NuttX RTOSLast Updated: July 21, 2011 |
Table of Contents |
|
Overview |
Goals. Nuttx is a real timed embedded operating system (RTOS). Its goals are:
Small Footprint | |
Usable in all but the tightest micro-controller environments, The focus is on the tiny-to-small, deeply embedded environment. | |
Rich Feature OS Set | |
The goal is to provide implementations of most standard POSIX OS interfaces to support a rich, multi-threaded development environment for deeply embedded processors. NON-GOALS: (1) It is not a goal to provide the rich level of OS features like those provided with Linux. Small footprint is more important than features. Standard compliance is more important than small footprint. (2) There is no MMU-based support for processes. At present, NuttX assumes a flat address space. | |
Highly Scalable | |
Fully scalable from tiny (8-bit) to moderate embedded (32-bit). Scalability with rich feature set is accomplished with: Many tiny source files, link from static libraries, highly configurable, use of weak symbols when available. | |
Standards Compliance | |
NuttX strives to achieve a high degree of standards compliance.
The primary governing standards are POSIX and ANSI standards.
Additional standard APIs from Unix and other common RTOS's are
adopted for functionality not available under these standards
or for functionality that is not appropriate for the deeply-embedded
RTOS (such as Because of this standards conformance, software developed under other standard OSs (such as Linux) should port easily to NuttX. | |
Real-Time | |
Fully pre-emptible, fixed priority and round-robin scheduling. | |
Totally Open | |
Non-restrictive BSD license. | |
GNU Toolchains | |
Compatible GNU toolchains based on buildroot available for download to provide a complete development environment for many architectures. |
Feature Set. Key features of NuttX include:
Standards Compliant Core Task Management | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
File system | |
| |
| |
| |
/dev/null , /dev/zero drivers. | |
| |
| |
| |
| |
| |
| |
1
FAT long file name support may be subject to certain Microsoft patent restrictions if enabled.
See the top-level | |
C Library | |
| |
Networking | |
| |
| |
| |
| |
| |
| |
FLASH Support | |
| |
| |
| |
| |
USB Host Support | |
| |
| |
| |
USB Device Support | |
| |
| |
| |
| |
Graphics Support | |
| |
| |
|
NuttX Add-Ons. The following packages are available to extend the basic NuttX feature set:
NuttShell (NSH) | |
| |
Pascal Compiler with NuttX runtime P-Code interpreter add-on | |
|
Look at all those files and features... How can it be a tiny OS?. The NuttX feature list (above) is fairly long and if you look at the NuttX source tree, you will see that there are hundreds of source files comprising NuttX. How can NuttX be a tiny OS with all of that?
Lots of Features -- More can be smaller! | |
The philosophy behind that NuttX is that lots of features are great... BUT also that if you don't use those features, then you should not have to pay a penalty for the unused features. And, with NuttX, you don't! If you don't use a feature, it will not be included in the final executable binary. You only have to pay the penalty of increased footprint for the features that you actually use. Using a variety of technologies, NuttX can scale from the very tiny to the moderate-size system. I have executed NuttX with some simple applications in as little as 32Kb total memory (code and data). On the other hand, typical, richly featured NuttX builds require more like 64Kb (and if all of the features are used, this can push 100Kb). |
|
Many, many files -- More really is smaller! | |
One may be intimidated by the size NuttX source tree. There are hundreds of source files! How can that be a tiny OS? Actually, the large number of files is one of the tricks to keep NuttX small and as scalable as possible. Most files contain only a single function. Sometimes just one tiny function with only a few lines of code. Why?
|
|
Other Tricks | |
As mentioned above, the use of many, tiny source files and linking from static libraries keeps the size of NuttX down. Other tricks used in NuttX include:
|
NuttX Discussion Group |
Most Nuttx-related discussion occurs on the Yahoo! NuttX group. You are cordially invited to join. I make a special effort to answer any questions and provide any help that I can.
Downloads |
nuttx-6.6 Release Notes:
The 735d release of NuttX, Version 6.6, was made on July 11, 2011 and is available for download from the
SourceForge website.
Note that release consists of two tarballs: nuttx-6.6.tar.gz
and apps-6.5.tar.gz
.
Both may be needed (see the top-level nuttx/README.txt
file for build information)
The change log associated with the release is available here.
Unreleased changes after this release are available in SVN.
These unreleased changes are also listed here.
