USBD has many limitation that make it hard to work properly:
- only one EasyDMA channel which must be shared for all EPs
- only one DMA transfer can take place at a time
- some registers are unavailable during DMA transfer
- in case of any problems, the peripheral silently blocks,
or lose the transmitted bytes without information for the user
This commit is trying to fix these problem and makes the USBS stack more reliable.
Tested with high-speed CDCACM data transfers and that's the best I've been able to get in terms of stability.
This is preparation to use kernel stack for everything when the user
process enters the kernel. Now the user stack is in use when the user
process runs a system call, which might not be the safest option.
CortexR52 can have a optional FPU.
- VFPv3 with FP16
- Option 1: 16 x double-prevision registers - -mfpu=vfpv3-d16-fp16
- Option 1: 32 x double-prevision registers - -mfpu=vfpv3-fp16
Basic work required for uniprocessor CortexR52 (ARMv8R AARCH32) using
GICv3 and CP15 mapped arch timer.
Tested on ARM FVP 11.20.
Port is based on ARMv8R AARCH64 and ARMv7R code. Excuse possible copy-paste leftovers.
Add an interface that validate if EasyDMA transfer is possible.
EasyDMA cannot access flash memory which can cause hard to detect silent bugs.
This feature is enabled if CONFIG_DEBUG_FEATURES=y and CONFIG_DEBUG_ASSERTIONS=y.
Confirmation of the IN request must be done immediately after all data has been transferred,
otherwise sending data when more than one request has been added to the queue will
not work properly.
- Update TrustedFirmare-M instructions to latest version of STM32CubeL5
- Increase idle thread stack size to not overflow during system init
- Select ARCH_HAVE_TRUSTZONE for STM32L5
- Set CONFIG_ARCH_TRUSTZONE_NONSECURE for stm32l562e-dk:nsh, since NuttX
is running in the Non-secure world.
See https://github.com/apache/nuttx/issues/9316
Signed-off-by: Michael Jung <michael.jung@secore.ly>
SAMv7 QSPI peripheral does not copy-in/out directly into/from
user provided buffer, but use a dedicated memory that is interfaces
using byte copy. The QSPI command buffer can point to memory with
any alignment
Signed-off-by: Petro Karashchenko <petro.karashchenko@gmail.com>