/**************************************************************************** * libc/stdio/lib_dtoa.c * * This file was ported to NuttX by Yolande Cates. * * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Chris Torek. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include "libc.h" /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #ifdef Unsigned_Shifts # define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000; #else # define Sign_Extend(a,b) /* no-op */ #endif #ifdef CONFIG_ENDIAN_BIG # define word0(x) ((uint32_t *)&x)[0] # define word1(x) ((uint32_t *)&x)[1] #else # define word0(x) ((uint32_t *)&x)[1] # define word1(x) ((uint32_t *)&x)[0] #endif #ifdef CONFIG_ENDIAN_BIG # define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ ((unsigned short *)a)[1] = (unsigned short)c, a++) #else # define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ ((unsigned short *)a)[0] = (unsigned short)c, a++) #endif #define Exp_shift 20 #define Exp_shift1 20 #define Exp_msk1 0x100000 #define Exp_msk11 0x100000 #define Exp_mask 0x7ff00000 #define P 53 #define Bias 1023 #define IEEE_Arith #define Emin (-1022) #define Exp_1 0x3ff00000 #define Exp_11 0x3ff00000 #define Ebits 11 #define Frac_mask 0xfffff #define Frac_mask1 0xfffff #define Ten_pmax 22 #define Bletch 0x10 #define Bndry_mask 0xfffff #define Bndry_mask1 0xfffff #define LSB 1 #define Sign_bit 0x80000000 #define Log2P 1 #define Tiny0 0 #define Tiny1 1 #define Quick_max 14 #define Int_max 14 #define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */ #define Kmax 15 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ y->wds*sizeof(long) + 2*sizeof(int)) /**************************************************************************** * Private Type Definitions ****************************************************************************/ struct Bigint { struct Bigint *next; int k, maxwds, sign, wds; unsigned long x[1]; }; typedef struct Bigint Bigint; /**************************************************************************** * Private Data ****************************************************************************/ static Bigint *freelist[Kmax + 1]; /**************************************************************************** * Private Functions ****************************************************************************/ static Bigint *Balloc(int k) { int x; Bigint *rv; if ((rv = freelist[k])) { freelist[k] = rv->next; } else { x = 1 << k; rv = (Bigint *)lib_malloc(sizeof(Bigint) + (x - 1) * sizeof(long)); rv->k = k; rv->maxwds = x; } rv->sign = rv->wds = 0; return rv; } static void Bfree(Bigint * v) { if (v) { v->next = freelist[v->k]; freelist[v->k] = v; } } /* multiply by m and add a */ static Bigint *multadd(Bigint * b, int m, int a) { int i, wds; unsigned long *x, y; #ifdef Pack_32 unsigned long xi, z; #endif Bigint *b1; wds = b->wds; x = b->x; i = 0; do { #ifdef Pack_32 xi = *x; y = (xi & 0xffff) * m + a; z = (xi >> 16) * m + (y >> 16); a = (int)(z >> 16); *x++ = (z << 16) + (y & 0xffff); #else y = *x * m + a; a = (int)(y >> 16); *x++ = y & 0xffff; #endif } while (++i < wds); if (a) { if (wds >= b->maxwds) { b1 = Balloc(b->k + 1); Bcopy(b1, b); Bfree(b); b = b1; } b->x[wds++] = a; b->wds = wds; } return b; } static int hi0bits(unsigned long x) { int k = 0; if (!(x & 0xffff0000)) { k = 16; x <<= 16; } if (!(x & 0xff000000)) { k += 8; x <<= 8; } if (!