The 6.6 release adds several smaller featurs but is mostly a bugfix release. Bugfixes include
Minor features include:
printf
strings from FLASH
(but there are still printf
issues for that target)
Supported Platforms |
The short story (Number of ports follow in parentheses. Follow the links for the details):
|
|
|
The details, caveats and fine print follow:
Linux User Mode. | |
A user-mode port of NuttX to the x86 Linux/Cygwin platform is available. The purpose of this port is primarily to support OS feature development. STATUS: Does not support interrupts but is otherwise fully functional. |
|
ARM7TDMI. | |
TI TMS320C5471 (also called C5471 or TMS320DA180 or DA180). NuttX operates on the ARM7 of this dual core processor. This port uses the Spectrum Digital evaluation board with a GNU arm-elf toolchain* under Linux or Cygwin. STATUS: This port is complete, verified, and included in the initial NuttX release. |
|
NXP LPC214x. Support is provided for the NXP LPC214x family of processors. In particular, support is provided for the mcu123.com lpc214x evaluation board (LPC2148). This port also used the GNU arm-elf toolchain* under Linux or Cygwin. STATUS: This port boots and passes the OS test (apps/examples/ostest). The port is complete and verified. As of NuttX 0.3.17, the port includes: timer interrupts, serial console, USB driver, and SPI-based MMC/SD card support. A verified NuttShell (NSH) configuration is also available. Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. |
|
NXP LPC2378. Support is provided for the NXP LPC2378 MCU. In particular, support is provided for the Olimex-LPC2378 development board. This port was contributed by Rommel Marcelo is was first released in NuttX-5.3. This port also used the GNU arm-elf toolchain* under Linux or Cygwin. STATUS: This port boots and passes the OS test (apps/examples/ostest) and includes a working implementation of the NuttShell (NSH). The port is complete and verified. As of NuttX 5.3, the port includes only basic timer interrupts and serial console support. Development Environments: (Same as for the NXP LPC214x). |
|
STMicro STR71x. Support is provided for the STMicro STR71x family of processors. In particular, support is provided for the Olimex STR-P711 evaluation board. This port also used the GNU arm-elf toolchain* under Linux or Cygwin. STATUS: Integration is complete on the basic port (boot logic, system time, serial console). Two configurations have been verified: (1) The board boots and passes the OS test with console output visible on UART0, and the NuttShell (NSH) is fully functional with interrupt driven serial console. An SPI driver is available but only partially tested. Additional features are needed: USB driver, MMC integration, to name two (the slot on the board appears to accept on MMC card dimensions; I have only SD cards). An SPI-based ENC29J60 Ethernet driver for add-on hardware is under development and should be available in the NuttX 5.5 release. Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. |
|
ARM920T. | |
Freescale MC9328MX1 or i.MX1. This port uses the Freescale MX1ADS development board with a GNU arm-elf toolchain* under either Linux or Cygwin. STATUS: This port has stalled due to development tool issues. Coding is complete on the basic port (timer, serial console, SPI). |
|
ARM926EJS. | |
TI TMS320DM320 (also called DM320). NuttX operates on the ARM9 of this dual core processor. This port uses the Neuros OSD with a GNU arm-elf toolchain* under Linux or Cygwin. The port was performed using the OSD v1.0, development board. STATUS: The basic port (timer interrupts, serial ports, network, framebuffer, etc.) is complete. All implemented features have been verified with the exception of the USB device-side driver; that implementation is complete but untested. |
|
NXP LPC3131.
The port for the NXP LPC3131 on the Embedded Artists EA3131
development board was first released in NuttX-5.1 with a GNU arm-elf or arm-eabi toolchain* under Linux or Cygwin
(but was not functional until NuttX-5.2).
STATUS: The basic EA3131 port is complete and verified in NuttX-5.2 This basic port includes basic boot-up, serial console, and timer interrupts. This port was extended in NuttX 5.3 with a USB high speed driver contributed by David Hewson. David also contributed I2C and SPI drivers plus several important LPC313x USB bug fixes that appear in the NuttX 5.6 release. This port has been verified using the NuttX OS test, USB serial and mass storage tests and includes a working implementation of the NuttShell (NSH). Support for on-demand paging has been developed for the EA3131. That support would all execute of a program in SPI FLASH by paging code sections out of SPI flash as needed. However, as of this writing, I have not had the opportunity to verify this new feature. |
|
NXP LPC315x.
Support for the NXP LPC315x family has been incorporated into the code base as of NuttX-6.4.
