NuttX RTOSLast Updated: May 19, 2012 |
Table of Contents |
|
Overview |
Goals. Nuttx is a real timed embedded operating system (RTOS). Its goals are:
Small Footprint | |
Usable in all but the tightest micro-controller environments, The focus is on the tiny-to-small, deeply embedded environment. | |
Rich Feature OS Set | |
The goal is to provide implementations of most standard POSIX OS interfaces to support a rich, multi-threaded development environment for deeply embedded processors. NON-GOALS: (1) It is not a goal to provide the level of OS features like those provided by Linux. In order to work with smaller MCUs, small footprint must be more important than an extensive feature set. But standard compliance is more important than small footprint. Surely a smaller RTOS could be produced by ignoring standards. Think of NuttX is a tiny Linux work-alike with a much reduced feature set. (2) There is no MMU-based support for processes. At present, NuttX assumes a flat address space. | |
Highly Scalable | |
Fully scalable from tiny (8-bit) to moderate embedded (32-bit). Scalability with rich feature set is accomplished with: Many tiny source files, link from static libraries, highly configurable, use of weak symbols when available. | |
Standards Compliance | |
NuttX strives to achieve a high degree of standards compliance.
The primary governing standards are POSIX and ANSI standards.
Additional standard APIs from Unix and other common RTOS's are
adopted for functionality not available under these standards
or for functionality that is not appropriate for the deeply-embedded
RTOS (such as Because of this standards conformance, software developed under other standard OSs (such as Linux) should port easily to NuttX. | |
Real-Time | |
Fully pre-emptible, fixed priority and round-robin scheduling. | |
Totally Open | |
Non-restrictive BSD license. | |
GNU Toolchains | |
Compatible GNU toolchains based on buildroot available for download to provide a complete development environment for many architectures. |
Feature Set. Key features of NuttX include:
Standards Compliant Core Task Management | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
System logging. | |
| |
| |
File system | |
| |
| |
| |
| |
| |
| |
| |
1
FAT long file name support may be subject to certain Microsoft patent restrictions if enabled.
See the top-level | |
Device Drivers | |
| |
| |
/dev/null , /dev/zero , and loop drivers.
| |
| |
| |
C Library | |
| |
Networking | |
| |
| |
| |
| |
| |
| |
FLASH Support | |
| |
| |
| |
| |
USB Host Support | |
| |
| |
| |
USB Device Support | |
| |
| |
| |
| |
Graphics Support | |
| |
| |
| |
| |
| |
| |
Input Devices | |
| |
Analog Devices | |
| |
Motor Control | |
|
NuttX Add-Ons. The following packages are available to extend the basic NuttX feature set:
NuttShell (NSH) | |
| |
Pascal Compiler with NuttX runtime P-Code interpreter add-on | |
|
Look at all those files and features... How can it be a tiny OS?. The NuttX feature list (above) is fairly long and if you look at the NuttX source tree, you will see that there are hundreds of source files comprising NuttX. How can NuttX be a tiny OS with all of that?
Lots of Features -- More can be smaller! | |
The philosophy behind that NuttX is that lots of features are great... BUT also that if you don't use those features, then you should not have to pay a penalty for the unused features. And, with NuttX, you don't! If you don't use a feature, it will not be included in the final executable binary. You only have to pay the penalty of increased footprint for the features that you actually use. Using a variety of technologies, NuttX can scale from the very tiny to the moderate-size system. I have executed NuttX with some simple applications in as little as 32Kb total memory (code and data). On the other hand, typical, richly featured NuttX builds require more like 64Kb (and if all of the features are used, this can push 100Kb). |
|
Many, many files -- More really is smaller! | |
One may be intimidated by the size NuttX source tree. There are hundreds of source files! How can that be a tiny OS? Actually, the large number of files is one of the tricks to keep NuttX small and as scalable as possible. Most files contain only a single function. Sometimes just one tiny function with only a few lines of code. Why?
|
|
Other Tricks | |
As mentioned above, the use of many, tiny source files and linking from static libraries keeps the size of NuttX down. Other tricks used in NuttX include:
|
NuttX Discussion Group |
Most Nuttx-related discussion occurs on the Yahoo! NuttX group. You are cordially invited to join. I make a special effort to answer any questions and provide any help that I can.
Downloads |
The 85th release of NuttX, Version 6.18, was made on May 19, 2012, and is available for download from the
SourceForge website.
Note that the release consists of two tarballs: nuttx-6.18.tar.gz
and apps-6.18.tar.gz
.
Both may be needed (see the top-level nuttx/README.txt
file for build information)
The change log associated with the release is available here.
Unreleased changes after this release are available in SVN.
These unreleased changes are also listed here.
The majority of changes in this release are focused on supporting the synchronized release of NxWM, the NuttX tiny window manager. That window manager is released as part of the NxWidgets package, but depends upon many of the changes in this NuttX release.
New Features. New or extended features in this release include:
prctl()
command that can be used to setting and getting the names of threads.
This (plus several other improvements and bug fixes) are part of a larger effort to improve task monitoring capabilities.
Work in progress. This release includes some partially completed work that is still not ready for prime time.
kconfig-frontends
tool is being incorporated into the build system.
The configuration is still not complete enough for general use in this release.
Bugfixes:
CONFIG_STDIO_LINEBUFFER
if the file was opened in binary mode.
fopen()
.
Correct an error in parsing open mode string.
recvfrom()
.
Fix a compilation problem.
fcntl()
.
Always returned zero on success; however, some fcntl commands need to return non-zero values on success.
on_exit()
.
Fix compilation errors if CONFIG_SCHED_ONEXIT
is enabled.
See the ChangeLog for additional, detailed changes.
