/**************************************************************************** * crypto/xform.c * $OpenBSD: xform.c,v 1.61 2021/10/22 12:30:53 bluhm Exp $ * * The authors of this code are John Ioannidis (ji@tla.org), * Angelos D. Keromytis (kermit@csd.uch.gr), * Niels Provos (provos@physnet.uni-hamburg.de), * Damien Miller (djm@mindrot.org) and * Mike Belopuhov (mikeb@openbsd.org). * * This code was written by John Ioannidis for BSD/OS in Athens, Greece, * in November 1995. * * Ported to OpenBSD and NetBSD, with additional transforms, * in December 1996, * by Angelos D. Keromytis. * * Additional transforms and features in 1997 and 1998 by * Angelos D. Keromytis and Niels Provos. * * Additional features in 1999 by Angelos D. Keromytis. * * AES XTS implementation in 2008 by Damien Miller * * AES-GCM-16 and Chacha20-Poly1305 AEAD modes by Mike Belopuhov. * * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis, * Angelos D. Keromytis and Niels Provos. * * Copyright (C) 2001, Angelos D. Keromytis. * * Copyright (C) 2008, Damien Miller * * Copyright (C) 2010, 2015, Mike Belopuhov * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all copies of any software which is or includes a copy or * modification of this software. * You may use this code under the GNU public license if you so wish. Please * contribute changes back to the authors under this freer than GPL license * so that we may further the use of strong encryption without limitations to * all. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "des_locl.h" /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #define CRC32_XOR_VALUE 0xFFFFFFFFUL /**************************************************************************** * Public Functions ****************************************************************************/ extern void des_ecb3_encrypt(caddr_t, caddr_t, caddr_t, caddr_t, caddr_t, int); int des_set_key(FAR void *, caddr_t); int des3_setkey(FAR void *, FAR uint8_t *, int); int blf_setkey(FAR void *, FAR uint8_t *, int); int cast5_setkey(FAR void *, FAR uint8_t *, int); int aes_setkey_xform(FAR void *, FAR uint8_t *, int); int aes_ctr_setkey(FAR void *, FAR uint8_t *, int); int aes_xts_setkey(FAR void *, FAR uint8_t *, int); int aes_ofb_setkey(FAR void *, FAR uint8_t *, int); int null_setkey(FAR void *, FAR uint8_t *, int); void des3_encrypt(caddr_t, FAR uint8_t *); void blf_encrypt(caddr_t, FAR uint8_t *); void cast5_encrypt(caddr_t, FAR uint8_t *); void aes_encrypt_xform(caddr_t, FAR uint8_t *); void null_encrypt(caddr_t, FAR uint8_t *); void aes_xts_encrypt(caddr_t, FAR uint8_t *); void aes_ofb_encrypt(caddr_t, FAR uint8_t *); void aes_cfb8_encrypt(caddr_t, FAR uint8_t *); void aes_cfb128_encrypt(caddr_t, FAR uint8_t *); void des3_decrypt(caddr_t, FAR uint8_t *); void blf_decrypt(caddr_t, FAR uint8_t *); void cast5_decrypt(caddr_t, FAR uint8_t *); void aes_decrypt_xform(caddr_t, FAR uint8_t *); void null_decrypt(caddr_t, FAR uint8_t *); void aes_xts_decrypt(caddr_t, FAR uint8_t *); void aes_cfb8_decrypt(caddr_t, FAR uint8_t *); void aes_cfb128_decrypt(caddr_t, FAR uint8_t *); void aes_ctr_crypt(caddr_t, FAR uint8_t *); void aes_ctr_reinit(caddr_t, FAR uint8_t *); void aes_xts_reinit(caddr_t, FAR uint8_t *); void aes_gcm_reinit(caddr_t, FAR uint8_t *); void aes_ofb_reinit(caddr_t, FAR uint8_t *); void null_init(FAR void *); void