STATUS: The MCU support logic is present but as of this writing has not been verified on hardware. Because of the high degree of compatibility between the LPC313x and LPC315x family, it is very likely that the support is in place (or at least very close). |
|
ARM Cortex-M3. | |
Luminary/TI LM3S6918. This port uses the Micromint Eagle-100 development board with a GNU arm-elf toolchain* under either Linux or Cygwin. STATUS: The initial, release of this port was included in NuttX version 0.4.6. The current port includes timer, serial console, Ethernet, SSI, and microSD support. There are working configurations the NuttX OS test, to run the NuttShell (NSH), the NuttX networking test, and the uIP web server. Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. |
|
Luminary/TI LM3S6965. This port uses the Stellaris LM3S6965 Ethernet Evalution Kit with a GNU arm-elf toolchain* under either Linux or Cygwin. STATUS: This port was released in NuttX 5.5. Features are the same as with the Eagle-100 LM3S6918 described above. The apps/examples/ostest configuration has been successfully verified and an NSH configuration with telnet support is available. MMC/SD and Networking support was not been thoroughly verified: Current development efforts are focused on porting the NuttX window system (NX) to work with the Evaluation Kits OLED display. NOTE: As it is configured now, you MUST have a network connected. Otherwise, the NSH prompt will not come up because the Ethernet driver is waiting for the network to come up. Development Environments: See the Eagle-100 LM3S6918 above. |
|
Luminary/TI LM3S8962. This port uses the Stellaris EKC-LM3S8962 Ethernet+CAN Evalution Kit with a GNU arm-elf toolchain* under either Linux or Cygwin. Contributed by Larry Arnold. STATUS: This port was released in NuttX 5.10. Features are the same as with the Eagle-100 LM3S6918 described above. |
|
Luminary/TI LM3S9B96. Header file support was contributed by Tiago Maluta for this part. However, no complete board support configuration is available as of this writing. |
|
STMicro STM32F103x. Support for three MCUs and two board configurations are available. MCU support includes: STM32F103ZET6, STM32F103RET6, and STM32F107VC. Board support includes:
These ports uses a GNU arm-elf toolchain* under either Linux or Cygwin (with native Windows GNU tools or Cygwin-based GNU tools).
STATUS: Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain (RIDE7, CodeSourcery or devkitARM). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. |
|
Atmel AT91SAM3U. This port uses the Atmel SAM3U-EK development board that features the AT91SAM3U4E MCU. This port uses a GNU arm-elf or arm-eabi toolchain* under either Linux or Cygwin (with native Windows GNU tools or Cygwin-based GNU tools). STATUS: The basic SAM3U-EK port was released in NuttX version 5.1. The basic port includes boot-up logic, interrupt driven serial console, and system timer interrupts. That release passes the NuttX OS test and is proven to have a valid OS implementation. A configuration to support the NuttShell is also included. NuttX version 5.4 adds support for the HX8347 LCD on the SAM3U-EK board. This LCD support includes an example using the NX graphics system. Subsequent NuttX releases will extend this port and add support for SDIO-based SD cards and USB device (and possible LCD support). These extensions may or may not happen by the Nuttx 5.5 release as my plate is kind of full now. Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. |
|
NXP LPC1766 and LPC1768. Configurations are available for three boards:
The Nucleus 2G boar, the mbed board, and the LPCXpresso all feature the NXP LPC1768 MCU; the Olimex LPC1766-STK board features an LPC1766. All use a GNU arm-elf or arm-eabi toolchain* under either Linux or Cygwin (with native Windows GNU tools or Cygwin-based GNU tools).
STATUS: The following summarizes the features that has been developed and verified on individual LPC17xx-based boards. These features should, however, be common and available for all LPC17xx-based boards. Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain (CodeSourcery devkitARM or Code Red). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. |
|
Atmel AVR. | |
SoC Robotics ATMega128. This port of NuttX to the Amber Web Server from SoC Robotics is partially completed. The Amber Web Server is based on an Atmel ATMega128. STATUS: Work on this port has stalled due to toolchain issues. Complete, but untested code for this port appears in the NuttX 6.5 release. |
|
Micropendous 3 AT9USB64x and AT9USB6128x. This port of NuttX to the Opendous Micropendous 3 board. The Micropendous3 is may be populated with an AT90USB646, 647, 1286, or 1287. I have only the AT90USB647 version for testing. This version have very limited memory resources: 64Kb of FLASH and 4Kb of SRAM. STATUS: The basic port was released in NuttX-6.5. This basic port consists only of a "Hello, World!!" example that demonstrates initialization of the OS, creation of a simple task, and serial console output. |
|
PJRC Teensy++ 2.0 AT9USB1286. This is a port of NuttX to the PJRC Teensy++ 2.0 board. This board was developed by PJRC. The Teensy++ 2.0 is based on an Atmel AT90USB1286 MCU. STATUS: The basic port was released in NuttX-6.5. This basic port consists of a "Hello, World!!" example that demonstrates initialization of the OS, creation of a simple task, and serial console output as well as a somewhat simplified NuttShell (NSH) configuration (see the NSH User Guide). An SPI driver and a USB device driver exist for the AT90USB as well as a USB mass storage configureation. However, this configuration is not fully debugged as of the NuttX-6.5 release. |
|
AVR-Specific Issues. The basic AVR port is solid and biggest issue for using AVR is its tiny SRAM memory and its Harvard architecture. Because of the Harvard architecture, constant data that resides to flash is inaccessible using "normal" memory reads and writes (only SRAM data can be accessed "normally"). Special AVR instructions are available for accessing data in FLASH, but these have not been integrated into the normal, general purpose OS. Most NuttX test applications are console-oriented with lots of strings used for printf and debug output. These strings are all stored in SRAM now due to these data accessing issues and even the smallest console-oriented applications can quickly fill a 4-8Kb memory. So, in order for the AVR port to be useful, one of two things would need to be done:
| |
Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain. All testing, however, has been performed using the Nuttx DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. As a result, that toolchain is recommended. |
|
Atmel AVR32. | |
AV32DEV1. This port uses the www.mcuzone.com AVRDEV1 board based on the Atmel AT32UC3B0256 MCU. This port requires a special GNU avr32 toolchain available from atmel.com website. This is a windows native toolchain and so can be used only under Cygwin on Windows.