Supported Platforms |
The short story (Number of ports follow in parentheses). The state of the various ports vary from board-to-board. Follow the links for the details:
|
|
|
The details, caveats and fine print follow:
Linux User Mode. | |
A user-mode port of NuttX to the x86 Linux/Cygwin platform is available. The purpose of this port is primarily to support OS feature development. STATUS: Does not support interrupts but is otherwise fully functional. |
|
ARM7TDMI. | |
TI TMS320C5471 (also called C5471 or TMS320DA180 or DA180). NuttX operates on the ARM7 of this dual core processor. This port uses the Spectrum Digital evaluation board with a GNU arm-elf toolchain* under Linux or Cygwin. STATUS: This port is complete, verified, and included in the initial NuttX release. |
|
TI Calypso. This port supports the TI "Calypso" MCU used in various cell phones (and, in particular, by the Osmocom-bb project). Like the c5471, NuttX operates on the ARM7 of this dual core processor. STATUS: This port was contributed by Denis Carilki and includes the work of Denis, Alan Carvalho de Assis, and Stefan Richter. Calypso support first appeared in NuttX-6.17. |
|
NXP LPC214x. Support is provided for the NXP LPC214x family of processors. In particular, support is provided for the mcu123.com lpc214x evaluation board (LPC2148). This port also used the GNU arm-elf toolchain* under Linux or Cygwin. STATUS: This port boots and passes the OS test (apps/examples/ostest). The port is complete and verified. As of NuttX 0.3.17, the port includes: timer interrupts, serial console, USB driver, and SPI-based MMC/SD card support. A verified NuttShell (NSH) configuration is also available. Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. |
|
NXP LPC2378. Support is provided for the NXP LPC2378 MCU. In particular, support is provided for the Olimex-LPC2378 development board. This port was contributed by Rommel Marcelo is was first released in NuttX-5.3. This port also used the GNU arm-elf toolchain* under Linux or Cygwin. STATUS: This port boots and passes the OS test (apps/examples/ostest) and includes a working implementation of the NuttShell (NSH). The port is complete and verified. As of NuttX 5.3, the port includes only basic timer interrupts and serial console support. Development Environments: (Same as for the NXP LPC214x). |
|
STMicro STR71x. Support is provided for the STMicro STR71x family of processors. In particular, support is provided for the Olimex STR-P711 evaluation board. This port also used the GNU arm-elf toolchain* under Linux or Cygwin. STATUS: Integration is complete on the basic port (boot logic, system time, serial console). Two configurations have been verified: (1) The board boots and passes the OS test with console output visible on UART0, and the NuttShell (NSH) is fully functional with interrupt driven serial console. An SPI driver is available but only partially tested. Additional features are needed: USB driver, MMC integration, to name two (the slot on the board appears to accept on MMC card dimensions; I have only SD cards). An SPI-based ENC29J60 Ethernet driver for add-on hardware is under development and should be available in the NuttX 5.5 release. Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. |
|
ARM920T. | |
Freescale MC9328MX1 or i.MX1. This port uses the Freescale MX1ADS development board with a GNU arm-elf toolchain* under either Linux or Cygwin. STATUS: This port has stalled due to development tool issues. Coding is complete on the basic port (timer, serial console, SPI). |
|
ARM926EJS. | |
TI TMS320DM320 (also called DM320). NuttX operates on the ARM9 of this dual core processor. This port uses the Neuros OSD with a GNU arm-elf toolchain* under Linux or Cygwin. The port was performed using the OSD v1.0, development board. STATUS: The basic port (timer interrupts, serial ports, network, framebuffer, etc.) is complete. All implemented features have been verified with the exception of the USB device-side driver; that implementation is complete but untested. |
|
NXP LPC3131.
The port for the NXP LPC3131 on the Embedded Artists EA3131
development board was first released in NuttX-5.1 with a GNU arm-elf or arm-eabi toolchain* under Linux or Cygwin
(but was not functional until NuttX-5.2).
STATUS: The basic EA3131 port is complete and verified in NuttX-5.2 This basic port includes basic boot-up, serial console, and timer interrupts. This port was extended in NuttX 5.3 with a USB high speed driver contributed by David Hewson. David also contributed I2C and SPI drivers plus several important LPC313x USB bug fixes that appear in the NuttX 5.6 release. This port has been verified using the NuttX OS test, USB serial and mass storage tests and includes a working implementation of the NuttShell (NSH). Support for on-demand paging has been developed for the EA3131. That support would all execute of a program in SPI FLASH by paging code sections out of SPI flash as needed. However, as of this writing, I have not had the opportunity to verify this new feature. |
|
NXP LPC315x.
Support for the NXP LPC315x family has been incorporated into the code base as of NuttX-6.4.
Support has added for the Embedded Artists EA3152 board in NuttX-6.11.
