# # For a description of the syntax of this configuration file, # see misc/tools/kconfig-language.txt. # menuconfig DISABLE_OS_API bool "Disable NuttX interfaces" default y ---help--- The following can be used to disable categories of APIs supported by the OS. If the compiler supports weak functions, then it should not be necessary to disable functions unless you want to restrict usage of those APIs. There are certain dependency relationships in these features. 1) mq_notify logic depends on signals to awaken tasks waiting for queues to become full or empty. 2) pthread_condtimedwait() depends on signals to wake up waiting tasks. if DISABLE_OS_API config DISABLE_POSIX_TIMERS bool "Disable POSIX timers" default y if DEFAULT_SMALL default n if !DEFAULT_SMALL config DISABLE_PTHREAD bool "Disable pthread support" default n config DISABLE_SIGNALS bool "Disable signal support" default n config DISABLE_MQUEUE bool "Disable POSIX message queue support" default n config DISABLE_ENVIRON bool "Disable environment variable support" default y if DEFAULT_SMALL default n if !DEFAULT_SMALL endif # DISABLE_OS_API menu "Clocks and Timers" config ARCH_HAVE_TICKLESS bool config SCHED_TICKLESS bool "Support tick-less OS" default n depends on ARCH_HAVE_TICKLESS ---help--- By default, system time is driven by a periodic timer interrupt. An alternative configurations is a tick-less configuration in which there is no periodic timer interrupt. Instead and interval timer is used to schedule the next OS time event. This option selects that tick-less OS option. If the tick-less OS is selected, then there are additional platform specific interfaces that must be provided as defined include/nuttx/arch.h if SCHED_TICKLESS config SCHED_TICKLESS_ALARM bool "Tickless alarm" default n ---help--- The tickless option can be supported either via a simple interval timer (plus elapsed time) or via an alarm. The interval timer allows programming events to occur after an interval. With the alarm, you can set a time in the future and get an event when that alarm goes off. This option selects the use of an alarm. The advantage of an alarm is that it avoids some small timing errors; the advantage of the use of the interval timer is that the hardware requirement may be less. endif config USEC_PER_TICK int "System timer tick period (microseconds)" default 10000 if !SCHED_TICKLESS default 100 if SCHED_TICKLESS ---help--- In the "normal" configuration where system time is provided by a periodic timer interrupt, the default system timer is expected to run at 100Hz or USEC_PER_TICK=10000. This setting must be defined to inform of NuttX the interval that the the processor hardware is providing system timer interrupts to the OS. If SCHED_TICKLESS is selected, then there are no system timer interrupts. In this case, USEC_PER_TICK does not control any timer rates. Rather, it only determines the resolution of time reported by clock_systimer() and the resolution of times that can be set for certain delays including watchdog timers and delayed work. In this case there is a trade-off: It is better to have the USEC_PER_TICK as low as possible for higher timing resolution. However, the the time is currently held in 'unsigned int' on some systems, this may be 16-bits but on most contemporary systems it will be 32-bits. In either case, smaller values of USEC_PER_TICK will reduce the range of values that delays that can be represented. So the trade-off is between range and resolution (you could also modify the code to use a 64-bit value if you really want both). The default, 100 microseconds, will provide for a range of delays up to 120 hours. This value should never be less than the underlying resolution of the timer. Error may ensue. if !SCHED_TICKLESS config SYSTEMTICK_EXTCLK bool "Use external clock" default n depends on ARCH_HAVE_EXTCLK ---help--- Use external clock for system tick. When enabled, the platform-specific logic must start its own timer interrupt to make periodic calls to the sched_process_timer() or the functions called within. The purpose is to move the scheduling off the processor clock to allow entering low power states that would disable that clock. endif # !SCHED_TICKLESS config SYSTEM_TIME64 bool "64-bit system clock" default n ---help--- The system timer is incremented at the rate determined by USEC_PER_TICK, typically at 100Hz. The count at any given time is then the "uptime" in units of system timer ticks. By default, the system time is 32-bits wide. Those defaults provide a range of about 13.6 years which is probably a sufficient range for "uptime". However, if the system timer rate is significantly higher than 100Hz and/or if a very long "uptime" is required, then this option can be selected to support a 