Because there is no pre-encoding length of the ssid, the ssid including
the Chinese characters whose length is less than 32 after encoding
cann't be translated.
For example, the ssid name is `word人`. After encoding it is `world\xe4\xba\xba` and will not be decoded.
Signed-off-by: liqinhui <liqinhui@xiaomi.com>
These flags are not used in the code.
SERIAL_HAVE_RXDMA and SERIAL_HAVE_TXDMA flags are used instead.
STM32_UART_TXDMA flag is not even defined in Kconfig
Connecting the static page tables to each other was done with the page
table virtual address (riscv_pgvaddr) when the page table physical address
is needed.
I can never remember whether the static page table list contains the
table's physical or kernel virtual address.. Add the fact as a comment
there.
Also add the limitations that come from this static page table approach
for Sv32.
The SSID can be configured with special symbols suach as single
quotations, double quotations and backslashes, which need to be escaped.
Signed-off-by: liqinhui <liqinhui@xiaomi.com>
This adds option to do PMP configuration via mpfs_board_pmp_setup instead
of just opening up everything. In this case, it is up to the specific
board to implement the PMP configuration in whichever way it sees fit.
With TCD set to loop, there is a window where the
DMA has raised Done, but not reloaded the TCD, resetting
count and clearing Done.
In this window imxrt_dmach_getcount could then return 0.
Resulting in imxrt_dma_nextrx returning RXDMA_BUFFER_SIZE.
Which is not a valid index in the FIFO.
Since the count will be set to RXDMA_BUFFER_SIZE. When the DMA
engine completes the TCD reload. The imxrt_dma_nextrx would
return 0. Therefore:
(RXDMA_BUFFER_SIZE - dmaresidual) % RXDMA_BUFFER_SIZE
accomplishes this.
With TCD set to loop, there is a window where the
DMA has raised Done, but not reloaded the TCD, resetting
count and clearing Done.
In this window imxrt_dmach_getcount could then return 0.
Resulting in imxrt_dma_nextrx returning RXDMA_BUFFER_SIZE.
Which is not a valid index in the FIFO.
Since the count will be set to RXDMA_BUFFER_SIZE. When the DMA
engine completes the TCD reload. The imxrt_dma_nextrx would
return 0. Therefore:
(RXDMA_BUFFER_SIZE - dmaresidual) % RXDMA_BUFFER_SIZE
accomplishes this.
With TCD set to loop, there is a window where the
DMA has raised Done, but not reloaded the TCD, resetting
count and clearing Done.
In this window imxrt_dmach_getcount could then return 0.
Resulting in imxrt_dma_nextrx returning RXDMA_BUFFER_SIZE.
Which is not a valid index in the FIFO.
Since the count will be set to RXDMA_BUFFER_SIZE. When the DMA
engine completes the TCD reload. The imxrt_dma_nextrx would
return 0. Therefore:
(RXDMA_BUFFER_SIZE - dmaresidual) % RXDMA_BUFFER_SIZE
accomplishes this.
With DMA enabled on some I2C channels but not all
the Non DMA channels were failing.
The cause was condition the status with only the enabled
interrupts on non DMA chennels. This conditioning needs
to only happen in DMA enabled channels
With DMA enabled on some I2C channels but not all
the Non DMA channels were failing.
The cause was condition the status with only the enabled
interrupts on non DMA chennels. This conditioning needs
to only happen in DMA enabled channels
With DMA enabled on some I2C channels but not all
the Non DMA channels were failing.
The cause was condition the status with only the enabled
interrupts on non DMA chennels. This conditioning needs
to only happen in DMA enabled channels
The DMA can bring in more rx data, than the number of
DMA completions call backs. The call back happen on
idle, 1/2 and full events. But in between these events
the DMA can write more data to the buffers memory that
need to be brought in to the cache. (invalidate)
We do the invalidate on the reads from the fifo memory
if the the DMA as commited since the last read.
Previously, GPIO interrupts were not correctly mapped to the peripheral base register responsible for the interrupt.
Change the IRQ number calculation so the interrupts work correctly on all GPIO peripheral bases.