STATUS: This port is has completed all basic development, but there is more that needs to be done. All code is complete for the basic NuttX port including header files for all AT32UC3* peripherals. The untested AVR32 code was present in the 5.12 release of NuttX. Since then, the basic RTOS port has solidified: The basic, port (including the verified apps/examples/ostest configuration) was be released in NuttX-5.13. A complete port will include drivers for additional AVR32 UC3 devices -- like SPI and USB --- and will be available in a later release, time permitting. |
|
Freescale M68HCS12. | |
MC9S12NE64. Support for the MC9S12NE64 MCU and two boards are included:
Both use a GNU arm-elf toolchain* under Linux or Cygwin. The NuttX buildroot provides a properly patched GCC 3.4.4 toolchain that is highly optimized for the m9s12x family. STATUS: Coding is complete for the MC9S12NE64 and for the NE64 Badge board. However, testing has not yet begun due to issues with BDMs, Code Warrior, and the paging in the build process. Progress is slow, but I hope to see a fully verified MC9S12NE64 port in the near future. |
|
Intel 8052 Microcontroller. | |
PJRC 87C52 Development Board. This port uses the PJRC 87C52 development system and the SDCC toolchain under Linux or Cygwin. STATUS: This port is complete but not stable with timer interrupts enabled. There seems to be some issue when the stack pointer enters into the indirect IRAM address space during interrupt handling. This architecture has not been built in some time will likely have some compilation problems because of SDCC compiler differences. |
|
Intel 80x86. | |
QEMU/Bifferboard i486. This port uses the QEMU i486 and the native Linux, Cywgin, MinGW the GCC toolchain under Linux or Cygwin. STATUS: The basic port was code-complete in NuttX-5.19 and verifed in NuttX-6.0. The port was verified using the OS and NuttShell (NSH) examples under QEMU. The port is reported to be functional on the Bifferboard as well. This is a great, stable starting point for anyone interest in fleshing out the x86 port! |
|
RGMP. RGMP stands for RTOS and GPOS on Multi-Processor. RGMP is a project for running GPOS and RTOS simultaneously on multi-processor platforms You can port your favorite RTOS to RGMP together with an unmodified Linux to form a hybrid operating system. This makes your application able to use both RTOS and GPOS features. See the RGMP Wiki for further information about RGMP. STATUS: This initial port of NuttX to RGMP was provided in NuttX-6.3. This initial RGP port provides only minimal driver support and does not use the native NuttX interrupt system. This is a great, stable starting point for anyone interest in working with NuttX under RGMP! |
|
MicroChip PIC32 (MIPS). | |
PIC32MX460F512L. A port of NuttX to the PIC32MX460F512L is underway. This port uses the PIC32MX board from PCB Logic Design Co. The board is a very simple -- little more than a carrier for the PIC32 MCU plus voltage regulation, debug interface, and an OTG connector. STATUS: This port is code complete and has begun testing. Testing is, unfortunately, delayed until I obtain some additional test equipment (you can't use PICkit 2 with the PIC32; you need PICkit 3. And, to make things worse, my PICKit3 just hangs when I try to debug). |
|
PIC32MX440F512H. This port uses the "Advanced USB Storage Demo Board," Model DB-DP11215, from Sure Electronics. This board features the MicroChip PIC32MX440F512H. See the Sure website for further information about the DB-DP11215 board. STATUS: This port is code complete and has begun testing. I hope to use the on-board LEDs to work around the debug problems with the PCL Logic board (see above). Update: Work on this board has stalled due to higher priority tasks. |
|
Development Environment: These ports uses the LITE version of the PIC32MX toolchain available for download from the MicroChip website. |
|
Renesas/Hitachi SuperH. | |
SH-1 SH7032. This port uses the Hitachi SH-1 Low-Cost Evaluation Board (SH1_LCEVB1), US7032EVB, with a GNU arm-elf toolchain* under Linux or Cygwin. STATUS: This port is available as of release 0.3.18 of NuttX. The port is basically complete and many examples run correctly. However, there are remaining instabilities that make the port un-usable. The nature of these is not understood; the behavior is that certain SH-1 instructions stop working as advertised. This could be a silicon problem, some pipeline issue that is not handled properly by the gcc 3.4.5 toolchain (which has very limit SH-1 support to begin with), or perhaps with the CMON debugger. At any rate, I have exhausted all of the energy that I am willing to put into this cool old processor for the time being. |
|
Renesas M16C/26. | |
Renesas M16C/26 Microncontroller. This port uses the Renesas SKP16C26 Starter kit and the GNU M32C toolchain. The development environment is either Linux or Cygwin under WinXP.
