The "p" format specifier already prepends the pointer address with "0x"
when printing.
Signed-off-by: Gustavo Henrique Nihei <gustavo.nihei@espressif.com>
For example, task is blocked by nxsem_wait(sem1), use nxsem_wait(sem2)
in signal handler, and take sem2 successfully, after exit from signal
handler to task, nxsem_wait(sem1) returns OK, but the correct result
should be -EINTR.
Signed-off-by: Zeng Zhaoxiu <zhaoxiu.zeng@gmail.com>
instead calling kmm_heapmember or umm_heapmember because:
1.The stack supplied by caller may allocate from heap too
2.It's hard to implement these two function in ASan case
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
Change-Id: I196377822b7c4643ab4f29b7c1dc41dcd7c4dab1
arch: Allocate the space from the beginning in up_stack_frame
and modify the affected portion:
1.Correct the stack dump and check
2.Allocate tls_info_s by up_stack_frame too
3.Move the stack fork allocation from arch to sched
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
All supported arch uses a push-down stack:
The stack grows toward lower addresses in memory. The stack pointer
register points to the lowest, valid working address (the "top" of
the stack). Items on the stack are referenced as positive(include zero)
word offsets from sp.
Which means that for stack in the [begin, begin + size):
1.The initial SP point to begin + size
2.push equals sub and then store
3.pop equals load and then add
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
and remove the special handling in the stack dump
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
Change-Id: Ia1ef9a427bd4c7f6cee9838d0445f29cfaca3998
ASAN trace:
...
==32087==ERROR: AddressSanitizer: heap-buffer-overflow on address 0xf4502120 at pc 0x56673ca3 bp 0xff9b6a08 sp 0xff9b69f8
WRITE of size 1 at 0xf4502120 thread T0
#0 0x56673ca2 in strcpy string/lib_strcpy.c:64
0xf4502120 is located 0 bytes to the right of 8224-byte region [0xf4500100,0xf4502120)
allocated by thread T0 here:
#0 0xf7a60f54 in malloc (/usr/lib32/libasan.so.4+0xe5f54)
#1 0x5667725d in up_create_stack sim/up_createstack.c:135
#2 0x56657ed8 in nxthread_create task/task_create.c:125
#3 0x566580bb in kthread_create task/task_create.c:297
#4 0x5665935f in work_start_highpri wqueue/kwork_hpthread.c:149
#5 0x56656f31 in nx_workqueues init/nx_bringup.c:181
#6 0x56656fc6 in nx_bringup init/nx_bringup.c:436
#7 0x56656e95 in nx_start init/nx_start.c:809
#8 0x566548d4 in main sim/up_head.c:95
#9 0xf763ae80 in __libc_start_main (/lib/i386-linux-gnu/libc.so.6+0x18e80)
CALLSTACK:
#8 0xf79de7a5 in __asan_report_store1 () from /usr/lib32/libasan.so.4
#9 0x565fd4d7 in strcpy (dest=0xf4a02121 "", src=0xf5c00895 "k") at string/lib_strcpy.c:64
#10 0x565e4eb2 in nxtask_setup_stackargs (tcb=0xf5c00810, argv=0x0) at task/task_setup.c:570
#11 0x565e50ff in nxtask_setup_arguments (tcb=0xf5c00810, name=0x5679e580 "hpwork", argv=0x0) at task/task_setup.c:714
#12 0x565e414e in nxthread_create (name=0x5679e580 "hpwork", ttype=2 '\002', priority=224, stack=0x0, stack_size=8192, entry=0x565e54e1 <work_hpthread>, argv=0x0) at task/task_create.c:143
#13 0x565e42e3 in kthread_create (name=0x5679e580 "hpwork", priority=224, stack_size=8192, entry=0x565e54e1 <work_hpthread>, argv=0x0) at task/task_create.c:297
#14 0x565e5557 in work_start_highpri () at wqueue/kwork_hpthread.c:149
#15 0x565e3e32 in nx_workqueues () at init/nx_bringup.c:181
#16 0x565e3ec7 in nx_bringup () at init/nx_bringup.c:436
#17 0x565e3d96 in nx_start () at init/nx_start.c:809
#18 0x565e3195 in main (argc=1, argv=0xffe6b954, envp=0xffe6b95c) at sim/up_head.c:95
Change-Id: I096f7952aae67d055daa737e967242eb217ef8ac
Signed-off-by: chao.an <anchao@xiaomi.com>
-Move task_init() and task_activate() prototypes from include/sched.h to include/nuttx/sched.h. These are internal OS functions and should not be exposed to the user.
-Remove references to task_init() and task_activate() from the User Manual.
-Rename task_init() to nxtask_init() since since it is an OS internal function
-Rename task_activate() to nxtask_activate since it is an OS internal function
- Remove per-thread errno from the TCB structure (pterrno)
- Remove get_errno() and set_errno() as functions. The macros are still available as stubs and will be needed in the future if we need to access the errno from a different address environment (KERNEL mode).
- Add errno value to the tls_info_s structure definitions
- Move sched/errno to libs/libc/errno. Replace old TCB access to the errno with TLS access to the errno.
* Simplify EINTR/ECANCEL error handling
1. Add semaphore uninterruptible wait function
2 .Replace semaphore wait loop with a single uninterruptible wait
3. Replace all sem_xxx to nxsem_xxx
* Unify the void cast usage
1. Remove void cast for function because many place ignore the returned value witout cast
2. Replace void cast for variable with UNUSED macro
libs/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
syscall/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
wireless/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
Documentation/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
include/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
drivers/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
sched/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
configs: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
arch/xtensa: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
arch/z80: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
arch/x86: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
arch/renesas and arch/risc-v: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
arch/or1k: Remove all references to CONFIG_DISABLE_SIGNALS. Signals are always enabled.
arch/misoc: Remove all references to CONFIG_DISABLE_SIGNALS. Signals are always enabled.
arch/mips: Remove all references to CONFIG_DISABLE_SIGNALS. Signals are always enabled.
arch/avr: Remove all references to CONFIG_DISABLE_SIGNALS. Signals are always enabled.
arch/arm: Remove all references to CONFIG_DISABLE_SIGNALS. Signals are always enabled.
Signal handlers maybe run with interrupts enabled or disabled, depending on how the task the received the signal was blocked. (i.e.: If sem_wait() is called, then we disable interrupts, then block the currently running task). This could be dangerous, because user code would be running with interrupts disabled.
This change forces interrupts to be enabled in up_sigdeliver() before executing the signal handler calling up_irq_enable() explicitly. This is safe because, when we return to normal execution, interrupts will be restored to their previous state when the signal handler returns.