(x & 0xf0000000)) { k += 4; x <<= 4; } if (!(x & 0xc0000000)) { k += 2; x <<= 2; } if (!(x & 0x80000000)) { k++; if (!(x & 0x40000000)) { return 32; } } return k; } static int lo0bits(unsigned long *y) { int k; unsigned long x = *y; if (x & 7) { if (x & 1) { return 0; } if (x & 2) { *y = x >> 1; return 1; } *y = x >> 2; return 2; } k = 0; if (!(x & 0xffff)) { k = 16; x >>= 16; } if (!(x & 0xff)) { k += 8; x >>= 8; } if (!(x & 0xf)) { k += 4; x >>= 4; } if (!(x & 0x3)) { k += 2; x >>= 2; } if (!(x & 1)) { k++; x >>= 1; if (!x & 1) { return 32; } } *y = x; return k; } static Bigint *i2b(int i) { Bigint *b; b = Balloc(1); b->x[0] = i; b->wds = 1; return b; } static Bigint *mult(Bigint * a, Bigint * b) { Bigint *c; int k, wa, wb, wc; unsigned long carry, y, z; unsigned long *x, *xa, *xae, *xb, *xbe, *xc, *xc0; #ifdef Pack_32 uint32_t z2; #endif if (a->wds < b->wds) { c = a; a = b; b = c; } k = a->k; wa = a->wds; wb = b->wds; wc = wa + wb; if (wc > a->maxwds) { k++; } c = Balloc(k); for (x = c->x, xa = x + wc; x < xa; x++) { *x = 0; } xa = a->x; xae = xa + wa; xb = b->x; xbe = xb + wb; xc0 = c->x; #ifdef Pack_32 for (; xb < xbe; xb++, xc0++) { if ((y = *xb & 0xffff)) { x = xa; xc = xc0; carry = 0; do { z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; carry = z >> 16; z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; carry = z2 >> 16; Storeinc(xc, z2, z); } while (x < xae); *xc = carry; } if ((y = *xb >> 16)) { x = xa; xc = xc0; carry = 0; z2 = *xc; do { z = (*x & 0xffff) * y + (*xc >> 16) + carry; carry = z >> 16; Storeinc(xc, z, z2); z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; carry = z2 >> 16; } while (x < xae); *xc = z2; } } #else for (; xb < xbe; xc0++) { if ((y = *xb++)) { x = xa; xc = xc0; carry = 0; do { z = *x++ * y + *xc + carry; carry = z >> 16; *xc++ = z & 0xffff; } while (x < xae); *xc = carry; } } #endif for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc); c->wds = wc; return c; } static Bigint *p5s; static Bigint *pow5mult(Bigint * b, int k) { Bigint *b1, *p5, *p51; int i; static int p05[3] = { 5, 25, 125 }; if ((i = k & 3)) b = multadd(b, p05[i - 1], 0); if (!(k >>= 2)) { return b; } if (!(p5 = p5s)) { /* first time */ p5 = p5s = i2b(625); p5->next = 0; } for (; ; ) { if (k & 1) { b1 = mult(b, p5); Bfree(b); b = b1; } if (!(k >>= 1)) { break; } if (!(p51 = p5->next)) { p51 = p5->next = mult(p5, p5); p51->next = 0; } p5 = p51; } return b; } static Bigint *lshift(Bigint * b, int k) { int i, k1, n, n1; Bigint *b1; unsigned long *x, *x1, *xe, z; #ifdef Pack_32 n = k >> 5; #else n = k >> 4; #endif k1 = b->k; n1 = n + b->wds + 1; for (i = b->maxwds; n1 > i; i <<= 1) { k1++; } b1 = Balloc(k1); x1 = b1->x; for (i = 0; i < n; i++) { *x1++ = 0; } x = b->x; xe = x + b->wds; #ifdef Pack_32 if (k &= 0x1f) { k1 = 32 - k; z = 0; do { *x1++ = *x << k | z; z = *x++ >> k1; } while (x < xe); if ((*x1 = z)) { ++n1; } } #else if (k &= 0xf) { k1 = 16 - k; z = 0; do { *x1++ = ((*x << k) & 0xffff) | z; z = *x++ >> k1; } while (x < xe); if ((*x1 = z)) { ++n1; } } #endif else { do { *x1++ = *x++; } while (x < xe); } b1->wds = n1 - 1; Bfree(b); return b1; } static int cmp(Bigint * a, Bigint * b) { unsigned long *xa, *xa0, *xb, *xb0; int i, j; i = a->wds; j = b->wds; #ifdef CONFIG_DEBUG_LIB if (i > 1 && !a->x[i - 1]) { lerr("ERROR: cmp called with a->x[a->wds-1] == 0\n"); } if (j > 1 && !b->x[j - 1]) { lerr("ERROR: cmp called with b->x[b->wds-1] == 0\n"); } #endif if (i -= j) { return i; } xa0 = a->x; xa = xa0 + j; xb0 = b->x; xb = xb0 + j; for (; ; ) { if (*--xa != *--xb) { return *xa < *xb ? -1 : 1; } if (xa <= xa0) { break; } } return 0; } static Bigint *diff(Bigint * a, Bigint * b) { Bigint *c; int i, wa, wb; long borrow, y; /* We need signed shifts here. */ unsigned long *xa, *xae, *xb, *xbe, *xc; #ifdef Pack_32 int32_t z; #endif i = cmp(a, b); if (!i) { c = Balloc(0); c->wds = 1; c->x[0] = 0; return c; } if (i < 0) { c = a; a = b; b = c; i = 1; } else { i = 0; } c = Balloc(a->k); c->sign = i; wa = a->wds; xa = a->x; xae = xa + wa; wb = b->wds; xb = b->x; xbe = xb + wb; xc = c->x; borrow = 0; #ifdef Pack_32 do { y = (*xa & 0xffff) - (*xb & 0xffff) + borrow; borrow = y >> 16; Sign_Extend(borrow, y); z = (*xa++ >> 16) - (*xb++ >> 16) + borrow; borrow = z >> 16; Sign_Extend(borrow, z); Storeinc(xc, z, y); } while (xb < xbe); while (xa < xae) { y = (*xa & 0xffff) + borrow; borrow = y >> 16; Sign_Extend(borrow, y); z = (*xa++ >> 16) + borrow; borrow = z >> 16; Sign_Extend(borrow, z); Storeinc(xc, z, y); } #else do { y = *xa++ - *xb++ + borrow; borrow = y >> 16; Sign_Extend(borrow, y); *xc++ = y & 0xffff; } while (xb < xbe); while (xa < xae) { y = *xa++ + borrow; borrow = y >> 16; Sign_Extend(borrow, y); *xc++ = y & 0xffff; } #endif while (!*--xc) { wa--; } c->wds = wa; return c; } static Bigint *d2b(double d, int *e, int *bits) { Bigint *b; int de, i, k; unsigned long *x, y, z; #ifdef Pack_32 b = Balloc(1); #else b = Balloc(2); #endif x = b->x; z = word0(d) & Frac_mask; word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */ if ((de = (int)(word0(d) >> Exp_shift))) z |= Exp_msk1; #ifdef Pack_32 if ((y = word1(d))) { if ((k = lo0bits(&y))) { x[0] = y | z << (32 - k); z >>= k; } else { x[0] = y; } i = b->wds = (x[1] = z) ? 2 : 1; } else { #ifdef CONFIG_DEBUG_LIB if (!z) { lerr("ERROR: Zero passed to d2b\n"); } #endif k = lo0bits(&z); x[0] = z; i = b->wds = 1; k += 32; } #else if ((y = word1(d))) { if ((k = lo0bits(&y))) if (k >= 16) { x[0] = y | ((z << (32 - k)) & 0xffff); x[1] = z >> (k - 16) & 0xffff; x[2] = z >> k; i = 2; } else { x[0] = y & 0xffff; x[1] = (y >> 16) | ((z << (16 - k)) & 0xffff); x[2] = z >> k & 0xffff; x[3] = z >> (k + 16); i = 3; } else { x[0] = y & 0xffff; x[1] = y >> 16; x[2] = z & 0xffff; x[3] = z >> 16; i = 3; } } else { #ifdef CONFIG_DEBUG_LIB if (!z) { lerr("ERROR: Zero passed to d2b\n"); } #endif k = lo0bits(&z); if (k >= 16) { x[0] = z; i = 0; } else { x[0] = z & 0xffff; x[1] = z >> 16; i = 1; } k += 32; } while (!x[i]) --i; b->wds = i + 1; #endif if (de) { *e = de - Bias - (P - 1) + k; *bits = P - k; } else { *e = de - Bias - (P - 1) + 1 + k; #ifdef Pack_32 *bits = 32 * i - hi0bits(x[i - 1]); #else *bits = (i + 2) * 16 - hi0bits(x[i]); #endif } return b; } static const double tens[] = { 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22 }; #ifdef IEEE_Arith static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 }; # define n_bigtens 5 #else static const double bigtens[] = { 1e16, 1e32 }; static const double tinytens[] = { 1e-16, 1e-32 }; # define n_bigtens 2 #endif static int quorem(Bigint * b, Bigint * S) { int n; long borrow, y; unsigned long carry, q, ys; unsigned long *bx, *bxe, *sx, *sxe; #ifdef Pack_32 int32_t z; uint32_t si, zs; #endif n = S->wds; #ifdef