STATUS:
Initial source files released in nuttx-0.4.2.
At this point, the port has not been integrated; the target cannot be built
because the GNU m32c-elf-ld: BFD (GNU Binutils) 2.19 assertion fail /home/Owner/projects/nuttx/buildroot/toolchain_build_m32c/binutils-2.19/bfd/elf32-m32c.c:482
Where the reference line is: /* If the symbol is out of range for a 16-bit address, we must have allocated a plt entry. */ BFD_ASSERT (*plt_offset != (bfd_vma) -1); No workaround is known at this time. This is a show stopper for M16C for the time being. |
|
Zilog Z16F. | |
Zilog z16f Microncontroller. This port use the Zilog z16f2800100zcog development kit and the Zilog ZDS-II Windows command line tools. The development environment is Cygwin under WinXP. STATUS: The initial release of support for the z16f was made available in NuttX version 0.3.7. |
|
Zilog eZ80 Acclaim!. | |
Zilog eZ80Acclaim! Microncontroller. There are two eZ80Acclaim! ports:
Both boards are based on the eZ80F091 part and both use the Zilog ZDS-II Windows command line tools. The development environment is Cygwin under WinXP. STATUS: Integration and testing of NuttX on the ZiLOG ez80f0910200zcog-d is complete. The first integrated version was released in NuttX version 0.4.2 (with important early bugfixes in 0.4.3 and 0.4.4). As of this writing, that port provides basic board support with a serial console, SPI, and eZ80F91 EMAC driver. |
|
Zilog Z8Encore!. | |
Zilog Z8Encore! Microncontroller. This port uses the either:
and the Zilog ZDS-II Windows command line tools. The development environment is Cygwin under WinXP. STATUS: This release has been verified only on the ZiLOG ZDS-II Z8Encore! chip simulation as of nuttx-0.3.9. |
|
Zilog Z80. | |
Z80 Instruction Set Simulator. This port uses the SDCC toolchain under Linux or Cygwin (verified using version 2.6.0). This port has been verified using only a Z80 instruction simulator. That simulator can be found in the NuttX SVN here. STATUS: This port is complete and stable to the extent that it can be tested using an instruction set simulator. |
|
XTRS: TRS-80 Model I/III/4/4P Emulator for Unix. A very similar Z80 port is available for XTRS, the TRS-80 Model I/III/4/4P Emulator for Unix. That port also uses the SDCC toolchain under Linux or Cygwin (verified using version 2.6.0). STATUS: Basically the same as for the Z80 instruction set simulator. This port was contributed by Jacques Pelletier. |
* A highly modified buildroot is available that may be used to build a NuttX-compatible ELF toolchain under Linux or Cygwin. Configurations are available in that buildroot to support ARM, Cortex-M3, avr, m68k, m68hc11, m68hc12, m9s12, blackfin, m32c, h8, and SuperH ports.
Development Environments |
Linux + GNU make + GCC/binutils
|
|
The is the most natural development environment for NuttX. Any version of the GCC/binutils toolchain may be used. There is a highly modified buildroot available for download from the NuttX SourceForge page. This download may be used to build a NuttX-compatible ELF toolchain under Linux or Cygwin. That toolchain will support ARM, m68k, m68hc11, m68hc12, and SuperH ports. The buildroot SVN may be accessed in the NuttX SVN. |
|
Linux + GNU make + SDCC
|
|
Also very usable is the Linux environment using the SDCC compiler. The SDCC compiler provides support for the 8051/2, z80, hc08, and other microcontrollers. The SDCC-based logic is less well exercised and you will likely find some compilation issues if you use parts of NuttX with SDCC that have not been well-tested. |
|
Cygwin + GNU make + GCC/binutils
|
|
This combination works well too. It works just as well as the native Linux environment except that compilation and build times are a little longer. The custom NuttX buildroot referenced above may be build in the Cygwin environment as well. |
|
Cygwin + GNU make + SDCC
|
|
I have never tried this combination, but it would probably work just fine. |
|
Cygwin + GNU make + Windows Native Toolchain
|
|
This is a tougher environment. In this case, the Windows native toolchain is unaware of the Cygwin sandbox and, instead, operates in the native Windows environment. The primary difficulties with this are:
Fortunately, this conversion is done simply using the The NuttX make system works around this limitation by copying the platform specific directories in place. These copied directories make work a little more complex, but otherwise work well.