poly1305_setkey(FAR void *, FAR const uint8_t *, uint16_t); int poly1305update_int(FAR void *, FAR const uint8_t *, size_t); int poly1305_final(FAR uint8_t *, FAR void *); int md5update_int(FAR void *, FAR const uint8_t *, size_t); int sha1update_int(FAR void *, FAR const uint8_t *, size_t); int rmd160update_int(FAR void *, FAR const uint8_t *, size_t); int sha224update_int(FAR void *, FAR const uint8_t *, size_t); int sha256update_int(FAR void *, FAR const uint8_t *, size_t); int sha384update_int(FAR void *, FAR const uint8_t *, size_t); int sha512update_int(FAR void *, FAR const uint8_t *, size_t); void crc32setkey(FAR void *, FAR const uint8_t *, uint16_t); int crc32update(FAR void *, FAR const uint8_t *, size_t); void crc32final(FAR uint8_t *, FAR void *); struct aes_ctr_ctx { AES_CTX ac_key; uint8_t ac_block[AESCTR_BLOCKSIZE]; }; struct aes_xts_ctx { rijndael_ctx key1; rijndael_ctx key2; uint8_t tweak[AES_XTS_BLOCKSIZE]; }; struct aes_ofb_ctx { AES_CTX ac_key; FAR uint8_t *iv; }; /* Helper */ void aes_xts_crypt(FAR struct aes_xts_ctx *, FAR uint8_t *, u_int); /* Encryption instances */ const struct enc_xform enc_xform_3des = { CRYPTO_3DES_CBC, "3DES", 8, 8, 24, 24, 384, des3_encrypt, des3_decrypt, des3_setkey, NULL }; const struct enc_xform enc_xform_blf = { CRYPTO_BLF_CBC, "Blowfish", 8, 8, 5, 56 /* 448 bits, max key */, sizeof(blf_ctx), blf_encrypt, blf_decrypt, blf_setkey, NULL }; const struct enc_xform enc_xform_cast5 = { CRYPTO_CAST_CBC, "CAST-128", 8, 8, 5, 16, sizeof(cast_key), cast5_encrypt, cast5_decrypt, cast5_setkey, NULL }; const struct enc_xform enc_xform_aes = { CRYPTO_AES_CBC, "AES", 16, 16, 16, 32, sizeof(AES_CTX), aes_encrypt_xform, aes_decrypt_xform, aes_setkey_xform, NULL }; const struct enc_xform enc_xform_aes_ctr = { CRYPTO_AES_CTR, "AES-CTR", 16, 8, 16 + 4, 32 + 4, sizeof(struct aes_ctr_ctx), aes_ctr_crypt, aes_ctr_crypt, aes_ctr_setkey, aes_ctr_reinit }; const struct enc_xform enc_xform_aes_gcm = { CRYPTO_AES_GCM_16, "AES-GCM", 1, 8, 16 + 4, 32 + 4, sizeof(struct aes_ctr_ctx), aes_ctr_crypt, aes_ctr_crypt, aes_ctr_setkey, aes_gcm_reinit }; const struct enc_xform enc_xform_aes_gmac = { CRYPTO_AES_GMAC, "AES-GMAC", 1, 8, 16 + 4, 32 + 4, 0, NULL, NULL, NULL, NULL }; const struct enc_xform enc_xform_aes_cmac = { CRYPTO_AES_CMAC, "AES-CMAC", 1, 0, 16, 32, 0, null_encrypt, null_decrypt, null_setkey, NULL }; const struct enc_xform enc_xform_aes_xts = { CRYPTO_AES_XTS, "AES-XTS", 16, 8, 32, 64, sizeof(struct aes_xts_ctx), aes_xts_encrypt, aes_xts_decrypt, aes_xts_setkey, aes_xts_reinit }; const struct enc_xform enc_xform_aes_ofb = { CRYPTO_AES_OFB, "AES-OFB", 16, 16, 16, 32, sizeof(struct aes_ofb_ctx), aes_ofb_encrypt, aes_ofb_encrypt, aes_ofb_setkey, aes_ofb_reinit }; const struct enc_xform enc_xform_aes_cfb_8 = { CRYPTO_AES_CFB_8, "AES-CFB-8", 16, 16, 16, 32, sizeof(struct aes_ofb_ctx), aes_cfb8_encrypt, aes_cfb8_decrypt, aes_ofb_setkey, aes_ofb_reinit }; const struct enc_xform enc_xform_aes_cfb_128 = { CRYPTO_AES_CFB_128, "AES-CFB-128", 16, 16, 16, 32, sizeof(struct aes_ofb_ctx), aes_cfb128_encrypt, aes_cfb128_decrypt, aes_ofb_setkey, aes_ofb_reinit }; const struct enc_xform enc_xform_chacha20_poly1305 = { CRYPTO_CHACHA20_POLY1305, "CHACHA20-POLY1305", 1, 8, 32 + 4, 32 + 4, sizeof(struct chacha20_ctx), chacha20_crypt, chacha20_crypt, chacha20_setkey, chacha20_reinit }; const struct enc_xform