64-bit wide timer. config CLOCK_MONOTONIC bool "Support CLOCK_MONOTONIC" default n ---help--- CLOCK_MONOTONIC is an optional standard POSIX clock. Unlike CLOCK_REALTIME which can move forward and backward when the time-of-day changes, CLOCK_MONOTONIC is the elapsed time since some arbitrary point in the post (the system start-up time for NuttX) and, hence, is always monotonically increasing. CLOCK_MONOTONIC is, hence, the more appropriate clock for determining time differences. The value of the CLOCK_MONOTONIC clock cannot be set via clock_settime(). config JULIAN_TIME bool "Enables Julian time conversions" default n ---help--- Enables Julian time conversions if !RTC config START_YEAR int "Start year" default 2014 config START_MONTH int "Start month" default 1 config START_DAY int "Start day" default 1 endif # !RTC config MAX_WDOGPARMS int "Maximum number of watchdog parameters" default 4 ---help--- Maximum number of parameters that can be passed to a watchdog handler config PREALLOC_WDOGS int "Number of pre-allocated watchdog timers" default 32 ---help--- The number of pre-allocated watchdog structures. The system manages a pool of preallocated watchdog structures to minimize dynamic allocations. Dynamic allocations will still be made if this pool is exhausted. You will, however, get better performance and memory usage if this value is tuned to minimize such allocations. config WDOG_INTRESERVE int "Watchdog structures reserved for interrupt handlers" default 4 ---help--- Watchdog structures may be allocated from normal task and also from interrupt handlers. Interrupt handlers, however, can only use pre- allocated watchdog timer. So, in order to keep normal task allocations from exhausting all watchdog structures, a small number of pre-allocated watchdog timers must be reserved for exclusive use by interrupt handler. This setting determines that number of reserved watchdogs. config PREALLOC_TIMERS int "Number of pre-allocated POSIX timers" default 8 ---help--- The number of pre-allocated POSIX timer structures. The system manages a pool of preallocated timer structures to minimize dynamic allocations. Set to zero for all dynamic allocations. endmenu # Clocks and Timers menu "Tasks and Scheduling" choice prompt "Initialization Task" default INIT_ENTRYPOINT if !BUILD_KERNEL default INIT_FILEPATH if BUILD_KERNEL && !BINFMT_DISABLE default INIT_NONE if BUILD_KERNEL && BINFMT_DISABLE config INIT_NONE bool "None" config INIT_ENTRYPOINT bool "Via application entry point" depends on !BUILD_KERNEL config INIT_FILEPATH bool "Via executable file" depends on !BINFMT_DISABLE endchoice # Initialization task if INIT_ENTRYPOINT config USER_ENTRYPOINT string "Application entry point" default "main" ---help--- The name of the entry point for user applications. For the example applications this is of the form 'app_main' where 'app' is the application name. If not defined, USER_ENTRYPOINT defaults to "main". endif # INIT_ENTRYPOINT if INIT_FILEPATH config USER_INITPATH string "Application initialization path" default "/bin/init" ---help--- The name of the entry point for user applications. For the example applications this is of the form 'app_main' where 'app' is the application name. If not defined, USER_ENTRYPOINT defaults to "main". config INIT_SYMTAB string "Symbol table" default "NULL" depends on !BUILD_PROTECTED && !BUILD_KERNEL ---help--- The name of othe global array that holds the exported symbol table. The special string "NULL" may be provided if there is no symbol table. Quotation marks will be stripped when config.h is generated. NOTE: This setting cannot be used in protected or kernel builds. Any kernel mode symbols tables would not be usable for resolving symbols in user mode executables. config INIT_NEXPORTS string "Symbol table size" default "0" depends on !BUILD_PROTECTED && !BUILD_KERNEL ---help--- The size of the symbol table. NOTE that is is logically a numeric value but is represent by a string. That allows you to put sizeof(something) or a macro or a global variable name for the symbol table size. Quotation marks will be stripped when config.h is generated. NOTE: This setting cannot be used in protected or kernel builds. Any kernel mode symbols tables would not be usable for resolving symbols in user mode executables. endif # INIT_FILEPATH config RR_INTERVAL int "Round robin timeslice (MSEC)" default 0 ---help--- The round robin timeslice will be set this number of milliseconds; Round robin scheduling can be disabled by setting this value to zero. config TASK_NAME_SIZE int "Maximum task name size" default 32 ---help--- Spcifies that maximum size of a task name to save in the TCB. Useful if scheduler instrumentation is selected. Set to zero to disable. config