STATUS: Basic support is in place for both the LPC3152 MCU and the EA3152 board. Verification of the port was deferred due to tool issues However, because of the high degree of compatibility between the LPC313x and LPC315x family, it is very likely that the support is in place (or at least very close). At this point, verification of the EA3152 port has been overcome by events and may never happen. However, the port is available for anyone who may want to use it. |
|
ARM Cortex-M3. | |
TI Stellaris LM3S6432. This is a port of NuttX to the Stellaris RDK-S2E Reference Design Kit and the MDL-S2E Ethernet to Serial module (contributed by Mike Smith). |
|
Luminary/TI Stellaris LM3S6918. This port uses the Micromint Eagle-100 development board with a GNU arm-elf toolchain* under either Linux or Cygwin. STATUS: The initial, release of this port was included in NuttX version 0.4.6. The current port includes timer, serial console, Ethernet, SSI, and microSD support. There are working configurations the NuttX OS test, to run the NuttShell (NSH), the NuttX networking test, and the uIP web server. Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. |
|
Luminary/TI Stellaris LM3S6965. This port uses the Stellaris LM3S6965 Ethernet Evalution Kit with a GNU arm-elf toolchain* under either Linux or Cygwin. STATUS: This port was released in NuttX 5.5. Features are the same as with the Eagle-100 LM3S6918 described above. The apps/examples/ostest configuration has been successfully verified and an NSH configuration with Telnet support is available. MMC/SD and Networking support was not been thoroughly verified: Current development efforts are focused on porting the NuttX window system (NX) to work with the Evaluation Kits OLED display. NOTE: As it is configured now, you MUST have a network connected. Otherwise, the NSH prompt will not come up because the Ethernet driver is waiting for the network to come up. Development Environments: See the Eagle-100 LM3S6918 above. |
|
Luminary/TI Stellaris LM3S8962. This port uses the Stellaris EKC-LM3S8962 Ethernet+CAN Evalution Kit with a GNU arm-elf toolchain* under either Linux or Cygwin. Contributed by Larry Arnold. STATUS: This port was released in NuttX 5.10. Features are the same as with the Eagle-100 LM3S6918 described above. |
|
Luminary/TI Stellaris LM3S9B96. Header file support was contributed by Tiago Maluta for this part. However, no complete board support configuration is available as of this writing. |
|
TI Stellaris LM3S6432S2E. This port uses Serial-to-Ethernet Reference Design Kit (RDK-S2E) and has similar support as for the other Stellaris family members. Configurations are available for the OS test and for the NuttShell (NSH) (see the NSH User Guide). The NSH configuration including networking support with a Telnet NSH console. This port was contributed by Mike Smith. STATUS: This port was will be released in NuttX 6.14. |
|
STMicro STM32F103x. Support for four MCUs and three board configurations are available. MCU support includes: STM32F103ZET6, STM32F103RET6, STM32F103VCT, and STM32F107VC. Boards supported include:
These ports uses a GNU arm-elf toolchain* under either Linux or Cygwin (with native Windows GNU tools or Cygwin-based GNU tools).
STATUS: Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain (RIDE7, CodeSourcery or devkitARM). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. |
|
STMicro STM32F207IG. Support for the STMicro STM3220G-EVAL development board was contributed by Gary Teravskis and first released in NuttX-6.16.
|
|
Atmel AT91SAM3U. This port uses the Atmel SAM3U-EK development board that features the AT91SAM3U4E MCU. This port uses a GNU arm-elf or arm-eabi toolchain* under either Linux or Cygwin (with native Windows GNU tools or Cygwin-based GNU tools). STATUS: The basic SAM3U-EK port was released in NuttX version 5.1. The basic port includes boot-up logic, interrupt driven serial console, and system timer interrupts. That release passes the NuttX OS test and is proven to have a valid OS implementation. A configuration to support the NuttShell is also included. NuttX version 5.4 adds support for the HX8347 LCD on the SAM3U-EK board. This LCD support includes an example using the NX graphics system. NuttX version 6.10 adds SPI support. Subsequent NuttX releases will extend this port and add support for SDIO-based SD cards and USB device (and possible LCD support). These extensions may or may not happen soon as my plate is kind of full now. Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. |
|
NXP LPC1766 and LPC1768. Drivers are available for CAN, DAC, Ethernet, GPIO, GPIO interrupts, I2C, UARTs, SPI, SSP, USB host, and USB device. Verified LPC17xx onfigurations are available for three boards.
The Nucleus 2G board, the mbed board, and the LPCXpresso all feature the NXP LPC1768 MCU; the Olimex LPC1766-STK board features an LPC1766. All use a GNU arm-elf or arm-eabi toolchain* under either Linux or Cygwin (with native Windows GNU tools or Cygwin-based GNU tools).
STATUS: The following summarizes the features that has been developed and verified on individual LPC17xx-based boards. These features should, however, be common and available for all LPC17xx-based boards. Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain (CodeSourcery devkitARM or Code Red). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. |
|
ARM Cortex-M4. | |
FreeScale Kinetics K40. This port uses the Freescale Kinetis KwikStik K40. Refer to the Freescale web site for further information about this board. The Kwikstik is used with the FreeScale Tower System (mostly just to provide a simple UART connection) STATUS: The unverified KwikStik K40 first appeared in NuttX-6.8 As of this writing, the basic port is complete but I accidentally locked my board during the initial bringup. Further development is stalled unless I learn how to unlock the device (or until I get another K40). Additional work remaining includes, among other things: (1) complete the basic bring-up, (2) bring up the NuttShell NSH, (3) develop support for the SDHC-based SD card, (4) develop support for USB host and device, and (2) develop an LCD driver. NOTE: Some of these remaining tasks are shared with the K60 work described below. |