NOTE: In this environment, it should be possible to use the NTFS
NOTE: dependencies are suppress by setting the make variable Supported Windows Native Toolchains. At present, only the Zilog Z16F, z8Encore, and eZ80Acclaim ports use a non-GCC native Windows toolchain(the Zilog ZDS-II toolchain). Support for Windows native GCC toolchains (CodeSourcery and devkitARM) is currently implemented for the NXP LPC214x, STMicro STR71x, and Luminary LMS6918 ARM ports. (but could easily be extended to any other GCC-based platform with a small effort). |
|
Wine + GNU make + Windows Native Toolchain
|
|
I've never tried this one, but I off the following reported by an ez80 user using the ZiLOG ZDS-II Windows-native toolchain:
|
|
Other Environments?
Windows Native make + Windows Native Toolchain?
|
|
Environment Dependencies. The primary environmental dependency of NuttX are (1) GNU make, (2) bash scripting, and (3) Linux utilities (such as cat, sed, etc.). If you have other platforms that support GNU make or make utilities that are compatible with GNU make, then it is very likely that NuttX would work in that environment as well (with some porting effort). If GNU make is not supported, then some significant modification of the Make system would be required. GNUWin32. For example, with suitable make system changes, it should be possible to use native GNU tools (such as those from GNUWin32) to build NuttX. However, that environment has not been used as of this writing.
NOTE: One of the members on the NuttX forum
reported that they successful built NuttX using such a GNUWin32-based, Windows native environment.
They reported that the only necessary change was to the use the NTFS mklink command to create links
(see |
Memory Footprint |
C5471 (ARM7) The build for this ARM7 target that includes most of the OS features and a broad range of OS tests. The size of this executable as given by the Linux size command is (3/9/07):
text data bss dec hex filename 53272 428 3568 57268 dfb4 nuttx
DM320 (ARM9) This build for the ARM9 target includes a significant subset of OS features, a filesystem, Ethernet driver, full TCP/IP, UDP and (minimal) ICMP stacks (via uIP) and a small network test application: (11/8/07, configuration netconfig, apps/examples/nettest)
text data bss dec hex filename 49472 296 3972 53740 d1ec nuttx
Another build for the ARM9 target includes a minimal OS feature set, Ethernet driver, full TCP/IP and (minimal) ICMP stacks, and a small webserver: (11/20/07, configuration uipconfig, apps/examples/uip)
text data bss dec hex filename 52040 72 4148 56260 dbc4 nuttx
87C52 A reduced functionality OS test for the 8052 target requires only about 18-19Kb:
Stack starts at: 0x21 (sp set to 0x20) with 223 bytes available. Other memory: Name Start End Size Max ---------------- -------- -------- -------- -------- PAGED EXT. RAM 0 256 EXTERNAL RAM 0x0100 0x02fd 510 7936 ROM/EPROM/FLASH 0x2100 0x6e55 19798 24384
Licensing |
NuttX is available under the highly permissive BSD license. Other than some fine print that you agree to respect the copyright you should feel absolutely free to use NuttX in any environment and without any concern for jeopardizing any proprietary software that you may link with it.
Release History |
The current NuttX Change Log is available in SVN here. ChangeLog snapshots associated with the current release are available below.
