Pinmaps should not have contained GPIO_SPEED_xxx settings.
This is board dependent.
This change adds CONFIG_STM32F0G0L0_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps without speeds.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, CONFIG_STM32F0G0L0_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set CONFIG_STM32F0G0L0_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
Pinmaps should not have contained GPIO_SPEED_xxx settings.
This is board dependent.
This change adds CONFIG_STM32L4_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps without speeds.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, CONFIG_STM32L4_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set CONFIG_STM32L4_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
replace all GPIO_MODE_xxMHz with GPIO_MODE_2MHz provide GPIO_ADJUST_MODE
and add legacy pinmap
For the stm32F1 pinmaps should not have contained GPIO_MODE_50MHz settings
on all pins. Speed is board dependent.
This change adds CONFIG_STM32_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps that can have the GPIO_MODE_xxMHz set.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h, and use all the defconfigs with the legacy
pinmap and output the required changes that one needs to make to a board.h
file.
Eventually, CONFIG_STM32_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set CONFIG_STM32_USE_LEGACY_PINMAP=n and
fully define the pins in board.hf1
Pinmaps should not have contained GPIO_SPEED_xxx settings.
This is board dependent.
This change adds CONFIG_STM32_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps without speeds.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, STM32_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set STM32_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
Pinmaps should not have contained GPIO_SPEED_xxx settings.
This is board dependent.
This change adds CONFIG_STM32_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps without speeds.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, STM32_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set STM32_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
Pinmaps should not have contained GPIO_SPEED_xxx settings.
This is board dependent.
This change adds CONFIG_STM32_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps without speeds.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, STM32_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set STM32_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
Pinmaps should not have contained GPIO_SPEED_xxx settings.
This is board dependent.
This change adds CONFIG_STM32_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps without speeds.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, STM32_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set STM32_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
Pinmaps should not have contained GPIO_SPEED_xxx settings.
This is board dependent.
This change adds CONFIG_STM32_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps without speeds.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, STM32_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set STM32_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
Pinmaps should not have contained GPIO_SPEED_xxx settings.
This is board dependent.
This change adds CONFIG_STM32F7_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps without speeds.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, STM32F7_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set STM32F7_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
Pinmaps should not have contained GPIO_SPEED_xxx settings.
This is board dependent.
This change adds CONFIG_STM32H7_USE_LEGACY_PINMAP to allow for
lazy migration to using pinmaps without speeds.
The work required to do this can be aided by running tools/stm32_pinmap_tool.py.
The tools will take a board.h file and a legacy pinmap and outut the required
changes that one needs to make to a board.h file.
Eventually, STM32H7_USE_LEGACY_PINMAP will be deprecated and the legacy
pinmaps removed from NuttX.
Any new boards added should set STM32H7_USE_LEGACY_PINMAP=n and
fully define the pins in board.h
The text describes an issue related to the running task in code.
The running task is only used when calling the _assert function
to indicate the task that was running before an exception occurred.
However, the current code only updates the running task during
irq_dispatch, which is suitable for ARM-M architecture but not
for ARM-A or ARM-R architecture, because their context switches
are not done through irq handler. Therefore, if the following
process is followed, the value of the running task will be incorrect:
1. task1 is running, this_task()=task1
2. do_irq is executed, setting running task()=task1
3. task1 switches to task2
4. task2 is running and generates a data abort
5. In the data abort, the _assert function is called,
and the running task obtained is still task1, but
the actual task that generated the exception is task2.
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
If this option is enabled, the working path of nuttx will be modified to the folder where the nuttx file is located.
Signed-off-by: yinshengkai <yinshengkai@xiaomi.com>
Over-drive can be forced to a given state by adding define to the
board.h configuration file:
#define STM32_VOS_OVERDRIVE 1 - force over-drive enabled,
#define STM32_VOS_OVERDRIVE 0 - force over-drive disabled,
#undef STM32_VOS_OVERDRIVE - autoselect over-drive by the default RCC logic
It seems that over-drive is not required for ULPI but it can be a workaround solution for boards with poor signal integration.
Higher core voltage means faster clock signal edges, which may be sufficient to synchronize the high-speed clock and data on poorly designed boards.
Over-drive can be forced to a given state by adding define to the
board.h configuration file:
#define STM32_VOS_OVERDRIVE 1 - force over-drive enabled,
#define STM32_VOS_OVERDRIVE 0 - force over-drive disabled,
#undef STM32_VOS_OVERDRIVE - autoselect over-drive by the default RCC logic
- Remove the temporary "saved" variable when temporarily changing MMU
mappings to access another process's memory. The fact that it has an
address environment is enough to make the choice
- Restore nxflat_addrenv_restore-macro. It was accidentally lost when
the address environment handling was re-factored.