MAX_TASK_ARGS int "Maximum number of task arguments" default 4 ---help--- This controls the maximum number of of parameters that a task may receive (i.e., maxmum value of 'argc') config MAX_TASKS int "Max number of tasks" default 32 ---help--- The maximum number of simultaneously active tasks. This value must be a power of two. config SCHED_HAVE_PARENT bool "Support parent/child task relationships" default n ---help--- Remember the ID of the parent task when a new child task is created. This support enables some additional features (such as SIGCHLD) and modifies the behavior of other interfaces. For example, it makes waitpid() more standards complete by restricting the waited-for tasks to the children of the caller. Default: disabled. config SCHED_CHILD_STATUS bool "Retain child exit status" default n depends on SCHED_HAVE_PARENT ---help--- If this option is selected, then the exit status of the child task will be retained after the child task exits. This option should be selected if you require knowledge of a child process' exit status. Without this setting, wait(), waitpid() or waitid() may fail. For example, if you do: 1) Start child task 2) Wait for exit status (using wait(), waitpid(), or waitid()). This can fail because the child task may run to completion before the wait begins. There is a non-standard work-around in this case: The above sequence will work if you disable pre-emption using sched_lock() prior to starting the child task, then re-enable pre- emption with sched_unlock() after the wait completes. This works because the child task is not permitted to run until the wait is in place. The standard solution would be to enable SCHED_CHILD_STATUS. In this case the exit status of the child task is retained after the child exits and the wait will successful obtain the child task's exit status whether it is called before the child task exits or not. Warning: If you enable this feature, then your application must either (1) take responsibility for reaping the child status with wait(), waitpid(), or waitid(), or (2) suppress retention of child status. If you do not reap the child status, then you have a memory leak and your system will eventually fail. Retention of child status can be suppressed on the parent using logic like: struct sigaction sa; sa.sa_handler = SIG_IGN; sa.sa_flags = SA_NOCLDWAIT; int ret = sigaction(SIGCHLD, &sa, NULL); if SCHED_CHILD_STATUS config PREALLOC_CHILDSTATUS int "Number of pre-allocated child status" default 0 ---help--- To prevent runaway child status allocations and to improve allocation performance, child task exit status structures are pre- allocated when the system boots. This setting determines the number of child status structures that will be pre-allocated. If this setting is not defined or if it is defined to be zero then a value of 2*MAX_TASKS is used. Note that there cannot be more than MAX_TASKS tasks in total. However, the number of child status structures may need to be significantly larger because this number includes the maximum number of tasks that are running PLUS the number of tasks that have exit'ed without having their exit status reaped (via wait(), waitid(), or waitpid()). Obviously, if tasks spawn children indefinitely and never have the exit status reaped, then you may have a memory leak! If you enable the SCHED_CHILD_STATUS feature, then your application must take responsibility for either (1) reaping the child status with wait(), waitpid(), or waitid() or it must (2) suppress retention of child status. Otherwise, your system will eventually fail. Retention of child status can be suppressed on the parent using logic like: struct sigaction sa; sa.sa_handler = SIG_IGN; sa.sa_flags = SA_NOCLDWAIT; int ret = sigaction(SIGCHLD, &sa, NULL); config DEBUG_CHILDSTATUS bool "Enable Child Status Debug Output" default n depends on SCHED_CHILD_STATUS && DEBUG ---help--- Very detailed... I am sure that you do not want this. endif # SCHED_CHILD_STATUS config SCHED_WAITPID bool "Enable waitpid() API" default n ---help--- Enables the waitpid() interface in a default, non-standard mode (non-standard in the sense that the waited for PID need not be child of the caller). If SCHED_HAVE_PARENT is also defined, then this setting will modify the behavior or waitpid() (making more spec compliant) and will enable the waitid() and wait() interfaces as well. endmenu # Tasks and Scheduling menu "Pthread Options" depends on !DISABLE_PTHREAD config MUTEX_TYPES: bool "Enable mutex types" default n ---help--- Set to enable support for recursive and errorcheck mutexes. Enables pthread_mutexattr_settype(). config NPTHREAD_KEYS int "Maximum number of pthread keys" default 4 ---help--- The number of items of thread- specific data that can be