CONFIG_DEBUG_LIB if (b->wds > n) { lerr("ERROR: oversize b in quorem\n"); } #endif if (b->wds < n) { return 0; } sx = S->x; sxe = sx + --n; bx = b->x; bxe = bx + n; q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ #ifdef CONFIG_DEBUG_LIB if (q > 9) { lerr("ERROR: oversized quotient in quorem\n"); } #endif if (q) { borrow = 0; carry = 0; do { #ifdef Pack_32 si = *sx++; ys = (si & 0xffff) * q + carry; zs = (si >> 16) * q + (ys >> 16); carry = zs >> 16; y = (*bx & 0xffff) - (ys & 0xffff) + borrow; borrow = y >> 16; Sign_Extend(borrow, y); z = (*bx >> 16) - (zs & 0xffff) + borrow; borrow = z >> 16; Sign_Extend(borrow, z); Storeinc(bx, z, y); #else ys = *sx++ * q + carry; carry = ys >> 16; y = *bx - (ys & 0xffff) + borrow; borrow = y >> 16; Sign_Extend(borrow, y); *bx++ = y & 0xffff; #endif } while (sx <= sxe); if (!*bxe) { bx = b->x; while (--bxe > bx && !*bxe) { --n; } b->wds = n; } } if (cmp(b, S) >= 0) { q++; borrow = 0; carry = 0; bx = b->x; sx = S->x; do { #ifdef Pack_32 si = *sx++; ys = (si & 0xffff) + carry; zs = (si >> 16) + (ys >> 16); carry = zs >> 16; y = (*bx & 0xffff) - (ys & 0xffff) + borrow; borrow = y >> 16; Sign_Extend(borrow, y); z = (*bx >> 16) - (zs & 0xffff) + borrow; borrow = z >> 16; Sign_Extend(borrow, z); Storeinc(bx, z, y); #else ys = *sx++ + carry; carry = ys >> 16; y = *bx - (ys & 0xffff) + borrow; borrow = y >> 16; Sign_Extend(borrow, y); *bx++ = y & 0xffff; #endif } while (sx <= sxe); bx = b->x; bxe = bx + n; if (!*bxe) { while (--bxe > bx && !*bxe) --n; b->wds = n; } } return q; } /**************************************************************************** * Public Functions ****************************************************************************/ /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. * * Inspired by "How to Print Floating-Point Numbers Accurately" by * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: * 1. Rather than iterating, we use a simple numeric overestimate * to determine k = floor(log10(d)). We scale relevant * quantities using O(log2(k)) rather than O(k) multiplications. * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't * try to generate digits strictly left to right. Instead, we * compute with fewer bits and propagate the carry if necessary * when rounding the final digit up. This is often faster. * 3. Under the assumption that input will be rounded nearest, * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. * That is, we allow equality in stopping tests when the * round-nearest rule will give the same floating-point value * as would satisfaction of the stopping test with strict * inequality. * 4. We remove common factors of powers of 2 from relevant * quantities. * 5. When converting floating-point integers less than 1e16, * we use floating-point arithmetic rather than resorting * to multiple-precision integers. * 6. When asked to produce fewer than 15 digits, we first try * to get by with floating-point arithmetic; we resort to * multiple-precision integer arithmetic only if we cannot * guarantee that the floating-point calculation has given * the correctly rounded result. For k requested digits and * "uniformly" distributed input, the probability is * something like 10^(k-15) that we must resort to the int32_t * calculation. */ char *__dtoa(double d, int mode, int ndigits, int *decpt, int *sign, char **rve) { /* Arguments ndigits, decpt, sign are similar to those of ecvt and fcvt; * trailing zeros are suppressed from the returned string. If not null, *rve * is set to point to the end of the return value. If d is +-Infinity or * NaN, then *decpt is set to 9999. * * mode: 0 ==> shortest string that yields d when read in and rounded to * nearest. 