|
FreeScale Kinetics K60. This port uses the Freescale Kinetis TWR-K60N512 tower system. Refer to the Freescale web site for further information about this board. The TWR-K60N51 includes with the FreeScale Tower System which provides (among other things) a DBP UART connection. STATUS: As of this writing, the basic port is complete and passes the NuttX OS test. An additional, validated configuration exists for the NuttShell (NSH, see the NSH User Guide). This basic TWR-K60N512 first appeared in NuttX-6.8. Ethernet and SD card (SDHC) drivers also exist: The SDHC driver is partially integrated in to the NSH configuration but has some outstanding issues; the Ethernet driver is completely untested. Additional work remaining includes: (1) integrate the Ethernet and SDHC drivers, and (2) develop support for USB host and device. NOTE: Most of these remaining tasks (excluding the Ethernet driver) are the same as the pending K40 tasks described above. |
|
STMicro STM3240G-EVAL. This port uses the Freescale STMicro STM3240G-EVAL board featuring the STM32F407IGH6 MCU. Refer to the STMicro web site for further information about this board. STATUS: As of this writing, the basic port is complete and first appeared in NuttX-6.12. The port passes the NuttX OS test and includes a validated configuration for the NuttShell (NSH, see the NSH User Guide) as well as several other configurations. Additional drivers and configurations were added in NuttX 6.13-6.16. Drivers include an Ethernet driver, ADC driver, DAC driver, PWM driver, CAN driver, F4 RTC driver, Quadrature Encoder, DMA, SDIO with DMA (these should all be compatible with the STM32 F2 family and many should also be compatible with the STM32 F1 family as well). The NuttX6.16 release also includes and logic for saving/restoring F4 FPU registers in context switches. Networking intensions include support for Telnet NSH sessions and new configurations for DHPCD and the networking test (nettest). A more complete port would include support for SDIO and USB OTG which are not available in NuttX 6.13. The USB OTG device controller driver, and LCD driver and a function I2C driver were added in NuttX 6.17. STM32 IWDG and WWDG watchdog timer drivers were added in NuttX 6.18 (should be compatible with F1 and F2). An LCD driver and a touchscreen driver for the STM3240G-EVAL based on the STMPE11 I/O expander were also added in NuttX 6.18. |
|
STMicro STM32F4-Discovery. This port uses the STMicro STM32F4-Discovery board featuring the STM32F407VGT6 MCU. Refer to the STMicro web site for further information about this board. STATUS: The basic port for the STM32F-Discovery was contributed by Mike Smith and was first released in NuttX-6.14. |
|
Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU Cortex-M3 or 4toolchain, or 3) Cygwin with Windows native GNU Cortex-M3 or M4 toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. I use FreeScale's CodeWarrior IDE only to work with the JTAG debugger built into the Kinetis boards. |
|
Atmel AVR. | |
SoC Robotics ATMega128. This port of NuttX to the Amber Web Server from SoC Robotics is partially completed. The Amber Web Server is based on an Atmel ATMega128. STATUS: Work on this port has stalled due to toolchain issues. Complete, but untested code for this port appears in the NuttX 6.5 release. |
|
Micropendous 3 AT9USB64x and AT9USB6128x. This port of NuttX to the Opendous Micropendous 3 board. The Micropendous3 is may be populated with an AT90USB646, 647, 1286, or 1287. I have only the AT90USB647 version for testing. This version have very limited memory resources: 64Kb of FLASH and 4Kb of SRAM. STATUS: The basic port was released in NuttX-6.5. This basic port consists only of a "Hello, World!!" example that demonstrates initialization of the OS, creation of a simple task, and serial console output. |
|
PJRC Teensy++ 2.0 AT9USB1286. This is a port of NuttX to the PJRC Teensy++ 2.0 board. This board was developed by PJRC. The Teensy++ 2.0 is based on an Atmel AT90USB1286 MCU. STATUS: The basic port was released in NuttX-6.5. This basic port consists of a "Hello, World!!" example that demonstrates initialization of the OS, creation of a simple task, and serial console output as well as a somewhat simplified NuttShell (NSH) configuration (see the NSH User Guide). An SPI driver and a USB device driver exist for the AT90USB as well as a USB mass storage configureation. However, this configuration is not fully debugged as of the NuttX-6.5 release. |
|
AVR-Specific Issues. The basic AVR port is solid and biggest issue for using AVR is its tiny SRAM memory and its Harvard architecture. Because of the Harvard architecture, constant data that resides to flash is inaccessible using "normal" memory reads and writes (only SRAM data can be accessed "normally"). Special AVR instructions are available for accessing data in FLASH, but these have not been integrated into the normal, general purpose OS. Most NuttX test applications are console-oriented with lots of strings used for printf and debug output. These strings are all stored in SRAM now due to these data accessing issues and even the smallest console-oriented applications can quickly fill a 4-8Kb memory. So, in order for the AVR port to be useful, one of two things would need to be done:
| |
Development Environments: 1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin with Windows native toolchain. All testing, however, has been performed using the Nuttx DIY toolchain for Linux or Cygwin is provided by the NuttX buildroot package. As a result, that toolchain is recommended. |
|
Atmel AVR32. | |
AV32DEV1. This port uses the www.mcuzone.com AVRDEV1 board based on the Atmel AT32UC3B0256 MCU. This port requires a special GNU avr32 toolchain available from atmel.com website. This is a windows native toolchain and so can be used only under Cygwin on Windows.