retained endmenu # Pthread Options menu "Performance Monitoring" config SCHED_CPULOAD bool "Enable CPU load monitoring" default n select SCHED_CPULOAD_EXTCLK if SCHED_TICKLESS ---help--- If this option is selected, the timer interrupt handler will monitor if the system is IDLE or busy at the time of that the timer interrupt occurs. This is a very coarse measurement, but over a period of time, it can very accurately determined the percentage of the time that the CPU is IDLE. The statistics collected in this could be used, for example in the PROCFS file system to provide CPU load measurements when read. if SCHED_CPULOAD config SCHED_CPULOAD_EXTCLK bool "Use external clock" default n ---help--- The CPU load measurements are determined by sampling the active tasks periodically at the occurrence to a timer expiration. By default, the system clock is used to do that sampling. There is a serious issue for the accuracy of measurements if the system clock is used, however. NuttX threads are often started at the time of the system timer expiration. Others may be stopped at the time of the system timer expiration (if round-robin time-slicing is enabled). Such thread behavior occurs synchronously with the system timer and, hence, is not randomly sampled. As a consequence, the CPU load attributed to these threads that run synchronously with they system timer may be grossly in error. The solution is to use some other clock that runs at a different rate and has timer expirations that are asynchronous with the system timer. Then truly accurate load measurements can be achieved. This option enables use of such an "external" clock. The implementation of the clock must be provided by platform-specific logic; that platform-specific logic must call the system function sched_process_cpuload() at each timer expiration with interrupts disabled. config SCHED_CPULOAD_TICKSPERSEC int "External clock rate" default 100 depends on SCHED_CPULOAD_EXTCLK ---help--- If an external clock is used to drive the sampling for the CPU load calculations, then this value must be provided. This value provides the rate of the external clock in units of ticks per second. The default value of 100 corresponds to 100Hz clock. NOTE: that 100Hz is the default frequency of the system time and, hence, the worst possible choice in most cases. config SCHED_CPULOAD_TIMECONSTANT int "CPU load time constant" default 2 ---help--- The accumulated CPU count is divided by two when the accumulated tick count exceeds this time constant. This time constant is in units of seconds. endif # SCHED_CPULOAD config SCHED_INSTRUMENTATION bool "System performance monitor hooks" default n ---help--- Enables instrumentation in scheduler to monitor system performance. If enabled, then the board-specific logic must provide the following functions (see include/sched.h): void sched_note_start(FAR struct tcb_s *tcb); void sched_note_stop(FAR struct tcb_s *tcb); void sched_note_switch(FAR struct tcb_s *pFromTcb, FAR struct tcb_s *pToTcb); endmenu # Performance Monitoring menu "Files and I/O" config DEV_CONSOLE bool "Enable /dev/console" default y ---help--- Set if architecture-specific logic provides /dev/console at boot-up time. Enables stdout, stderr, stdin in the start-up application. You need this setting if your console device is ready at boot time. For example, if you are using a serial console, then /dev/console (aka, /dev/ttyS0) will be available when the application first starts. You must not select DEV_CONSOLE if you console device comes up later and is not ready until after the application starts. At this time, the only console device that behaves this way is a USB serial console. When the application first starts, the USB is (probably) not yet connected and /dev/console will not be created until later when the host connects to the USB console. config FDCLONE_DISABLE bool "Disable cloning of file descriptors" default n ---help--- Disable cloning of all file descriptors by task_create() when a new ask is started. If set, all files/drivers will appear to be closed in the new task. config FDCLONE_STDIO bool "Disable clone file descriptors without stdio" default n ---help--- Disable cloning of all but the first three file descriptors (stdin, stdout, stderr) by task_create() when a new task is started. If set, all files/drivers will appear to be closed in the new task except for stdin, stdout, and stderr. config SDCLONE_DISABLE bool "Disable cloning of socket descriptors" default n ---help--- Disable cloning of all socket desciptors by task_create() when a new task is started. If set, all sockets will appear to be closed in the new task. config NFILE_DESCRIPTORS int "Maximum number of file descriptors per task" default 16 ---help--- The maximum