In case of enabled packet forwarding mode, packets were forwarded in a reverse order
because of LIFO behavior of the connection event list.
The issue exposed only during high network traffic. Thus the event list started to grow
that resulted in changing the order of packets inside of groups of several packets
like the following: 3, 2, 1, 6, 5, 4, 8, 7 etc.
Remarks concerning the connection event list implementation:
* Now the queue (list) is FIFO as it should be.
* The list is singly linked.
* The list has a head pointer (inside of outer net_driver_s structure),
and a tail pointer is added into outer net_driver_s structure.
* The list item is devif_callback_s structure.
It still has two pointers to two different list chains (*nxtconn and *nxtdev).
* As before the first argument (*dev) of the list functions can be NULL,
while the other argument (*list) is effective (not NULL).
* An extra (*tail) argument is added to devif_callback_alloc()
and devif_conn_callback_free() functions.
* devif_callback_alloc() time complexity is O(1) (i.e. O(n) to fill the whole list).
* devif_callback_free() time complexity is O(n) (i.e. O(n^2) to empty the whole list).
* devif_conn_event() time complexity is O(n).
It's enough to check the buffer available in the net event handler
Change-Id: I2d7c7a03675cf6eff6ffb42a81b7c7245253e92c
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
MSG_DONTWAIT (since Linux 2.2)
Enables nonblocking operation; if the operation would block, the
call fails with the error EAGAIN or EWOULDBLOCK. This provides
similar behavior to setting the O_NONBLOCK flag (via the fcntl(2)
F_SETFL operation), but differs in that MSG_DONTWAIT is a per-call
option, whereas O_NONBLOCK is a setting on the open file description
(see open(2)), which will affect all threads in the calling process
and as well as other processes that hold file descriptors referring
to the same open file description.
1.Consolidate absolute to relative timeout conversion into one place(_net_timedwait)
2.Drive the wait timeout logic by net_timedwait instead of devif_timer
This patch help us remove devif_timer(period tick) to save the power in the future.
Change-Id: I534748a5d767ca6da8a7843c3c2f993ed9ea77d4
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
Here is the email loop talk about why it is better to remove the option:
https://groups.google.com/forum/#!topic/nuttx/AaNkS7oU6R0
Change-Id: Ib66c037752149ad4b2787ef447f966c77aa12aad
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
net/udp/udp_wrbuffer.c: Add new function udp_wrbuffer_tryalloc()
net/udp/udp_psock_sendto_buffered.c: If the socket was opened with O_NONBLOCK, then use udp_wrbuffer_tryalloc() so that the caller will not wait for a write buffer. Return EGAIN if udp_wrbuffer_tryalloc() failes.
Author: Gregory Nutt <gnutt@nuttx.org>
Run all .h and .c files modified in last PR through nxstyle.
Author: Xiang Xiao <xiaoxiang@xiaomi.com>
Net cleanup (#17)
* Fix the semaphore usage issue found in tcp/udp
1. The count semaphore need disable priority inheritance
2. Loop again if net_lockedwait return -EINTR
3. Call nxsem_trywait to avoid the race condition
4. Call nxsem_post instead of sem_post
* Put the work notifier into free list to avoid the heap fragment in the long run. Since the allocation strategy is encapsulated internally, we can even refine the implementation later.
* Network stack shouldn't allocate memory in the poll implementation to avoid the heap fragment in the long run, other modification include:
1. Select MM_IOB automatically since ICMP[v6] socket can't work without the read ahead buffer
2. Remove the net lock since xxx_callback_free already do the same thing
3. TCP/UDP poll should work even the read ahead buffer isn't enabled at all
* Add NET_ prefix for UDP_NOTIFIER and TCP_NOTIFIER option to align with other UDP/TCP option convention
* Remove the unused _SF_[IDLE|ACCEPT|SEND|RECV|MASK] flags since there are code to set/clear these flags, but nobody check them.
Squashed commit of the following:
net/: Fix some naming inconsistencies, Fix final compilation issies.
net/inet/inet_close(): Now that we have logic to drain the buffered TX data, we can implement a proper lingering close.
net/inet,tcp,udp: Add functions to wait for write buffers to drain.
net/udp: Add support for notification when the UDP write buffer becomes empty.
net/tcp: Add support for notification when the TCP write buffer becomes empty.
ez80: Fixing a few more compile problems. I am afraid that the 5.3.0 compiler it too buggy to use.
ez80: Additional build-related fixed.
eZ80: Updating to use the newest ZDSII 5.3.0 toolchain.
arch/: Removed all references to CONFIG_DISABLE_POLL. The standard POSIX poll() can not longer be disabled.
sched/ audio/ crypto/: Removed all references to CONFIG_DISABLE_POLL. The standard POSIX poll() can not longer be disabled.
