beacause _SCHED_GETTID is in nuttx/sched.h, when use dump_stack()
compile error log:
unqlite.c:51256: undefined reference to `_SCHED_GETTID'
Signed-off-by: wangbowen6 <wangbowen6@xiaomi.com>
Generic drivers shoud not use architecture related config options like
CONFIG_SAMV7_PWM. This commit adds PWM pin overwrite under generic
configuration option CONFIG_PWM_OVERWRITE.
Now the overwrite can be used on other architectures as well or can be
completely disabled for SAMv7.
Signed-off-by: Michal Lenc <michallenc@seznam.cz>
Do not allow a deferred cancellation if the group is exiting, it is too
dangerous to allow the threads to execute any user space code after the
exit has started.
If the cancelled thread is not inside a cancellation point, just kill it
immediately via asynchronous cancellation. This will create far less
problems than allowing it to continue running user code.
SOCK_CTRL is added to provide special control over network drivers
and daemons. Currently, SOCK_DGRAM and SOCK_STREAM perform this control,
but these use socket resources. In the case of usersocket in particular,
this is a waste of the device's limited socket resources.
The version information basically uses 20 characters for date and time,
which is small enough to specify an arbitrary version string. Therefore,
increase the buffer a little.
caculate blk address when mempool_multiple_free
have a bug. need a real blocksize to caulate the
memory address.
Signed-off-by: anjiahao <anjiahao@xiaomi.com>
Without this POSIX-compatible definition, support for nativesockets module in Nimlang is problematic.
.nimcache/(snip)@spure@snativesockets.nim.c: In function 'toInt__pureZnativesockets_69':
.nimcache/(snip): error: 'IPPROTO_ICMPV6' undeclared (first use in this function); did you mean 'IPPROTO_ICMP6'?
291 | result = IPPROTO_ICMPV6;
| ^~~~~~~~~~~~~~
| IPPROTO_ICMP6
Signed-off-by: Takeyoshi Kikuchi <kikuchi@centurysys.co.jp>
There is an issue where the wrong process exit code is given to the parent
when a process exits. This happens when the process has pthreads running
user code i.e. not within a cancel point / system call.
Why does this happen ?
When exit() is called, the following steps are done:
- group_kill_children(), which tells the children to die via pthread_cancel()
Then, one of two things can happen:
1. if the child is in a cancel point, it gets scheduled to allow it to leave
the cancel point and gets destroyed immediately
2. if the child is not in a cancel point, a "cancel pending" flag is set and
the child will die when the next cancel point is encountered
So what is the problem here?
The last thread alive dispatches SIGCHLD to the parent, which carries the
process's exit code. The group head has the only meaningful exit code and
this is what should be passed. However, in the second case, the group head
exits before the child, taking the process exit code to its grave. The child
that was alive will exit next and will pass its "status" to the parent process,
but this status is not the correct value to pass.
This commit fixes the issue by passing the group head's exit code ALWAYS to
the parent process.
D:\archer\code\nuttx\include\nuttx/net/netfilter/x_tables.h(71,7):
error C2229: type 'struct xt_standard_target' has an illegal zero-sized array
Compiler error C2229:
A member of a structure or bit field contains a zero-sized array that is not the last member.
Reference:
https://learn.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/compiler-error-c2229?view=msvc-170
Signed-off-by: chao an <anchao@xiaomi.com>
SOCK_CTRL is added to provide special control over network drivers
and daemons. Currently, SOCK_DGRAM and SOCK_STREAM perform this control,
but these use socket resources. In the case of usersocket in particular,
this is a waste of the device's limited socket resources.
The function is not relevant any longer, remove it. Also remove
save_addrenv_t, the parameter taken by up_addrenv_restore.
Implement addrenv_select() / addrenv_restore() to handle the temporary
instantiation of address environments, e.g. when a process is being
created.
There is currently a big problem in the address environment handling which
is that the address environment is released too soon when the process is
exiting. The current MMU mappings will always be the exiting process's, which means
the system needs them AT LEAST until the next context switch happens. If
the next thread is a kernel thread, the address environment is needed for
longer.
Kernel threads "lend" the address environment of the previous user process.
This is beneficial in two ways:
- The kernel processes do not need an allocated address environment
- When a context switch happens from user -> kernel or kernel -> kernel,
the TLB does not need to be flushed. This must be done only when
changing to a different user address environment.
Another issue is when a new process is created; the address environment
of the new process must be temporarily instantiated by up_addrenv_select().
However, the system scheduler does not know that the process has a different
address environment to its own and when / if a context restore happens, the
wrong MMU page directory is restored and the process will either crash or
do something horribly wrong.
The following changes are needed to fix the issues:
- Add mm_curr which is the current address environment of the process
- Add a reference counter to safeguard the address environment
- Whenever an address environment is mapped to MMU, its reference counter
is incremented
- Whenever and address environment is unmapped from MMU, its reference
counter is decremented, and tested. If no more references -> drop the
address environment and release the memory as well
- To limit the context switch delay, the address environment is freed in
a separate low priority clean-up thread (LPWORK)
- When a process temporarily instantiates another process's address
environment, the scheduler will now know of this and will restore the
correct mappings to MMU
Why is this not causing more noticeable issues ? The problem only happens
under the aforementioned special conditions, and if a context switch or
IRQ occurs during this time.
Detach the address environment handling from the group structure to the
tcb. This is preparation to fix rare cases where the system (MMU) is left
without a valid page directory, e.g. when a process exits.