STATUS: This port is has completed all basic development, but there is more that needs to be done. All code is complete for the basic NuttX port including header files for all AT32UC3* peripherals. The untested AVR32 code was present in the 5.12 release of NuttX. Since then, the basic RTOS port has solidified: The basic, port (including the verified apps/examples/ostest configuration) was be released in NuttX-5.13. A complete port will include drivers for additional AVR32 UC3 devices -- like SPI and USB --- and will be available in a later release, time permitting. |
|
Freescale M68HCS12. | |
MC9S12NE64. Support for the MC9S12NE64 MCU and two boards are included:
Both use a GNU arm-elf toolchain* under Linux or Cygwin. The NuttX buildroot provides a properly patched GCC 3.4.4 toolchain that is highly optimized for the m9s12x family. STATUS: Coding is complete for the MC9S12NE64 and for the NE64 Badge board. However, testing has not yet begun due to issues with BDMs, Code Warrior, and the paging in the build process. Progress is slow, but I hope to see a fully verified MC9S12NE64 port in the near future. |
|
Intel 8052 Microcontroller. | |
PJRC 87C52 Development Board. This port uses the PJRC 87C52 development system and the SDCC toolchain under Linux or Cygwin. STATUS: This port is complete but not stable with timer interrupts enabled. There seems to be some issue when the stack pointer enters into the indirect IRAM address space during interrupt handling. This architecture has not been built in some time will likely have some compilation problems because of SDCC compiler differences. |
|
Intel 80x86. | |
QEMU/Bifferboard i486. This port uses the QEMU i486 and the native Linux, Cywgin, MinGW the GCC toolchain under Linux or Cygwin. STATUS: The basic port was code-complete in NuttX-5.19 and verifed in NuttX-6.0. The port was verified using the OS and NuttShell (NSH) examples under QEMU. The port is reported to be functional on the Bifferboard as well. This is a great, stable starting point for anyone interest in fleshing out the x86 port! |
|
RGMP. RGMP stands for RTOS and GPOS on Multi-Processor. RGMP is a project for running GPOS and RTOS simultaneously on multi-processor platforms You can port your favorite RTOS to RGMP together with an unmodified Linux to form a hybrid operating system. This makes your application able to use both RTOS and GPOS features. See the RGMP Wiki for further information about RGMP. STATUS: This initial port of NuttX to RGMP was provided in NuttX-6.3. This initial RGP port provides only minimal driver support and does not use the native NuttX interrupt system. This is a great, stable starting point for anyone interest in working with NuttX under RGMP! |
|
MicroChip PIC32 (MIPS). | |
PIC32MX460F512L. There one two board ports using this chip:
STATUS: The basic port is code complete and fully verified in NuttX 6.13. Available configurations include the OS test and the NuttShell (NSH - see the NSH User Guide). STATUS: The basic port is code complete and fully verified in NuttX 6.18. Available configurations include the OS test and the NuttShell (NSH - see the NSH User Guide). USB has not yet been fully tested but on first pass appears to be functional. |
|
PIC32MX440F512H. This port uses the "Advanced USB Storage Demo Board," Model DB-DP11215, from Sure Electronics. This board features the MicroChip PIC32MX440F512H. See the Sure website for further information about the DB-DP11215 board. (I believe that that the DB-DP11215 may be obsoleted now but replaced with the very similar, DB-DP11212. The DB-DP11212 board differs, I believe, only in its serial port configuration.) STATUS: This NuttX port is code complete and has considerable test testing. The port for this board was completed in NuttX 6.11, but still required a few bug fixes before it will be ready for prime time. The fully verified port first appeared in NuttX 6.13. Available configurations include the OS test and the NuttShell (NSH - see the NSH User Guide). An untested USB device-side driver is available in the source tree. A more complete port would include support of the USB OTG port and of the LCD display on this board. Those drivers are not yet available as of this writing. |
|
PIC32MX795F512L. There one two board ports using this chip:
STATUS: This port was started and then shelved for some time until I received the Expansion I/O board. The basic Starter Kit (even with the Multimedia Expansion Board, MEB, DM320005)) has no serial port and most NuttX test configurations depend heavily on console output. Verified configurations for the OS test and the NuttShel (NSH) appeared in NuttX-6.16. Board support includes a verified USB (device-side) driver. Also included are a a verified Ethernet driver, a partially verified USB device controller driver, and an unverifed SPI driver. Stay tuned for updates. STATUS: A basic OS test configuration is in place, but the board does not boot. It looks like I will need an ICD3 in order to debug the code (PICkit3 doesn't work for debugging with this board). This effort is temporarily stalled. |
|
Development Environment: These ports uses the LITE version of the PIC32MX toolchain available for download from the MicroChip website. |
|
Renesas/Hitachi SuperH. | |
SH-1 SH7032. This port uses the Hitachi SH-1 Low-Cost Evaluation Board (SH1_LCEVB1), US7032EVB, with a GNU arm-elf toolchain* under Linux or Cygwin. STATUS: This port is available as of release 0.3.18 of NuttX. The port is basically complete and many examples run correctly. However, there are remaining instabilities that make the port un-usable. The nature of these is not understood; the behavior is that certain SH-1 instructions stop working as advertised. This could be a silicon problem, some pipeline issue that is not handled properly by the gcc 3.4.5 toolchain (which has very limit SH-1 support to begin with), or perhaps with the CMON debugger. At any rate, I have exhausted all of the energy that I am willing to put into this cool old processor for the time being. |
|
Renesas M16C/26. | |
Renesas M16C/26 Microncontroller. This port uses the Renesas SKP16C26 Starter kit and the GNU M32C toolchain. The development environment is either Linux or Cygwin under WinXP.
STATUS:
Initial source files released in nuttx-0.4.2.