number of file descriptors per task (one for each open) config NFILE_STREAMS int "Maximum number of FILE streams" default 16 ---help--- The maximum number of streams that can be fopen'ed config NAME_MAX int "Maximum size of a file name" default 32 ---help--- The maximum size of a file name. endmenu # Files and I/O menuconfig PRIORITY_INHERITANCE bool "Enable priority inheritance " default n ---help--- Set to enable support for priority inheritance on mutexes and semaphores. if PRIORITY_INHERITANCE config SEM_PREALLOCHOLDERS int "Number of pre-allocated holders" default 16 ---help--- This setting is only used if priority inheritance is enabled. It defines the maximum number of different threads (minus one) that can take counts on a semaphore with priority inheritance support. This may be set to zero if priority inheritance is disabled OR if you are only using semaphores as mutexes (only one holder) OR if no more than two threads participate using a counting semaphore. config SEM_NNESTPRIO int "Maximum number of higher priority threads" default 16 ---help--- If priority inheritance is enabled, then this setting is the maximum number of higher priority threads (minus 1) than can be waiting for another thread to release a count on a semaphore. This value may be set to zero if no more than one thread is expected to wait for a semaphore. endif # PRIORITY_INHERITANCE menu "RTOS hooks" config BOARD_INITIALIZE bool "Custom board/driver initialization" default n ---help--- By default, there are three points in time where you can insert custom initialization logic: 1) _boardinitialize(): This function is used only for initialization of very low-level things like configuration of GPIO pins, power setting. The OS has not been initialized at this point, so you cannot allocate memory or initialize device drivers at this phase. 2) The next level of initialization is performed by a call to up_initialize() (in arch//src/common/up_initialize.c). The OS has been initialized at this point and it is okay to initialize drivers in this phase. 3) And, finally, when the user application code starts. If BOARD_INITIALIZE is selected, then an additional initialization call will be performed in the boot-up sequence to a function called board_initialize(). board_initialize() will be call between phases 2) and 3) above, immediately after up_initialize() is called. This additional initialization phase may be used, for example, to initialize board-specific device drivers. if BOARD_INITIALIZE config BOARD_INITTHREAD bool "Board initialization thread" default n ---help--- Some initialization operations cannot be performed on the start-up, initialization thread. That is because the initialization thread cannot wait for event. If waiting is required as part of the board initialization then this option must be selected. Waiting may be required, for example, to mount a file system or or initialize a device such as an SD card. if BOARD_INITTHREAD config BOARD_INITTHREAD_STACKSIZE int "Board initialization thread stack size" default 2048 ---help--- The size of the stack to allocate when starting the board initialization thread. config BOARD_INITTHREAD_PRIORITY int "Board initialization thread priority" default 240 ---help--- The priority of the board initialization thread. This priority is not a critical setting. No other application threads will be started until the board initialization is completed. Hence, there is very little competition for the CPU. endif # BOARD_INITTHREAD endif # BOARD_INITIALIZE config SCHED_STARTHOOK bool "Enable startup hook" default n ---help--- Enable a non-standard, internal OS API call task_starthook(). task_starthook() registers a function that will be called on task startup before that actual task entry point is called. The starthook is useful, for example, for setting up automatic configuration of C++ constructors. config SCHED_ATEXIT bool "Enable atexit() API" default n ---help--- Enables the atexit() API config SCHED_ATEXIT_MAX int "Max number of atexit() functions" default 1 depends on SCHED_ATEXIT && !SCHED_ONEXIT ---help--- By default if SCHED_ATEXIT is selected, only a single atexit() function is supported. That number can be increased by defined this setting to the number that you require. If both SCHED_ONEXIT and SCHED_ATEXIT are selected, then atexit() is built on top of the on_exit() implementation. In that case, SCHED_ONEXIT_MAX determines the size of the combined number of atexit(0) and on_exit calls and SCHED_ATEXIT_MAX is not used. config SCHED_ONEXIT bool "Enable on_exit() API" default n ---help--- Enables the on_exit() API config SCHED_ONEXIT_MAX int "Max number of on_exit() functions" default 1 depends on SCHED_ONEXIT ---help--- By default if SCHED_ONEXIT