1 ==> like 0, but with Steele & White stopping rule; e.g. with * IEEE P754 arithmetic , mode 0 gives 1e23 whereas mode 1 gives * 9.999999999999999e22. 2 ==> max(1,ndigits) significant digits. This gives * a return value similar to that of ecvt, except that trailing zeros are * suppressed. 3 ==> through ndigits past the decimal point. This gives a * return value similar to that from fcvt, except that trailing zeros are * suppressed, and ndigits can be negative. 4-9 should give the same return * values as 2-3, i.e., 4 <= mode <= 9 ==> same return as mode 2 + (mode & * 1). These modes are mainly for debugging; often they run slower but * sometimes faster than modes 2-3. 4,5,8,9 ==> left-to-right digit * generation. 6-9 ==> don't try fast floating-point estimate (if * applicable). * * Values of mode other than 0-9 are treated as mode 0. * * Sufficient space is allocated to the return value to hold the suppressed * trailing zeros. */ int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, j, j_1, k, k0, k_check, leftright, m2, m5, s2, s5, spec_case = 0, try_quick; long L; int denorm; unsigned long x; Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S; double d2, ds, eps; char *s, *s0; static Bigint *result; static int result_k; if (result) { result->k = result_k; result->maxwds = 1 << result_k; Bfree(result); result = 0; } if (word0(d) & Sign_bit) { /* set sign for everything, including 0's and NaNs */ *sign = 1; word0(d) &= ~Sign_bit; /* clear sign bit */ } else { *sign = 0; } #if defined(IEEE_Arith) # ifdef IEEE_Arith if ((word0(d) & Exp_mask) == Exp_mask) #else if (word0(d) == 0x8000) #endif { /* Infinity or NaN */ *decpt = 9999; s = #ifdef IEEE_Arith !word1(d) && !(word0(d) & 0xfffff) ? "Infinity" : #endif "NaN"; if (rve) { *rve = #ifdef IEEE_Arith s[3] ? s + 8 : #endif s + 3; } return s; } #endif if (!d) { *decpt = 1; s = "0"; if (rve) { *rve = s + 1; } return s; } b = d2b(d, &be, &bbits); if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) { d2 = d; word0(d2) &= Frac_mask1; word0(d2) |= Exp_11; /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 log10(x) = log(x) / log(10) ~=~ * log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) log10(d) = * (i-Bias)*log(2)/log(10) + log10(d2) This suggests computing an * approximation k to log10(d) by k = (i - Bias)*0.301029995663981 + ( * (d2-1.5)*0.289529654602168 + 0.176091259055681 ); We want k to be too * large rather than too small. The error in the first-order Taylor * series approximation is in our favor, so we just round up the constant * enough to compensate for any error in the multiplication of (i - Bias) * by 0.301029995663981; since |i - Bias| <= 1077, and 1077 * 0.30103 * * 2^-52 ~=~ 7.2e-14, adding 1e-13 to the constant term more than * suffices. Hence we adjust the constant term to 0.1760912590558. (We * could get a more accurate k by invoking log10, but this is probably * not worthwhile.) */ i -= Bias; denorm = 0; } else { /* d is denormalized */ i = bbits + be + (Bias + (P - 1) - 1); x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i); d2 = x; word0(d2) -= 31 * Exp_msk1; /* adjust exponent */ i -= (Bias + (P - 1) - 1) + 1; denorm = 1; } ds = (d2 - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981; k = (int)ds; if (ds < 0. && ds != k) { k--; /* want k = floor(ds) */ } k_check = 1; if (k >= 0 && k <= Ten_pmax) { if (d < tens[k]) k--; k_check = 0; } j = bbits - i - 1; if (j >= 0) { b2 = 0; s2 = j; } else { b2 = -j; s2 = 0; } if (k >= 0) { b5 = 0; s5 = k; s2 += k; } else { b2 -= k; b5 = -k; s5 = 0; } if (mode < 0 || mode > 9) { mode = 0; } try_quick = 1; if (mode > 5) { mode -= 4; try_quick = 0; } leftright = 1; switch (mode) { case 0: case 1: ilim = ilim1 = -1; i = 18; ndigits = 0; break; case 2: leftright = 0; /* no break */ case 4: if (ndigits <= 0) { ndigits = 1; } ilim = ilim1 = i = ndigits; break; case 3: leftright = 0; /* no break */ case 5: i = ndigits + k + 1; ilim = i; ilim1 = i - 1; if (i <= 0) { i = 1; } } j = sizeof(unsigned long); for (result_k = 0; (signed)(sizeof(Bigint) - sizeof(unsigned long) + j) <= i; j <<= 1) { result_k++; } result = Balloc(result_k); s = s0 = (char *)result; if (ilim >= 0 && ilim <= Quick_max && try_quick) { /* Try to get by with floating-point arithmetic. */ i = 0; d2 = d; k0 = k; ilim0 = ilim; ieps = 2; /* conservative */ if (k > 0) { ds = tens[k & 0xf]; j = k >> 4; if (j & Bletch) { /* prevent overflows */ j &= Bletch - 1; d /= bigtens[n_bigtens - 1]; ieps++; } for (; j; j >>= 1, i++) { if (j & 1) { ieps++; ds *= bigtens[i]; } } d /= ds; } else if ((j_1 = -k)) { d *= tens[j_1 & 0xf]; for (j = j_1 >> 4; j; j >>= 1, i++) { if (j & 1) { ieps++; d *= bigtens[i]; } } } if (k_check && d < 1. && ilim > 0) { if (ilim1 <= 0) { goto fast_failed; } ilim = ilim1; k--; d *= 10.; ieps++; } eps = ieps * d + 7.; word0(eps) -= (P - 1) * Exp_msk1; if (ilim == 0) { S = mhi = 0; d -= 5.; if (d > eps) goto one_digit; if (d < -eps) goto no_digits; goto fast_failed; } #ifndef No_leftright if (leftright) { /* Use Steele & White method of only generating digits needed. */ eps = 0.5 / tens[ilim - 1] - eps; for (i = 0; ; ) { L = (int)d; d -= L; *s++ = '0' + (int)L; if (d < eps) { goto ret1; } if (1. - d < eps) { goto bump_up; } if (++i >= ilim) { break; } eps *= 10.; d *= 10.; } } else { #endif /* Generate ilim digits, then fix them up. */ eps *= tens[ilim - 1]; for (i = 1; ; i++, d *= 10.) { L = (int)d; d -= L; *s++ = '0' + (int)L; if (i == ilim) { if (d > 0.5 + eps) { goto bump_up; } else if (d < 0.5 - eps) { while (*--s == '0'); s++; goto ret1; } break; } } #ifndef No_leftright } #endif fast_failed: s = s0; d = d2; k = k0; ilim = ilim0; } /* Do we have a "small" integer? */ if (be >= 0 && k <= Int_max) { /* Yes. */ ds = tens[k]; if (ndigits < 0 && ilim <= 0) { S = mhi = 0; if (ilim < 0 || d <= 5 * ds) { goto no_digits; } goto one_digit; } for (i = 1; ; i++) { L = (int)(d / ds); d -= L * ds; #ifdef Check_FLT_ROUNDS /* If FLT_ROUNDS == 2, L will usually be high by 1 */ if (d < 0) { L--; d += ds; } #endif *s++ = '0' + (int)L; if (i == ilim) { d += d; if (d > ds || (d == ds && (L & 1))) { bump_up: while (*--s == '9') if (s == s0) { k++; *s = '0'; break; } ++*s++; } break; } if (!