Documentation/: Removed all references to CONFIG_DISABLE_POLL. The standard POSIX poll() can not longer be disabled.
fs/: Removed all references to CONFIG_DISABLE_POLL. The standard POSIX poll() can not longer be disabled.
graphics/: Removed all references to CONFIG_DISABLE_POLL. The standard POSIX poll() can not longer be disabled.
net/: Removed all references to CONFIG_DISABLE_POLL. The standard POSIX poll() can not longer be disabled.
drivers/: Removed all references to CONFIG_DISABLE_POLL. The standard POSIX poll() can not longer be disabled.
include/, syscall/, wireless/: Removed all references to CONFIG_DISABLE_POLL. The standard POSIX poll() can not longer be disabled.
configs/: Remove all references to CONFIG_DISABLE_POLL. Standard POSIX poll can no longer be disabled.
Squashed commit of the following:
sched/sched/sched_getsockets.c: Fix an error in conditional compilation.
fs/: Remove all conditional logic based on CONFIG_NSOCKET_DESCRIPTORS == 0
Documentation/: Remove all references to CONFIG_NSOCKET_DESCRIPTORS == 0
include/: Remove all conditional logic based on CONFIG_NSOCKET_DESCRIPTORS == 0
libs/: Remove all conditional logic based on CONFIG_NSOCKET_DESCRIPTORS == 0
net/: Remove all conditional logic based on CONFIG_NSOCKET_DESCRIPTORS == 0
sched/: Remove all conditional logic based on CONFIG_NSOCKET_DESCRIPTORS == 0
syscall/: Remove all conditional logic based on CONFIG_NSOCKET_DESCRIPTORS == 0
tools/: Fixups for CONFIG_NSOCKET_DESCRIPTORS no longer used to disable sockets.
Squashed commit of the following:
Fix up some final compile isses.
net/netdev: Convert the network down notification logic to use the new wqueue-based notification factility.
net/udp: Convert the UDP readahead notification logic to use the new wqueue-based notification factility.
net/tcp: Convert the TCP readahead notification logic to use the new wqueue-based notification factility.
mm/iob: Convert the IOB notification logic to use the new wqueue-based notification factility.
sched/wqueue: Signals are not good IPCs to support the target poll functionality for several reasons including the amount of data that can be passed with a signal and in the fact that in protected and kernel modes, user threads executing signal handlers in protected, kernel memory is problematic. Instead, convert the same logic to perform the notifications via function callback on the high priority work queue.
Squashed commit of the following:
net/tcp: Add signal notification for the case when UDP read-ahead data is buffered. This is basically of clone of the TCP notification logic with naming adapted for UDP.
net/tcp: Add signal notification for the case when TCP read-ahead data is buffered.
Squashed commit of the following:
sched: Rename all use of system_t to clock_t.
syscall: Rename all use of system_t to clock_t.
net: Rename all use of system_t to clock_t.
libs: Rename all use of system_t to clock_t.
fs: Rename all use of system_t to clock_t.
drivers: Rename all use of system_t to clock_t.
arch: Rename all use of system_t to clock_t.
include: Remove definition of systime_t; rename all use of system_t to clock_t.
In connection-mode UDP sockets, a remote address is retained in the UDP connection structure. This determines both there send() will send the packets and which packets recv() will accept.
This same mechanism is used for connection-less UDP sendto: A temporary remote address is written into the connection structure to support the sendto() operation. That address persists until the next recvfrom() when it is reset to accept any address.
When UDP read-ahead buffering is enabled, however, that means that the old, invalid remote address can be left in the connection structure for some time. This can cause read-ahead buffer to fail, dropping UDP packets.
Shortening the time between when he remote address is reset (i.e., immediately after the sendto() completes) is not a solution, that does not eliminate the race condition; in only makes it smaller.
With this change, a flag was added to the connection structure to indicate if the UDP socket is in connection mode or if it is connection-less. This change effects only UDP receive operations: The remote address in the UDP connection is always ignored if the UDP socket is not in connection-mode.
No for connection-mode sockets, that remote address behaves as before. But for connection-less sockets, it is only used by sendto().
Squashed commit of the following:
net/udp: Address most of the issues with UDP write buffering. There is a remaining issue with handling one network going down in a multi-network environment. None of this has been test but it is certainly ready for test. Hence, the feature is marked EXPERIMENTAL.
net/udp: Some baby steps toward a corrected write buffering design.
net/udp: Remove pesky write buffer macros.
Eliminate trailing space at the end of lines.
net/udp: A little more UDP write buffering logic. Still at least on big gaping hole in the design.
net/udp: Undefined CONFIG_NET_SENDTO_TIMEOUT.
net/udp: Crude, naive port of the TCP write buffering logic into UDP. This commit is certainly non-functional and is simply a starting point for the implementatin of UDP write buffering.
net/udp: Rename udp/udp_psock_sendto.c udp/udp_psock_sendto_unbuffered.c.
User-space networking stack API allows user-space daemon to
provide TCP/IP stack implementation for NuttX network.
Main use for this is to allow use and seamless integration of
HW-provided TCP/IP stacks to NuttX.
For example, user-space daemon can translate /dev/usrsock
API requests to HW TCP/IP API requests while rest of the
user-space can access standard socket API, with socket
descriptors that can be used with NuttX system calls.