At this point, the port has not been integrated; the target cannot be built
because the GNU m32c-elf-ld: BFD (GNU Binutils) 2.19 assertion fail /home/Owner/projects/nuttx/buildroot/toolchain_build_m32c/binutils-2.19/bfd/elf32-m32c.c:482
Where the reference line is: /* If the symbol is out of range for a 16-bit address, we must have allocated a plt entry. */ BFD_ASSERT (*plt_offset != (bfd_vma) -1); No workaround is known at this time. This is a show stopper for M16C for the time being. |
|
Zilog Z16F. | |
Zilog z16f Microncontroller. This port use the Zilog z16f2800100zcog development kit and the Zilog ZDS-II Windows command line tools. The development environment is Cygwin under WinXP. STATUS: The initial release of support for the z16f was made available in NuttX version 0.3.7. |
|
Zilog eZ80 Acclaim!. | |
Zilog eZ80Acclaim! Microncontroller. There are two eZ80Acclaim! ports:
Both boards are based on the eZ80F091 part and both use the Zilog ZDS-II Windows command line tools. The development environment is Cygwin under WinXP. STATUS: Integration and testing of NuttX on the ZiLOG ez80f0910200zcog-d is complete. The first integrated version was released in NuttX version 0.4.2 (with important early bugfixes in 0.4.3 and 0.4.4). As of this writing, that port provides basic board support with a serial console, SPI, and eZ80F91 EMAC driver. |
|
Zilog Z8Encore!. | |
Zilog Z8Encore! Microncontroller. This port uses the either:
and the Zilog ZDS-II Windows command line tools. The development environment is Cygwin under WinXP. STATUS: This release has been verified only on the ZiLOG ZDS-II Z8Encore! chip simulation as of nuttx-0.3.9. |
|
Zilog Z80. | |
Z80 Instruction Set Simulator. This port uses the SDCC toolchain under Linux or Cygwin (verified using version 2.6.0). This port has been verified using only a Z80 instruction simulator. That simulator can be found in the NuttX SVN here. STATUS: This port is complete and stable to the extent that it can be tested using an instruction set simulator. |
|
XTRS: TRS-80 Model I/III/4/4P Emulator for Unix. A very similar Z80 port is available for XTRS, the TRS-80 Model I/III/4/4P Emulator for Unix. That port also uses the SDCC toolchain under Linux or Cygwin (verified using version 2.6.0). STATUS: Basically the same as for the Z80 instruction set simulator. This port was contributed by Jacques Pelletier. |
* A highly modified buildroot is available that may be used to build a NuttX-compatible ELF toolchain under Linux or Cygwin. Configurations are available in that buildroot to support ARM, Cortex-M3, avr, m68k, m68hc11, m68hc12, m9s12, blackfin, m32c, h8, and SuperH ports.
Development Environments |
Linux + GNU make + GCC/binutils
|
|
The is the most natural development environment for NuttX. Any version of the GCC/binutils toolchain may be used. There is a highly modified buildroot available for download from the NuttX SourceForge page. This download may be used to build a NuttX-compatible ELF toolchain under Linux or Cygwin. That toolchain will support ARM, m68k, m68hc11, m68hc12, and SuperH ports. The buildroot SVN may be accessed in the NuttX SVN. |
|
Linux + GNU make + SDCC
|
|
Also very usable is the Linux environment using the SDCC compiler. The SDCC compiler provides support for the 8051/2, z80, hc08, and other microcontrollers. The SDCC-based logic is less well exercised and you will likely find some compilation issues if you use parts of NuttX with SDCC that have not been well-tested. |
|
Cygwin + GNU make + GCC/binutils
|
|
This combination works well too. It works just as well as the native Linux environment except that compilation and build times are a little longer. The custom NuttX buildroot referenced above may be build in the Cygwin environment as well. |
|
Cygwin + GNU make + SDCC
|
|
I have never tried this combination, but it would probably work just fine. |
|
Cygwin + GNU make + Windows Native Toolchain
|
|
This is a tougher environment. In this case, the Windows native toolchain is unaware of the Cygwin sandbox and, instead, operates in the native Windows environment. The primary difficulties with this are:
Fortunately, this conversion is done simply using the The NuttX make system works around this limitation by copying the platform specific directories in place. These copied directories make work a little more complex, but otherwise work well.
NOTE: In this environment, it should be possible to use the NTFS
NOTE: dependencies are suppress by setting the make variable Supported Windows Native Toolchains. At present, only the Zilog Z16F, z8Encore, and eZ80Acclaim ports use a non-GCC native Windows toolchain(the Zilog ZDS-II toolchain). Support for Windows native GCC toolchains (CodeSourcery and devkitARM) is currently implemented for the NXP LPC214x, STMicro STR71x, and Luminary LMS6918 ARM ports. (but could easily be extended to any other GCC-based platform with a small effort). |
|
Wine + GNU make + Windows Native Toolchain
|
|
I've never tried this one, but I off the following reported by an ez80 user using the ZiLOG ZDS-II Windows-native toolchain:
|
|
Other Environments?
Windows Native make + Windows Native Toolchain?
|
|
Environment Dependencies. The primary environmental dependency of NuttX are (1) GNU make, (2) bash scripting, and (3) Linux utilities (such as cat, sed, etc.). If you have other platforms that support GNU make or make utilities that are compatible with GNU make, then it is very likely that NuttX would work in that environment as well (with some porting effort). If GNU make is not supported, then some significant modification of the Make system would be required. GNUWin32. For example, with suitable make system changes, it should be possible to use native GNU tools (such as those from GNUWin32) to build NuttX. However, that environment has not been used as of this writing.
NOTE: One of the members on the NuttX forum
reported that they successful built NuttX using such a GNUWin32-based, Windows native environment.
They reported that the only necessary change was to the use the NTFS mklink command to create links
(see |
Memory Footprint |
C5471 (ARM7) The build for this ARM7 target that includes most of the OS features and a broad range of OS tests. The size of this executable as given by the Linux size command is (3/9/07):
text data bss dec hex filename 53272 428 3568 57268 dfb4 nuttx
DM320 (ARM9) This build for the ARM9 target includes a significant subset of OS features, a filesystem, Ethernet driver, full TCP/IP, UDP and (minimal) ICMP stacks (via uIP) and a small network test application: (11/8/07, configuration netconfig, apps/examples/nettest)
text data bss dec hex filename 49472 296 3972 53740 d1ec nuttx
Another build for the ARM9 target includes a minimal OS feature set, Ethernet driver, full TCP/IP and (minimal) ICMP stacks, and a small webserver: (11/20/07, configuration uipconfig, apps/examples/uip)
text data bss dec hex filename 52040 72 4148 56260 dbc4 nuttx
87C52 A reduced functionality OS test for the 8052 target requires only about 18-19Kb:
Stack starts at: 0x21 (sp set to 0x20) with 223 bytes available. Other memory: Name Start End Size Max ---------------- -------- -------- -------- -------- PAGED EXT. RAM 0 256 EXTERNAL RAM 0x0100 0x02fd 510 7936 ROM/EPROM/FLASH 0x2100 0x6e55 19798 24384
Licensing |
NuttX is available under the highly permissive BSD license. Other than some fine print that you agree to respect the copyright you should feel absolutely free to use NuttX in any environment and without any concern for jeopardizing any proprietary software that you may link with it.
