Gregory Nutt is the copyright holder for those files and he has submitted the
SGA as a result we can migrate the licenses to Apache.
Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
My recent changes to buffered tcp send broke this. [1]
One of my local apps using non-blocking tcp is working
again with this fix.
[1]
```
commit 837e1a72a4
Author: YAMAMOTO Takashi <yamamoto@midokura.com>
Date: Mon Mar 15 16:19:42 2021 +0900
tcp_send_buffered.c: improve tcp write buffering
```
reset the connection refcount if SYN retry count has elapsed
Assertion:
up_assert: Assertion failed at file:tcp/tcp_conn.c line: 764 task: netdev_wq
N/A
Signed-off-by: chao.an <anchao@xiaomi.com>
Summary:
- Based on the discussion (PR#2772), let me revert the commit
Impact:
- None
Testing:
- N/A
This reverts commit ec8bf5c8c1.
Suggested-by: YAMAMOTO Takashi <yamamoto@midokura.com>
Signed-off-by: Masayuki Ishikawa <Masayuki.Ishikawa@jp.sony.com>
Summary:
- This commit adds DEBUGASSERT() to check the IOB size
Impact:
- None
Testing:
- Tested with sabre-6quad:netnsh with QEMU
Signed-off-by: Masayuki Ishikawa <Masayuki.Ishikawa@jp.sony.com>
Request the TCP ACK to estimate the receive window after handle
any data already buffered in a read-ahead buffer.
Change-Id: Id998a1125dd2991d73ba4bef081ddcb7adea4f0d
Signed-off-by: chao.an <anchao@xiaomi.com>
Urgent data preceded "normal" data in the TCP payload. If the urgent data is larger than the size of the TCP payload, this indicates that the entire payload is urgent data and that urgent data continues in the next packet.
This case was handled correctly for the case where urgent data was present but was not being handled correctly in the case where the urgent data was NOT present.
RFC2001: TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms
...
3. Fast Retransmit
Modifications to the congestion avoidance algorithm were proposed in
1990 [3]. Before describing the change, realize that TCP may
generate an immediate acknowledgment (a duplicate ACK) when an out-
of-order segment is received (Section 4.2.2.21 of [1], with a note
that one reason for doing so was for the experimental fast-
retransmit algorithm). This duplicate ACK should not be delayed.
The purpose of this duplicate ACK is to let the other end know that a
segment was received out of order, and to tell it what sequence
number is expected.
Since TCP does not know whether a duplicate ACK is caused by a lost
segment or just a reordering of segments, it waits for a small number
of duplicate ACKs to be received. It is assumed that if there is
just a reordering of the segments, there will be only one or two
duplicate ACKs before the reordered segment is processed, which will
then generate a new ACK. If three or more duplicate ACKs are
received in a row, it is a strong indication that a segment has been
lost. TCP then performs a retransmission of what appears to be the
missing segment, without waiting for a retransmission timer to
expire.
Change-Id: Ie2cbcecab507c3d831f74390a6a85e0c5c8e0652
Signed-off-by: chao.an <anchao@xiaomi.com>
The number of available iobs is already sub in iob_navail(true) on line 114
net/tcp/tcp_recvwindow.c:
...
73 uint16_t tcp_get_recvwindow(FAR struct net_driver_s *dev)
...
114 niob_avail = iob_navail(true);
Change-Id: I230927904d8db08ed8d95d7fa18c5c5fce08aa5e
Signed-off-by: chao.an <anchao@xiaomi.com>
Add a fallback mechanism to ensure that there are still available
iobs for an free connection, Guarantees all connections will have
a minimum threshold iob to keep the connection not be hanged.
Change-Id: I59bed98d135ccd1f16264b9ccacdd1b0d91261de
Signed-off-by: chao.an <anchao@xiaomi.com>