/**************************************************************************** * arch/avr/include/avr32/irq.h * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /* This file should never be included directly but, rather, only indirectly * through nuttx/irq.h */ #ifndef __ARCH_AVR_INCLUDE_AVR32_IRQ_H #define __ARCH_AVR_INCLUDE_AVR32_IRQ_H /**************************************************************************** * Included Files ****************************************************************************/ #include #include /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* General notes about the AVR32 ABI: * * Scratch/Volatile Registers: r8-r12 * Preserved/Static Registers: r0-r7 * Parameter Passing: r12-R8 (in that order) */ /* Register state save array indices. * * The following registers are saved by the AVR32 hardware (for the case of * interrupts only). Note the registers are order in the opposite order the * they appear in memory (i.e., in the order of increasing address) because * this makes it easier to following the ordering of pushing on a push-down * stack. */ #define REG_R8 16 #define REG_R9 15 #define REG_R10 14 #define REG_R11 13 #define REG_R12 12 #define REG_R14 11 #define REG_R15 10 #define REG_SR 9 #define REG_LR REG_R14 #define REG_PC REG_R15 /* Additional registers saved in order have the full CPU context */ #define REG_R13 8 #define REG_SP REG_R13 #define REG_R0 7 #define REG_R1 6 #define REG_R2 5 #define REG_R3 4 #define REG_R4 3 #define REG_R5 2 #define REG_R6 1 #define REG_R7 0 /* Size of the register state save array (in 32-bit words) */ #define INTCONTEXT_REGS 8 /* r8-r12, lr, pc, sr */ #define XCPTCONTEXT_REGS 17 /* Plus r0-r7, sp */ #define XCPTCONTEXT_SIZE (4 * XCPTCONTEXT_REGS) /**************************************************************************** * Public Types ****************************************************************************/ /* This struct defines the way the registers are stored. */ #ifndef __ASSEMBLY__ struct xcptcontext { /* These are saved copies of PC and SR used during signal processing. * * REVISIT: Because there is only one copy of these save areas, * only a single signal handler can be active. This precludes * queuing of signal actions. As a result, signals received while * another signal handler is executing will be ignored! */ uint32_t saved_pc; uint32_t saved_sr; /* Register save area */ uint32_t regs[XCPTCONTEXT_REGS]; }; #endif /**************************************************************************** * Inline functions ****************************************************************************/ #ifndef __ASSEMBLY__ /* Name: up_irq_save, up_irq_restore, and friends. * * NOTE: This function should never be called from application code and, * as a general rule unless you really know what you are doing, this * function should not be called directly from operation system code either: * Typically, the wrapper functions, enter_critical_section() and * leave_critical section(), are probably what you really want. */ /* Read the AVR32 status register */ static inline uint32_t avr32_sr(void) { uint32_t sr; __asm__ __volatile__ ( "mfsr\t%0,%1\n\t" : "=r" (sr) : "i" (AVR32_SR) ); return sr; } /* Read the interrupt vector base address */ static inline uint32_t avr32_evba(void) { uint32_t evba; __asm__ __volatile__ ( "mfsr\t%0,%1\n\t" : "=r" (evba) : "i" (AVR32_EVBA) ); return evba; } /* Return the current value of the stack pointer */ static inline uint32_t up_getsp(void) { uint32_t retval; __asm__ __volatile__ ( "mov\t%0,sp\n\t" : "=r" (retval) : ); return retval; } /* Return the current interrupt enable state and disable all interrupts */ static inline irqstate_t up_irq_save(void) { irqstate_t sr = (irqstate_t)avr32_sr(); __asm__ __volatile__ ( "ssrf\t%0\n\t" "nop\n\t" "nop" : : "i" (AVR32_SR_GM_SHIFT) ); return sr; } /* Restore saved interrupt state */ static inline void up_irq_restore(irqstate_t flags) { if ((flags & AVR32_SR_GM_MASK) == 0) { __asm__ __volatile__ ( "csrf\t%0\n\t" "nop\n\t" "nop" : : "i" (AVR32_SR_GM_SHIFT) ); } } /* Return the current interrupt enable state and enable all interrupts */ static inline irqstate_t up_irq_enable(void) { irqstate_t sr = (irqstate_t)avr32_sr(); __asm__ __volatile__ ( "csrf\t%0\n\t" "nop\n\t" "nop" : : "i" (AVR32_SR_GM_SHIFT) ); return sr; } #endif /* __ASSEMBLY__ */ /**************************************************************************** * Public Data ****************************************************************************/ /**************************************************************************** * Public Function Prototypes ****************************************************************************/ #ifndef __ASSEMBLY__ #ifdef __cplusplus #define EXTERN extern "C" extern "C" { #else #define EXTERN extern #endif #undef EXTERN #ifdef __cplusplus } #endif #endif #endif /* __ARCH_AVR_INCLUDE_AVR32_IRQ_H */