Release History |
ChangeLog snapshots associated with the previous, current, and future release are available below.
Change logs for previous NuttX releases |
|
ChangeLog for the current NuttX releases |
|
Unreleased changes |
ChangeLog for the Current Release |
nuttx-6.18 2012-05-19 Gregory Nutt <gnutt@nuttx.org> * Kconfig: Continued Kconfig file updates (no longer tracking on a per-file basis in the ChangeLog) * arch/arm/src/stm32/stm32_iwdog.c and stm32_wwdog.c: Add the STM32 IWDG and WWDIG watchdog timer driver. * configs/stm3240g-eval/src/up_lcd.c: Add LCD from for the STM3240G-EVAL (the initial check-in is just a stm3210e-eval driver with renaming). * sched/sched_setscheduler.c: Correct successful return value (Contributed by Richard Cochran). * include/fcntl.h and lib/stdio: Ignore CONFIG_STDIO_LINEBUFFER is the file was opened in binary mode. * lib/stdio/lib_fopen.c: Correct an error in parsing open mode string. The plus sign may not appear right after the basic mode. For example, "r+", "rb+", and "r+b" are all valid open strings and mean the same thing. * lib/stdio/lib_fopen.c: Correct return errno value from f_open() and f_fdopen() if the open mode string is invalid. * drivers/serial/serial.c: Do not disable Rx interrupts on each byte. Rather, only disable Rx interrupts when the Rx ring buffer may be empty. * include/nuttx/usb/audio.h: USB Audio 1.0 definitions (in progress). * arch/arm/src/stm32/stm32fxx_dma.c: STM32 F4 DMA now supports circular buffer mode (contributed by Mike Smith) * arch/arm/src/stm32/stm32_serial.c: The serial driver can now support Rx DMA into a circular buffer (contributed by Mike Smith) * configs/pic32mx7mmb: Beginning of a configuration for the Mikroelektronka PIC32MX7 Multimedia Board (MMB). * net/recvfrom.c: Fix a compilation problem. Some UDP logic was conditioned on TCP, not UDP. * drivers/usbdev/cdcacm.c: Fix an infinite loop that occurs when the serial device is unregisters. * arch/arm/src/stm32/stm32_otgfs.c: The driver needs to reset the software (in order to flush the requests) and to disable the software connection when the device is unregistered. * include/sys/prctl.h, sched/prctl.c, include/pthread.h: Add interfaces to support getting and setting of the thread or task name. * configs/ubw32: Added a configuration to support the Sparkfun UBW32 PIC32 board. * configs/ubw32/nsh: Added an NSH configuration for the Sparkfun UBW32 PIC32 board. * configs/ubw32/up_buttons.c: Added button support for Bit Whacker board. * configs/stm3240g-eval/nxconsole: Added a configuration to run the NSH shell in an NX window for the STM3240G-EVAL board. * include/cxx/cunistd: C++ header file to make sure that everything in unistd.h is in the std:: namespace. * configs/sim/nxwm: Added a configuration for testing the NuttX Window Manager (NxWM) * fs/fs_fcntl.h: On success, always returned OK. However, some fcntl commands require returning other values on success. * Various files. Fix warnings about variables that were initialized by not used. * configs/sim/*/defconfig: Changes to build a 32-bit simulation on a 32-bit platform did not make into all of the Make.defs files. * graphics/nxmu/nx_move.c: Wrong opcode was being used in the server message; Also there was an error in the offset calculation. * graphics/nxglib/fb/nxglib_moverectangle.c: Offset argument is really a position, not an offset. * graphics/nxtk/nxtk_drawframe.c: Framed windows are now drawn in three colors (instead of just two). * drivers/input/stmpe11_*: Added a driver to support the STMicro STMPE11 IO Expander and touchscreen driver. * configs/stm3240g-eval/nxwm: Added to configuration for testing the NxWM window manager on the STM3240G-EVAL board. * graphics/nxtk/nxtk_toolbarbounds.c: Added an interface to get the toolbar bounding box. * graphics/nxtk/nxtk_drawframe.c: Fix an error in drawing the window frame. * NX, NxConsole: Replace CONFIG_NXCONSOLE_NOGETRUN to CONFIG_LCD_GETRUN. The inability to read from the LCD is a property of the LCD, not of NxConsole. Then add CONFIG_NX_WRITEONLY which is the more generic way of saying that no NX component should try to read from the underlying graphic device (LCD or other). * configs/stm3240g-eval/src/up_stmpe11.c: Add board-specific support for the the STMPE11 I/O expander on the STM3240G-EVAL board. Verfied that the STM3240G-EVAL touchscreen is now fully functional. * include/cxx/cfcntl: Added std:: header file. * graphics/nxbe/nxbe_filltrapezoid.c and graphics/nxglib/fb/nxglib_filltrapezoid.c: Fix several errors in the trapezoid fill logic. * include/nuttx/input/touchscreen.h, configs/hymini-stm32, configs/stm3240g-evel, * configs/sam3u-ek, configs/sim, arch/sim/src/up_touchscreen.c, and apps/examples/touchscreen: Standardize the board-specific, touchscreen initialization interfaces. * drivers/input/stmpe11_base.c and configs/stm3240g-eval: The STMPE11-based touchscreen seems to work better with edge (vs. level) interrupts * drivers/input/stmpe11_tsc.c: Fix some status checks so that the touchscreen interrupt handling logic does not read data if the fifo is not at the threshold level. * include/nuttx/wqueue.h: Add macro work_available() to determine if the previously scheduled work has completed. * drivers/stmpe11_tsc.c: Correct errors: (1) Since all interrupt logic is done on the worker thread, disabling