Change Logs for All NuttX Releases |
|
ChangeLog for the Current Releases |
|
Unreleased Changes |
ChangeLog for the Current Release |
nuttx-6.6 2011-07-11 Gregory Nutt <spudmonkey@racsa.co.cr> * drivers/mtd/ramtron.c, net/net_checksd.c, fs/fs_fdopen.c, and include/nuttx/mii.h: Several structural changes made to get a clean compile under the ez80 ZDS-II toolchain (no design changes). * drivers/usbhost/usbhost_storage.c: Incorpated bugfixes reported by Sheref H. Younan: (1) Read capacity logic read largest block, not the number of blocks and was, therefore, off by one, and (2) Some devices stall of get Max LUN request if they support only a single LUN. Logic now assumes a single LUN if the get Max LUN request fails. * include/nuttx/arch.h, lib/stdio/lib_libvsprintf.c, lib/stdio/lib_fputs.c: Add a new configuration option to support extracting strings from FLASH or EEPROM or other memories where the string data cannot be accessed by simply de-referencing a string pointer. * arch/sim/src/up_romgetc.c: Used to test the basic logic to access strings without directly de-referencing a string pointer. * arch/avr/src/avr/up_romget.c: Used to access strings that lie in the first 64Kb of FLASH (But I still haven't figured out how to get strings to reside in FLASH without using the PROGMEM attribute). * configs/teensy/src/up_spi.c: Correct reading of SD CD and WP pins (was reading the wrong register. AVR SPI now appears to be functional. * arch/avr/src/at90usb/at90usb_usbdev.c: Correct USB initialization. Interrupts were being enabled BEFORE the interrupt handler was attached. * configs/sure-pic32mx: Add a configuration for the Sure Electronics, "Advanced USB Storage Demo Board," Model DB-DP11215 (http://www.sureelectronics.net/goods.php?id=1168). This board features the MicroChip PIC32MX440F512H MCU. (Untested on initial check-in). * configs/stm3210e-eval/nsh2: Add another NSH configuration for the STM32 with some different properties. * CONFIG_NSH_CONDEV: Add a configuration option to allow using a different character device (such a a different UART) for the NSH interface. This allows, for example, debug output to come from the console device while using another device for NSH. There are some issues on initial check-in: NuttX doesn't have termios and the console device has special properties that make using NSH awkward. Examples: No CR-LF expansion, no character echoing, no command line editting. * arch/arm/src/stm32/stm32_lowputc.c and stm32_serial.c. Correct seversl bugs involving serial port configuration. These bugs are only critical if you are trying to using multiple UARTs on STM32. * configs/stm3210e-eval/src/up_lcd.c: Add a driver for the STM3210E-EVAL's LCD. * configs/stm3210e-eval/nx: Add NX configuration for the STM3210E-EVAL. * configs/nuttx/arch.h (and arch/arm/src/stm32, configs/*/src/up_buttons.c): Standardize interfaces exported for button support and button interrupts. * configs/stm3210e-eval/src/up_buttons.c: Add interrupting button support. Also fixes a few errors in STM3210E-EVAL button decoding. * configs/stm3210e-eval/buttons: Add a configuration to exercise STM3210E-EVAL buttons. * arch/arm/src/stm32/stm32_gpio.c: GPIO interrupt handling for pin numbers were being aliased: 5-9 together and 10-15 together. Extended the logic to peform decoding of GPIO interrupts and unique dispatching for all 16 pins. * configs/stm3210e-eval/nxtext: Add a configuration for the apps/examples/nxtext example. This example focuses on placing text on the background while pop-up windows occur. Text should continue to update normally with or without the popup windows present. * arch/arm/src/common/up_checkstack.c: ARM stack overflow checking submitted by Hal Glenn. * arch/arm/src/lpc17xx: Changes to compile successfully with no serial console (also submitted by Hal Glenn). * graphics/nxfonts/nxfonts_convert.c: Fixed a critical bug that caused when renderer some fonts with bits-per-pixel > 8 * graphics/nxbe/nxbe_move.c: Fixed an error in the graphics move logic (This was a previously untested interface). Basically, there is some confusion between use of (x,y) as a relative offset or as an absolute position. * graphics/nxbe/nxbe_close.c: Fixed an important graphics system bug: When a window is closed, the display was not being updated. The old window graphic was left on the display for a time. apps-6.6 2011-07-11 Gregory Nutt <spudmonkey@racsa.co.cr> * Make.defs, namedapp/namedapp.c: Several structural changes made to get a clean compile under the ez80 ZDS-II toolchain (no design changes). * apps/examples/buttons: Add a test for the new standardized button interfaces * apps/examples/nxtext: Add another NX graphics test. This one focus on placing text on the background while pop-up windows occur. Text should continue to update normally with or without the popup windows present. pascal-1.0 2011-05-15 Gregory Nutt <spudmonkey@racsa.co.cr> * nuttx/: The Pascal add-on module now installs and builds under the apps/interpreters directory. This means that the pascal-2.1 module is incompatible with will all releases of NuttX prior to nuttx-6.0 where the apps/ module was introduced. buildroot-1.10 2011-05-06 <spudmonkey@racsa.co.cr> * Add patch submitted by Dimiter Georgiev to work around problems in building GDB 6.8 with versions of Cygwin > 1.7. * configs/i486-defconfig-4.3.3 - Builds an i486 cross development toolchain using gcc 4.3.3. Why wouldyou want such a thing? On Linux, of course, such a thing is not needed because you can use the installed GCC to build i486 ELF binaries. But that will not work under Cygwin! The Cygwin toolchain (and probably MinGW), build DOS MZ format executables (i.e., .exe files). That is probably not usable for most NuttX targets. Instead, you should use this i486-elf-gcc to generate true ELF binaries under Cygwin. * Makefile - Alter copy arguments to avoid permissions problems when copying NuttX header files. * toolchain/nxflat/nxflat.mk and Makefile - Fix include paths. * toolchain/gcc/3.3.6 - Added a patch to fixed compilation error on Ubuntu 9.10. * toolchain/nxflat/Makefile - Correct static library link order. * configs/arm920t-defconfig-4.3.3 - Enable support for NXFLAT tools. * toolchain/binutils/2.21 and toolchain/gcc/4.5.2 - Add support for GCC 4.5.2 with binutils 2.21. * configs/arm920t-eabi-defconfig-4.5.2 - Add a configuration to build a GCC 4.5.2 EABI ARM toolchain for the ARM920t.