(d *= 10.)) { break; } } goto ret1; } m2 = b2; m5 = b5; mhi = mlo = 0; if (leftright) { if (mode < 2) { i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits; } else { j = ilim - 1; if (m5 >= j) m5 -= j; else { s5 += j -= m5; b5 += j; m5 = 0; } if ((i = ilim) < 0) { m2 -= i; i = 0; } } b2 += i; s2 += i; mhi = i2b(1); } if (m2 > 0 && s2 > 0) { i = m2 < s2 ? m2 : s2; b2 -= i; m2 -= i; s2 -= i; } if (b5 > 0) { if (leftright) { if (m5 > 0) { mhi = pow5mult(mhi, m5); b1 = mult(mhi, b); Bfree(b); b = b1; } if ((j = b5 - m5)) { b = pow5mult(b, j); } } else { b = pow5mult(b, b5); } } S = i2b(1); if (s5 > 0) { S = pow5mult(S, s5); } /* Check for special case that d is a normalized power of 2. */ if (mode < 2) { if (!word1(d) && !(word0(d) & Bndry_mask) && word0(d) & Exp_mask) { /* The special case */ b2 += Log2P; s2 += Log2P; spec_case = 1; } else { spec_case = 0; } } /* Arrange for convenient computation of quotients: shift left if * necessary so divisor has 4 leading 0 bits. * * Perhaps we should just compute leading 28 bits of S once and for all * and pass them and a shift to quorem, so it can do shifts and ors * to compute the numerator for q. */ #ifdef Pack_32 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds - 1]) : 1) + s2) & 0x1f)) { i = 32 - i; } #else if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds - 1]) : 1) + s2) & 0xf)) { i = 16 - i; } #endif if (i > 4) { i -= 4; b2 += i; m2 += i; s2 += i; } else if (i < 4) { i += 28; b2 += i; m2 += i; s2 += i; } if (b2 > 0) { b = lshift(b, b2); } if (s2 > 0) { S = lshift(S, s2); } if (k_check) { if (cmp(b, S) < 0) { k--; b = multadd(b, 10, 0); /* we botched the k estimate */ if (leftright) { mhi = multadd(mhi, 10, 0); } ilim = ilim1; } } if (ilim <= 0 && mode > 2) { if (ilim < 0 || cmp(b, S = multadd(S, 5, 0)) <= 0) { /* no digits, fcvt style */ no_digits: k = -1 - ndigits; goto ret; } one_digit: *s++ = '1'; k++; goto ret; } if (leftright) { if (m2 > 0) { mhi = lshift(mhi, m2); } /* Compute mlo -- check for special case that d is a normalized power of * 2. */ mlo = mhi; if (spec_case) { mhi = Balloc(mhi->k); Bcopy(mhi, mlo); mhi = lshift(mhi, Log2P); } for (i = 1; ; i++) { dig = quorem(b, S) + '0'; /* Do we yet have the shortest decimal string that will round to d? */ j = cmp(b, mlo); delta = diff(S, mhi); j_1 = delta->sign ? 1 : cmp(b, delta); Bfree(delta); #ifndef ROUND_BIASED if (j_1 == 0 && !mode && !(word1(d) & 1)) { if (dig == '9') { goto round_9_up; } if (j > 0) { dig++; } *s++ = dig; goto ret; } #endif if (j < 0 || (j == 0 && !mode #ifndef ROUND_BIASED && (!(word1(d) & 1)) #endif )) { if ((j_1 > 0)) { b = lshift(b, 1); j_1 = cmp(b, S); if ((j_1 > 0 || (j_1 == 0 && (dig & 1))) && dig++ == '9') { goto round_9_up; } } *s++ = dig; goto ret; } if (j_1 > 0) { if (dig == '9') { /* possible if i == 1 */ round_9_up: *s++ = '9'; goto roundoff; } *s++ = dig + 1; goto ret; } *s++ = dig; if (i == ilim) { break; } b = multadd(b, 10, 0); if (mlo == mhi) { mlo = mhi = multadd(mhi, 10, 0); } else { mlo = multadd(mlo, 10, 0); mhi = multadd(mhi, 10, 0); } } } else { for (i = 1; ; i++) { *s++ = dig = quorem(b, S) + '0'; if (i >= ilim) { break; } b = multadd(b, 10, 0); } } /* Round off last digit */ b = lshift(b, 1); j = cmp(b, S); if (j > 0 || (j == 0 && (dig & 1))) { roundoff: while (*--s == '9') if (s == s0) { k++; *s++ = '1'; goto ret; } ++*s++; } else { while (*--s == '0'); s++; } ret: Bfree(S); if (mhi) { if (mlo && mlo != mhi) { Bfree(mlo); } Bfree(mhi); } ret1: Bfree(b); if (s == s0) { /* Don't return empty string */ *s++ = '0'; k = 0; } *s = 0; *decpt = k + 1; if (rve) { *rve = s; } return s0; }