interrupts does not provide protected; Need to disable pre-emption. (2) Fix handling of touch ID and (2) add some logic to prevent certain kinds of data overrun. * include/nx/nxtk.h and graphics/nx/nxtk/nxtk_internal.h: Move setting of configuration defaults from the internal header file to a place where other logic can use the defaults. * graphics/nxtk/nxtk_events.c: Fixed an important but in the logic that translates the mouse/touchscreen position data for framed windows and toolbars. * drivers/input/stmpe11_tsc.c, tsc2007.c, and ads7843e.c: Need to keep track of when if positional data is valid. When the touch is released, the X/Y position of the release must be the same as the X/Y position of the last touch (se that the release occurs in the same window as the last touch). * graphics/nxtk/nxtk_events.c: Fix an error in mouse/touchscreen input logic: Was autoraising the window AFTER processing the mouse press. This raises havoc if the result of processing the mouse click was to raise some other window! * graphics/nxtk/nxtk_events.c: I had to disable the whole autoraise feature for multi-user case because it does not work correctly. In a scenario where (1) there are multiple queued touchscreen events for the same window and (2) the result of the first input was to switch windows, then the autoraise implementation will cause the window to revert to the previous window. Not good behavior. * sched/sched_mergepending.c: Add task switching instrumentation. There is a case here where instrumentation was missing. Contributed by Petri Tanskanen. * CONFIG_STMPE11_THRESHX, CONFIG_STMPE11_THRESHX, and drivers/stmpe11_tsc.c: Add some thresholding controls to all slow down processing of touchscreen samples. This is a problem with NX in multi-user mode: touchscreen data gets sent via a message and when the message queue gets full the sender blocks and touch events are lost. Basic data overrun. The badly effects touchscreen human factors. * include/sched.h: Fix a typo (missing semicolon) in prototype of on_exit(); * sched/on_exit.c and include/nuttx/sched.h: Fix some old typos that caused compilation errors when CONFIG_SCHED_ONEXIT is defined. * configs/stm3240g-eval/nxwm/defconfig: The default NxWM now uses the STMPE11 touchscreen. * include/cxx/csched: Added * graphic/nxmu/nxmu_sendserver.c, nxmu_sendwindow.c, and nxmu_sendclient.c: Refactor NX messaging logic in preparation for a new message control feature. * graphics/nxtk, graphics/nxmu, include/nuttx/nx: Add a new window communication to support blocking and flushing of client window messages. If there are stale, queue window messages at the time that a window is destroyed, very bad things happen. apps-6.18 2012-05-19 Gregory Nutt <gnutt@nuttx.org> * Kconfig: Continued Kconfig file updates (no longer tracking on a per-file basis in the ChangeLog) * apps/examples/watchdog: Add a watchdog timer example. * apps/examples/tiff: Fix wrong path used for temporary file. * apps/examples/touchscreen: Standardize the board-specific, touchscreen initialization interfaces. NxWidgets-1.0 2012-03-22 Gregory Nutt <gnutt@nuttx.org> * This is the initial release of NxWidgets, the C++ graphics package for NuttX. pascal-3.0 2011-05-15 Gregory Nutt <gnutt@nuttx.org> * nuttx/: The Pascal add-on module now installs and builds under the apps/interpreters directory. This means that the pascal-2.1 module is incompatible with will all releases of NuttX prior to nuttx-6.0 where the apps/ module was introduced. buildroot-1.10 2011-05-06 <gnutt@nuttx.org> * Add patch submitted by Dimiter Georgiev to work around problems in building GDB 6.8 with versions of Cygwin > 1.7. * configs/i486-defconfig-4.3.3 - Builds an i486 cross development toolchain using gcc 4.3.3. Why wouldyou want such a thing? On Linux, of course, such a thing is not needed because you can use the installed GCC to build i486 ELF binaries. But that will not work under Cygwin! The Cygwin toolchain (and probably MinGW), build DOS MZ format executables (i.e., .exe files). That is probably not usable for most NuttX targets. Instead, you should use this i486-elf-gcc to generate true ELF binaries under Cygwin. * Makefile - Alter copy arguments to avoid permissions problems when copying NuttX header files. * toolchain/nxflat/nxflat.mk and Makefile - Fix include paths. * toolchain/gcc/3.3.6 - Added a patch to fixed compilation error on Ubuntu 9.10. * toolchain/nxflat/Makefile - Correct static library link order. * configs/arm920t-defconfig-4.3.3 - Enable support for NXFLAT tools. * toolchain/binutils/2.21 and toolchain/gcc/4.5.2 - Add support for GCC 4.5.2 with binutils 2.21. * configs/arm920t-eabi-defconfig-4.5.2 - Add a configuration to build a GCC 4.5.2 EABI ARM toolchain for the ARM920t.
Unreleased Changes |
Bugs, Issues, Things-To-Do |
The current list of NuttX Things-To-Do in SVN here. A snapshot of the To-Do list associated with the current release are available here.
Other Documentation |
Getting Started | |
User Guide | |
Porting Guide | |
NuttShell (NSH) | |
NXFLAT Binary Format | |
NX Graphics Subsystem | |
NxWidgets | |
Demand Paging | |
NuttX README Files | |
Change Log | |
To-Do List | |
USB Device Driver Tracing |
Trademarks |
NOTE: NuttX is not licensed to use the POSIX trademark. NuttX uses the POSIX standard as a development guideline only.