Unreleased Changes |
nuttx-6.7 2011-xx-xx Gregory Nutt <spudmonkey@racsa.co.cr> * Makefile: Added a export target that will bundle up all of the NuttX libraries, header files, and the startup object into an export-able tarball. * arch/arm/src/lpc17xx/lpc17_can.h: Correct some typos in the CAN register definitions. * drivers/serial/serialirq.c: Correct an error that can occur if the serial RX buffer becomes full. Data is now discarded in that case; before, leaving data in the hardware would cause infinite interrupts one most MCUs since you must read the data in order to clear the interrupt. * arch/arm/src/lpc17xx/lpc17_can.c: Added a CAN driver contributed by Li Zhuoyi (Lzyy). * include/stddefs.h and sys/types: Added type wchar_t. * fs/fat/fat_fat32dirent.c: Move all FAT directory operations to this new file; Implement VFAT long file name support. * fs/fat/fat_fat32dirent.c: The configuration CONFIG_FAT_LCNAMES has been around for some time but never tested until now. This setting will mimic the NT 8.3 file name behavior: File names or extensions may be all upper or all lower case (but not mixed). If CONFIG_FAT_LCNAMES is not selected, all filenames are strictly upper case. * configs/stm3210e-eval/nsh2: Console is back on UART1; Added examplex/nx as an NSH "built-in" command as a demonstration. * fs/fat/fs_fat32dirent.c: Fix an important bug in the directory allocation (fat_allocatedirentry()). I looks like it could be initializing the wrong sectors! NOTE: This function was in fs_fat32utils.c in earlier releases. * arch/arm/src/stm32_sdio.c: Correct an important DMA-related bug; SDIO transfer completion events and DMA completion eventes were not being coordinated correctly. * configs/stm3210e-eval/nsh2: Enable FAT long file name support * sched/sem_timedwait.c: Add the standard sem_timedwait() interface. * graphics/nxfonts/nxfonts_getfont.c, nxfonts_bitmap.c, Makefile.source, and include/nuttx/nxfonts.h: Support for multiple fonts included. A new interface, nxf_getfonthandle() takes a font ID and returns a handle that is now used at all other font interfaces to specify which of the multiple fonts to use. * arch/arm/src/lpc17xx/lpc17_syscon.h: Fix typo (reported by Li Zhuoyi). apps-6.7 2011-xx-xx Gregory Nutt <spudmonkey@racsa.co.cr> * apps/examples/nx and nxtext: These examples can now be built as NSH "built-in" commands. * apps/examples/nxhello: The simplest graphics example: It just says "Hello, World!" in the center of the display. This example can also be built as an NSH "built-in" command. * apps/examples/nx, ntext, and nxhello: All updated to use the new NuttX font interfaces. * apps/examples/nximage: Another super simple graphics example: It just puts the NuttX logo in the center of the display. This example can also be built as an NSH "built-in" command. pascal-3.1 2011-xx-xx Gregory Nutt <spudmonkey@racsa.co.cr> buildroot-1.11 2011-xx-xx <spudmonkey@racsa.co.cr>
Bugs, Issues, Things-To-Do |
The current list of NuttX Things-To-Do in SVN here. A snapshot of the To-Do list associated with the current release are available here.
Other Documentation |
User Guide | |
Porting Guide | |
NuttShell (NSH) | |
NXFLAT Binary Format | |
NX Graphics Subsystem | |
Demand Paging | |
NuttX README Files | |
Change Log | |
To-Do List | |
USB Device Driver Tracing |
Trademarks |
NOTE: NuttX is not licensed to use the POSIX trademark. NuttX uses the POSIX standard as a development guideline only.