enc_xform_null = { CRYPTO_NULL, "NULL", 4, 0, 0, 256, 0, null_encrypt, null_decrypt, null_setkey, NULL }; /* Authentication instances */ const struct auth_hash auth_hash_hmac_md5_96 = { CRYPTO_MD5_HMAC, "HMAC-MD5", 16, 16, 12, sizeof(MD5_CTX), HMAC_MD5_BLOCK_LEN, (void (*) (FAR void *)) md5init, NULL, NULL, md5update_int, (void (*) (FAR uint8_t *, FAR void *)) md5final }; const struct auth_hash auth_hash_hmac_sha1_96 = { CRYPTO_SHA1_HMAC, "HMAC-SHA1", 20, 20, 12, sizeof(SHA1_CTX), HMAC_SHA1_BLOCK_LEN, (void (*) (FAR void *)) sha1init, NULL, NULL, sha1update_int, (void (*) (FAR uint8_t *, FAR void *)) sha1final }; const struct auth_hash auth_hash_hmac_ripemd_160_96 = { CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160", 20, 20, 12, sizeof(RMD160_CTX), HMAC_RIPEMD160_BLOCK_LEN, (void (*)(FAR void *)) rmd160init, NULL, NULL, rmd160update_int, (void (*)(FAR uint8_t *, FAR void *)) rmd160final }; const struct auth_hash auth_hash_hmac_sha2_256_128 = { CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256", 32, 32, 16, sizeof(SHA2_CTX), HMAC_SHA2_256_BLOCK_LEN, (void (*)(FAR void *)) sha256init, NULL, NULL, sha256update_int, (void (*)(FAR uint8_t *, FAR void *)) sha256final }; const struct auth_hash auth_hash_hmac_sha2_384_192 = { CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384", 48, 48, 24, sizeof(SHA2_CTX), HMAC_SHA2_384_BLOCK_LEN, (void (*)(FAR void *)) sha384init, NULL, NULL, sha384update_int, (void (*)(FAR uint8_t *, FAR void *)) sha384final }; const struct auth_hash auth_hash_hmac_sha2_512_256 = { CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512", 64, 64, 32, sizeof(SHA2_CTX), HMAC_SHA2_512_BLOCK_LEN, (void (*)(FAR void *)) sha512init, NULL, NULL, sha512update_int, (void (*)(FAR uint8_t *, FAR void *)) sha512final }; const struct auth_hash auth_hash_gmac_aes_128 = { CRYPTO_AES_128_GMAC, "GMAC-AES-128", 16 + 4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX), AESCTR_BLOCKSIZE, aes_gmac_init, aes_gmac_setkey, aes_gmac_reinit, aes_gmac_update, aes_gmac_final }; const struct auth_hash auth_hash_gmac_aes_192 = { CRYPTO_AES_192_GMAC, "GMAC-AES-192", 24 + 4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX), AESCTR_BLOCKSIZE, aes_gmac_init, aes_gmac_setkey, aes_gmac_reinit, aes_gmac_update, aes_gmac_final }; const struct auth_hash auth_hash_gmac_aes_256 = { CRYPTO_AES_256_GMAC, "GMAC-AES-256", 32 + 4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX), AESCTR_BLOCKSIZE, aes_gmac_init, aes_gmac_setkey, aes_gmac_reinit, aes_gmac_update, aes_gmac_final }; const struct auth_hash auth_hash_chacha20_poly1305 = { CRYPTO_CHACHA20_POLY1305_MAC, "CHACHA20-POLY1305", CHACHA20_KEYSIZE + CHACHA20_SALT, POLY1305_BLOCK_LEN, POLY1305_TAGLEN, sizeof(CHACHA20_POLY1305_CTX), CHACHA20_BLOCK_LEN, chacha20_poly1305_init, chacha20_poly1305_setkey, chacha20_poly1305_reinit, chacha20_poly1305_update, chacha20_poly1305_final }; const struct auth_hash auth_hash_cmac_aes_128 = { CRYPTO_AES_128_CMAC, "CMAC-AES-128", 16, AES_CMAC_KEY_LENGTH, AES_CMAC_DIGEST_LENGTH, sizeof(AES_CMAC_CTX), AESCTR_BLOCKSIZE, (void (*)(FAR void *)) aes_cmac_init, (void (*)(FAR void *, FAR const uint8_t *, uint16_t)) aes_cmac_setkey, NULL, (int (*)(FAR void *, FAR const uint8_t *, size_t)) aes_cmac_update, (void (*) (FAR uint8_t *, FAR void *)) aes_cmac_final }; const struct auth_hash auth_hash_md5 = { CRYPTO_MD5, "MD5", 