=y
CONFIG_NSH_USBDEV_TRACE=y
CONFIG_NSH_USBDEV_TRACEINIT=y
CONFIG_NSH_USBDEV_TRACECLASS=y
CONFIG_NSH_USBDEV_TRACETRANSFERS=y
CONFIG_NSH_USBDEV_TRACECONTROLLER=y
CONFIG_NSH_USBDEV_TRACEINTERRUPTS=y