The Inter-Processor Interrupt that pauses the other CPU generates
a level-1 interrupt which sets the PS.EXCM. This level-1 interrupt
is treated as an Exception and the bit PS.EXCM bit is automatically
reset on return from Exception. However, this is not the case here
because we are changing the execution to the signal trampoline.
Restoring the PS register with the PS.EXCM bit set would cause any
other exception to deviate execution to the DEC (double exception
vector), avoiding it to be treated correctly. According to the
xtensa ISA: "The process of taking an interrupt does not clear
the interrupt request. The process does set PS.EXCM to 1, which
disables level-1 interrupts in the interrupt handler. Typically,
the PS.EXCM is reset to 0 by the handler, after it has set up the
stack frame and masked the interrupt." Clean the saved PS.EXCM to
1) avoid an exception from being properly treated and 2) avoid
interrupts to be masked while delivering the signal.
In the previous implementation, PerformanceCounter would cause overflow
after running for a long time, This commit will separate the calculation
of the sec/ms part to avoid this issue, Reference:
https://github.com/cygwin/cygwin/blob/main/winsup/cygwin/clock.cc#L194-L217
Signed-off-by: chao an <anchao@xiaomi.com>
On a GICv2 implementation, setting GICC_CTLR.EOImode to 1 separates
the priority drop and interrupt deactivation operations.
Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
Summary:
- Support arm64 pmu api, Currently only the cycle counter function is supported.
- Using ARM64 PMU hardware capability to implement perf interface, modify all
perf interface related code.
- Support for pmu init under smp.
Signed-off-by: wangming9 <wangming9@xiaomi.com>
Otherwise, a request will never be transferred and there is no
information to the user that something is wrong.
For example, when using default values for TXFIFO in HS mode,
USBMSC will never work because the maximum request len is 512B
which is lower than the default TXFIFO size for IN EP.
sim_x11events should process all x11 events in each event loop,
otherwise it will cause events to accumulate in the queue and affect the interaction.
Signed-off-by: pengyiqiang <pengyiqiang@xiaomi.com>
Summary:
- I noticed that 'sleep 1' on nsh took 10 seconds on QEMU-6.1,
though the old version (e.g. QEMU-5.2) works correctly.
- I think we should implement PLL for the QEMU environment.
However, this fix works as a tentative solution.
Impact:
- K210 on QEMU only
Tested
- Tested with QEMU-7.1
Signed-off-by: Masayuki Ishikawa <Masayuki.Ishikawa@jp.sony.com>
This commit fixes#7857 and #7193 by saving Wi-Fi parameters and
set them at once, avoiding unknown behaviors of the Wi-Fi driver.
This commit also enables setting the auth of the STA/softAP modes
while connecting to/providing the wireless network.
RISCV has a modular instruction set. It's hard to define cpu-model to support all toolchain.
For Zig, cpu model is this formal: generic_rv[32|64][i][m][a][f][d][c]
For Rust, cpu model is this formal: riscv[32|64][i][m][a][f][d][c]
So, it's better to map the NuttX config to LLVM builtin cpu model, these models supported by
all LLVM based toolchain.
Refer to : https://github.com/llvm/llvm-project/blob/release/15.x/llvm/lib/Target/RISCV/RISCV.td
These models can't cover all implementation of RISCV, but it's enough for most cases.
Signed-off-by: Huang Qi <huangqi3@xiaomi.com>
This has been a long issue for me as it results in random crashes when
asynchronous events occur when the idle process is active.
The problem is that the kernel cannot access user memory, because the CPU
status prevents it.
Current Toolchain.defs set the compile flags directly, it's OK for
target specified gcc toolchain.
But some LLVM based toolchains (Rust/Zig etc) use single toolchain to handle all supported paltform.
In this patch, arch level Toolchain.defs export standard LLVM style arch flags, and let <Lang>.defs to map them into internal style,
This will simplify the intergration of non-c language.
Signed-off-by: Huang Qi <huangqi3@xiaomi.com>
arm-none-eabi-gcc 12.2.0 gives the following warnings:
error: 'primask' is used uninitialized
error: 'primask' may be used uninitialized
We use Werror and the file is indirectly included in different
places. I suggest telling the compiler to ignore these warnings
since primask is initialized on the first assembly line.
This is the only problem I encountered so far when upgrading the compiler.
SPI transfers are dynamically determined to use DMA or not.
The flag to judge is removed in a previous simple refactoring commit.
Revert the logic and fix an issue that SPI transfer fails.
Choose a divider value that matches the description provided within
the same header file.
Include stddef.h to fix compiler errors because NULL is not defined.
Make logs print protocol, vid and pid consistently, (decimal hex hex).