random_pool.c:466:14: runtime error: left shift of 305919453 by 17 places cannot be represented in type 'long int'
random_pool.c:178:11: runtime error: shift exponent 32 is too large for 32-bit type 'unsigned int'
Change-Id: I714f42b68f4af43249946aed8537cd848e569194
Signed-off-by: ligd <liguiding1@xiaomi.com>
Resolution of Issue 619 will require multiple steps, this part of the first step in that resolution: Every call to nxsem_wait_uninterruptible() must handle the return value from nxsem_wait_uninterruptible properly. This commit is only for those files under fs/driver, fs/aio, fs/nfs, crypto/, and boards/.
Please note: The modified file under fs/nfs generates several " Mixed case identifier found" errors. Please ignore these. These cannot be fixed without changes to numerous other files. They also follow a non-standard convention that is used many files: Using lower case structure names in custom SIZEOF_ definitions.
* Simplify EINTR/ECANCEL error handling
1. Add semaphore uninterruptible wait function
2 .Replace semaphore wait loop with a single uninterruptible wait
3. Replace all sem_xxx to nxsem_xxx
* Unify the void cast usage
1. Remove void cast for function because many place ignore the returned value witout cast
2. Replace void cast for variable with UNUSED macro
This commit backs out most of commit b4747286b1. That change was added because sem_wait() would sometimes cause cancellation points inappropriated. But with these recent changes, nxsem_wait() is used instead and it is not a cancellation point.
In the OS, all calls to sem_wait() changed to nxsem_wait(). nxsem_wait() does not return errors via errno so each place where nxsem_wait() is now called must not examine the errno variable.
In all OS functions (not libraries), change sem_wait() to nxsem_wait(). This will prevent the OS from creating bogus cancellation points and from modifying the per-task errno variable.
sched/semaphore: Add the function nxsem_wait(). This is a new internal OS interface. It is functionally equivalent to sem_wait() except that (1) it is not a cancellation point, and (2) it does not set the per-thread errno value on return.
sched/semaphore: Add nxsem_post() which is identical to sem_post() except that it never modifies the errno variable. Changed all references to sem_post in the OS to nxsem_post().
sched/semaphore: Add nxsem_destroy() which is identical to sem_destroy() except that it never modifies the errno variable. Changed all references to sem_destroy() in the OS to nxsem_destroy().
libc/semaphore and sched/semaphore: Add nxsem_getprotocol() and nxsem_setprotocola which are identical to sem_getprotocol() and set_setprotocol() except that they never modifies the errno variable. Changed all references to sem_setprotocol in the OS to nxsem_setprotocol(). sem_getprotocol() was not used in the OS
libc/semaphore: Add nxsem_getvalue() which is identical to sem_getvalue() except that it never modifies the errno variable. Changed all references to sem_getvalue in the OS to nxsem_getvalue().
sched/semaphore: Rename all internal private functions from sem_xyz to nxsem_xyz. The sem_ prefix is (will be) reserved only for the application semaphore interfaces.
libc/semaphore: Add nxsem_init() which is identical to sem_init() except that it never modifies the errno variable. Changed all references to sem_init in the OS to nxsem_init().
sched/semaphore: Rename sem_tickwait() to nxsem_tickwait() so that it is clear this is an internal OS function.
sched/semaphoate: Rename sem_reset() to nxsem_reset() so that it is clear this is an internal OS function.
Entropy pool gathers environmental noise from device drivers, user-space, etc., and returns good random numbers, suitable for cryptographic use. Based on entropy pool design from *BSDs and uses BLAKE2Xs algorithm for CSPRNG output.
Patch also adds /dev/urandom support for using entropy pool RNG and new 'getrandom' system call for getting randomness without file-descriptor usage (thus avoiding file-descriptor exhaustion attacks). The 'getrandom' interface is similar as 'getentropy' and 'getrandom' available on OpenBSD and Linux respectively.