Call xxx_timer_initialize from clock subsystem to make timer ready for use as soon as possiblei and revert the workaround:
commit 0863e771a9
Author: Gregory Nutt <gnutt@nuttx.org>
Date: Fri Apr 26 07:24:57 2019 -0600
Revert "sched/clock/clock_initialize.c: clock_inittime() needs to be done with CONFIG_SCHED_TICKLESS and clock_initialize should skip clock_inittime() for external RTC case since the RTC isn't ready yet."
This reverts commit 2bc709d4b9.
Commit 2bc709d4b9 was intended to handle the case where up_timer_gettime may not start from zero case. However, this change has the side-effect of breaking every implementation of tickless mode: After this change the tickless timer structures are used before they are initialized in clock_inittime(). Initialization happens later when up_initialize is called() when arm_timer_initialize().
Since the tickless mode timer is very special, one solution might be to
1. Rename xxx_timer_initialize to up_timer_initialize
2 Move up_timer_initialize to include/nuttx/arch.h
3. Call it from clock subsystem instead up_initialize
Basically, this change make timer initialization almost same as rtc initialization(up_rtc_initialize).
For now, however, we just need to revert the change.
1. No .c file should include a "Public Types" section. Only a header file can define a public type. A .c file can only define a private type. Several files contained private type definitions. The section that they were defined in, however, was incorrectly named "Public Types." Those were easilty changed to "Private Types" which is what they are.
2. No .c file should include a "Public Function Prototypes" section. All global function prototypes should be provided via a header file and never declared with a .c file.
For No. 2, I corrected as many cases as was reasonable for the time that I had available. But there are still a dozen or so .c files that declare "Public Function Prototypes" within a .c file. This is bad programming style. These declarations should all be moved to the proper header files.
* Simplify EINTR/ECANCEL error handling
1. Add semaphore uninterruptible wait function
2 .Replace semaphore wait loop with a single uninterruptible wait
3. Replace all sem_xxx to nxsem_xxx
* Unify the void cast usage
1. Remove void cast for function because many place ignore the returned value witout cast
2. Replace void cast for variable with UNUSED macro
Squashed commit of the following:
Author: Gregory Nutt <gnutt@nuttx.org>
Ran nxstyle against many of the affected files. But this job was too big for today. Many of the network drivers under arch are highly non-compiant and generate many, many faults from nxstyle. Those will have to be visited again another day.
Author: Xiang Xiao <xiaoxiang@xiaomi.com>
This effects all network drivers as well as timing related portions of net/: devif_poll_tcp_timer shouldn't be skipped in the multiple card case. devif_timer will be called multiple time in one period if the multiple card exist, the elapsed time calculated for the first callback is right, but the flowing callback in the same period is wrong(very short) because the global variable g_polltimer is used in the calculation. So let's pass the delay time to devif_timer and remove g_polltimer.
1. Serial (UART) driver (13 ports)
2. Ethernet driver
This port is provided on two boards
1. RSK RX65N-2MB
2. GR-Rose
The port is built on Cygwin environment.
As part of this port, we have created two documents
1. Readme.txt for each board
2. User manual to provide information about development environment setup
Both these documents are placed under
1. /boards/renesas/rx65n/rx65n-grrose
2. /boards/renesas/rx65n/rx65n-rsk2mb
We have run 'nxstyle' for coding guidelines and 'ostest' for testing NuttX features on test platform.
We have shared the log with no errors as confirmation of valid port.
libs/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
syscall/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
wireless/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
Documentation/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
include/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
drivers/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
sched/: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
configs: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
arch/xtensa: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
arch/z80: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
arch/x86: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
arch/renesas and arch/risc-v: Remove references to CONFIG_DISABLE_SIGNALS. Signals can no longer be disabled.
arch/or1k: Remove all references to CONFIG_DISABLE_SIGNALS. Signals are always enabled.
arch/misoc: Remove all references to CONFIG_DISABLE_SIGNALS. Signals are always enabled.
arch/mips: Remove all references to CONFIG_DISABLE_SIGNALS. Signals are always enabled.
arch/avr: Remove all references to CONFIG_DISABLE_SIGNALS. Signals are always enabled.
arch/arm: Remove all references to CONFIG_DISABLE_SIGNALS. Signals are always enabled.
Squashed commit of the following:
configs/: The few configurations that formerly set CONFIG_NFILE_DESCRIPTORS=0 should not default, rather they should set the number of descriptors to 3.
fs/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
tools/: Tools updates for changes to usage of CONFIG_NFILE_DESCRIPTORS.
syscall/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
libs/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
include/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
drivers/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
Documentation/: Remove all references to CONFIG_NFILE_DESCRIPTORS == 0
binfmt/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
arch/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
net/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
sched/: Remove all conditional logic based on CONFIG_NFILE_DESCRIPTORS == 0
sched/Kconfig: CONFIG_NFILE_DESCRIPTORS may no longer to set to a value less than 3
configs/: Remove all settings for CONFIG_NFILE_DESCRIPTORS < 3
sched/init/nx_bringup.c: Fix a naming collision.
sched/init: Rename os_start() to nx_start()
sched/init: Rename os_smp* to nx_smp*
sched/init: Rename os_bringup to nx_bringup
sched/init: rename all internal static functions to begin with nx_ vs os_
Squashed commit of the following:
Trivial, cosmetic
sched/, arch/, and include: Rename task_vforkstart() as nxtask_vforkstart()
sched/, arch/, and include: Rename task_vforkabort() as nxtask_vforkabort()
sched/, arch/, and include: Rename task_vforksetup() as nxtask_vfork_setup()
sched/: Rename notify_cancellation() as nxnotify_cancellation()
sched/: Rename task_recover() to nxtask_recover()
sched/task, sched/pthread/, Documentation/: Rename task_argsetup() and task_terminate() to nxtask_argsetup() and nxtask_terminate(), respectively.
sched/task: Rename task_schedsetup() to nxtask_schedsetup()
sched/ (plus some binfmt/, include/, and arch/): Rename task_start() and task_starthook() to nxtask_start() and nxtask_starthook().
arch/ and sched/: Rename task_exit() and task_exithook() to nxtask_exit() and nxtask_exithook(), respectively.
sched/task: Rename all internal, static, functions to begin with the nx prefix.
Signal handlers maybe run with interrupts enabled or disabled, depending on how the task the received the signal was blocked. (i.e.: If sem_wait() is called, then we disable interrupts, then block the currently running task). This could be dangerous, because user code would be running with interrupts disabled.
This change forces interrupts to be enabled in up_sigdeliver() before executing the signal handler calling up_irq_enable() explicitly. This is safe because, when we return to normal execution, interrupts will be restored to their previous state when the signal handler returns.