is selected, only a single on_exit() function is supported. That number can be increased by defined this setting to the number that you require. If both SCHED_ONEXIT and SCHED_ATEXIT are selected, then atexit() is built on top of the on_exit() implementation. In that case, SCHED_ONEXIT_MAX determines the size of the combined number of atexit(0) and on_exit calls. endmenu # RTOS hooks menu "Signal Numbers" depends on !DISABLE_SIGNALS config SIG_SIGUSR1 int "SIGUSR1" default 1 ---help--- Value of standard user signal 1 (SIGUSR1). Default: 1 config SIG_SIGUSR2 int "SIGUSR2" default 2 ---help--- Value of standard user signal 2 (SIGUSR2). Default: 2 config SIG_SIGALARM int "SIGALRM" default 3 ---help--- Default the signal number used with POSIX timers (SIGALRM). Default: 3 config SIG_SIGCHLD int "SIGCHLD" default 4 depends on SCHED_HAVE_PARENT ---help--- The SIGCHLD signal is sent to the parent of a child process when it exits, is interrupted (stopped), or resumes after being interrupted. Default: 4 config SIG_POLL int "SIGPOLL" default 5 depends on FS_AIO ---help--- The SIGPOLL signal is sent to a process when an asynchronous I/O event occurs (meaning it has been polled). Default: 5 config SIG_SIGCONDTIMEDOUT int "SIGCONDTIMEDOUT" default 16 depends on !DISABLE_PTHREAD ---help--- This non-standard signal number is used the implementation of pthread_cond_timedwait(). Default 16. config SIG_SIGWORK int "SIGWORK" default 17 depends on SCHED_WORKQUEUE || LIB_USRWORK ---help--- SIGWORK is a non-standard signal used to wake up the internal NuttX worker thread. This setting specifies the signal number that will be used for SIGWORK. Default: 17 endmenu # Signal Numbers menu "POSIX Message Queue Options" depends on !DISABLE_MQUEUE config PREALLOC_MQ_MSGS int "Number of pre-allocated messages" default 32 ---help--- The number of pre-allocated message structures. The system manages a pool of preallocated message structures to minimize dynamic allocations config MQ_MAXMSGSIZE int "Maximum message size" default 32 ---help--- Message structures are allocated with a fixed payload size given by this setting (does not include other message structure overhead. endmenu # POSIX Message Queue Options menu "Work Queue Support" config SCHED_WORKQUEUE # bool "Enable worker thread" bool default n depends on !DISABLE_SIGNALS ---help--- Create dedicated "worker" threads to handle delayed or asynchronous processing. config SCHED_HPWORK bool "High priority (kernel) worker thread" default y depends on !DISABLE_SIGNALS select SCHED_WORKQUEUE ---help--- Create a dedicated high-priority "worker" thread to handle delayed processing from interrupt handlers. This feature is required for some drivers but, if there are no complaints, can be safely disabled. The high priority worker thread also performs garbage collection -- completing any delayed memory deallocations from interrupt handlers. If the high-priority worker thread is disabled, then that clean up will be performed either by (1) the low-priority worker thread, if enabled, and if not (2) the IDLE thread instead (which runs at the lowest of priority and may not be appropriate if memory reclamation is of high priority) For other, less-critical asynchronous or delayed process, the low-priority worker thread is recommended. if SCHED_HPWORK config SCHED_WORKPRIORITY int "High priority worker thread priority" default 224 ---help--- The execution priority of the higher priority worker thread. The higher priority worker thread is intended to serve as the "bottom" half for device drivers. As a consequence it must run at a very high, fixed priority. Typically, it should be the highest priority thread in your system. Default: 192 For lower priority, application oriented worker thread support, please consider enabling the lower priority work queue. The lower priority work queue runs at a lower priority, of course, but has the added advantage that it supports "priority inheritance" (if PRIORITY_INHERITANCE is also selected): The priority of the lower priority worker thread can then be adjusted to match the highest priority client. config SCHED_WORKPERIOD int "High priority worker thread period" default 100000 if SCHED_LPWORK default 50000 if !SCHED_LPWORK ---help--- How often the worker thread checks for work in units of microseconds. Default: If the high priority worker thread is performing garbage collection, then the default is 50*1000 (50 MS). Otherwise, if the lower priority worker thread is performing garbage collection, the default is 100*1000. config SCHED_WORKSTACKSIZE int "High priority worker thread stack size" default 2048 ---help--- The stack size allocated for the worker thread. Default: 2K. endif # SCHED_HPWORK config SCHED_LPWORK bool "Low priority (kernel) worker thread" default n depends on !DISABLE_SIGNALS select SCHED_WORKQUEUE ---help--- If SCHED_LPWORK is defined then a lower-priority work queue will be created. This lower priority work queue is better suited for more extended, application oriented processing (such as file system clean-up operations or asynchronous I/O) if SCHED_LPWORK config SCHED_LPNTHREADS int "Number of low-priority worker threads" default 1 if !FS_AIO default 4 if FS_AIO ---help--- This options selects multiple, low-priority threads. This is essentially a "thread pool" that provides multi-threaded service of the low-priority work thread. This breaks the serialization of the "queue" (hence, it is no longer a queue at all). This options is required to support, for example, I/O operations that stall waiting for input. If there is only a single thread, then the entire low-priority queue processing stalls in such cases. Such behvior must be support for asynchronous I/O, AIO (for example). config SCHED_LPWORKPRIORITY int "Low priority worker thread priority" default 50 ---help--- The minimum execution priority of the lower priority worker thread. The lower priority worker thread is intended support application- oriented functions. The lower priority work queue runs at a lower priority, of course, but has the added advantage that it supports "priority inheritance" (if PRIORITY_INHERITANCE is also selected): The priority of the lower priority worker thread can then be adjusted to match the highest priority client. Default: 50 NOTE: This priority inheritance feature is not automatic. The lower priority worker thread will always a fixed priority unless you implement logic that calls lpwork_boostpriority() to raise the priority of the lower priority worker thread (typically called before scheduling the work) and then call the matching lpwork_restorepriority() when the work is completed (typically called within the work handler at the completion of the work). Currently, only the NuttX asynchronous I/O logic uses this dynamic prioritization feature. The higher priority worker thread, on the other hand, is intended to serve as the "bottom" half for device drivers. As a consequence it must run at a very high, fixed priority. Typically, it should be the highest priority thread in your system. config SCHED_LPWORKPRIOMAX int "Low priority worker thread maximum priority" default 176 depends on PRIORITY_INHERITANCE ---help--- The maximum execution priority of the lower priority worker thread. The lower priority worker thread is intended support application- oriented functions. The lower priority work queue runs at a lower priority, of course, but has the added advantage that it supports "priority inheritance" (if PRIORITY_INHERITANCE is also selected): The priority of the lower priority worker thread can then be adjusted to match the highest priority client. The higher priority worker thread, on the other hand, is intended to serve as the "bottom" half for device drivers. As a consequence it must run at a very high, fixed priority. Typically, it should be the highest priority thread in your system. This function provides an upper limit on the priority of the lower priority worker thread. This would be necessary, for example, if the higher priority worker thread were to defer work to the lower priority thread. Clearly, in such a case, you would want to limit the maximum priority of the lower priority work thread. Default: 176 config SCHED_LPWORKPERIOD int "Low priority worker thread period" default 50000 ---help--- How often the lower priority worker thread checks for work in units of microseconds. Default: 50*1000 (50 MS). config SCHED_LPWORKSTACKSIZE int "Low priority worker thread stack size" default 2048 ---help--- The stack size allocated for the lower priority worker thread. Default: 2K. endif # SCHED_LPWORK endmenu # Work Queue Support menu "Stack and heap information" config IDLETHREAD_STACKSIZE int "Idle thread stack size" default 1024 ---help--- The size of the initial stack used by the IDLE thread. The IDLE thread is the thread that (1) performs the initial boot of the system up to the point where start-up appliation is spawned, and (2) there after is the IDLE thread that executes only when there is no other thread ready to run. config USERMAIN_STACKSIZE int "Main thread stack size" default 2048 ---help--- The size of the stack to allocate for the user initialization thread that is started as soon as the OS completes its initialization. config PTHREAD_STACK_MIN int "Minimum pthread stack size" default 256 ---help--- Minimum pthread stack size config PTHREAD_STACK_DEFAULT int "Default pthread stack size" default 2048 ---help--- Default pthread stack size endmenu # Stack and heap information