0, 16, 16, sizeof(MD5_CTX), HMAC_MD5_BLOCK_LEN, (void (*) (FAR void *)) md5init, NULL, NULL, md5update_int, (void (*) (FAR uint8_t *, FAR void *)) md5final }; const struct auth_hash auth_hash_poly1305 = { CRYPTO_POLY1305, "POLY1305", 0, 16, 16, sizeof(poly1305_state), poly1305_block_size, (void (*) (FAR void *)) null_init, poly1305_setkey, NULL, poly1305update_int, (void (*) (FAR uint8_t *, FAR void *)) poly1305_final }; const struct auth_hash auth_hash_ripemd_160 = { CRYPTO_RIPEMD160, "RIPEMD160", 0, 20, 20, sizeof(RMD160_CTX), HMAC_RIPEMD160_BLOCK_LEN, (void (*) (FAR void *)) rmd160init, NULL, NULL, rmd160update_int, (void (*) (FAR uint8_t *, FAR void *)) rmd160final }; const struct auth_hash auth_hash_sha1 = { CRYPTO_SHA1, "SHA1", 0, 20, 20, sizeof(SHA1_CTX), HMAC_SHA1_BLOCK_LEN, (void (*) (FAR void *)) sha1init, NULL, NULL, sha1update_int, (void (*) (FAR uint8_t *, FAR void *)) sha1final }; const struct auth_hash auth_hash_sha2_224 = { CRYPTO_SHA2_224, "SHA2-224", 0, 28, 16, sizeof(SHA2_CTX), SHA224_BLOCK_LENGTH, (void (*)(FAR void *)) sha224init, NULL, NULL, sha224update_int, (void (*)(FAR uint8_t *, FAR void *)) sha224final }; const struct auth_hash auth_hash_sha2_256 = { CRYPTO_SHA2_256, "SHA2-256", 0, 32, 16, sizeof(SHA2_CTX), HMAC_SHA2_256_BLOCK_LEN, (void (*)(FAR void *)) sha256init, NULL, NULL, sha256update_int, (void (*)(FAR uint8_t *, FAR void *)) sha256final }; const struct auth_hash auth_hash_sha2_384 = { CRYPTO_SHA2_384, "SHA2-384", 0, 48, 24, sizeof(SHA2_CTX), HMAC_SHA2_384_BLOCK_LEN, (void (*)(FAR void *)) sha384init, NULL, NULL, sha384update_int, (void (*)(FAR uint8_t *, FAR void *)) sha384final }; const struct auth_hash auth_hash_sha2_512 = { CRYPTO_SHA2_512, "SHA2-512", 0, 64, 32, sizeof(SHA2_CTX), HMAC_SHA2_512_BLOCK_LEN, (void (*)(FAR void *)) sha512init, NULL, NULL, sha512update_int, (void (*)(FAR uint8_t *, FAR void *)) sha512final }; const struct auth_hash auth_hash_crc32 = { CRYPTO_CRC32, "CRC32", 0, 32, 0, sizeof(uint32_t), 1, null_init, crc32setkey, NULL, crc32update, crc32final }; /* Encryption wrapper routines. */ void des3_encrypt(caddr_t key, FAR uint8_t *blk) { des_ecb3_encrypt((caddr_t)blk, (caddr_t)blk, key, key + 128, key + 256, 1); } void des3_decrypt(caddr_t key, FAR uint8_t *blk) { des_ecb3_encrypt((caddr_t)blk, (caddr_t)blk, key + 256, key + 128, key, 0); } int des3_setkey(FAR void *sched, FAR uint8_t *key, int len) { if (des_set_key(key, sched) < 0 || des_set_key(key + 8, sched + 128) < 0 || des_set_key(key + 16, sched + 256) < 0) { return -1; } return 0; } void blf_encrypt(caddr_t key, FAR uint8_t *blk) { blf_ecb_encrypt((FAR blf_ctx *) key, blk, 8); } void blf_decrypt(caddr_t key, FAR uint8_t *blk) { blf_ecb_decrypt((FAR blf_ctx *) key, blk, 8); } int blf_setkey(FAR void *sched, FAR uint8_t *key, int len) { blf_key((FAR blf_ctx *)sched, key, len); return 0; } int null_setkey(FAR void *sched, FAR uint8_t *key, int len) { return 0; } void null_encrypt(caddr_t key, FAR uint8_t *blk) { } void null_decrypt(caddr_t key, FAR uint8_t *blk) { } void cast5_encrypt(caddr_t key, FAR uint8_t *blk) { cast_encrypt((FAR cast_key *) key, blk, blk); } void cast5_decrypt(caddr_t key, FAR uint8_t *blk) { cast_decrypt((FAR cast_key *) key, blk, blk); } int cast5_setkey(FAR void *sched, FAR uint8_t *key, int len) { cast_setkey((FAR cast_key *)sched, key, len); return 0; } void aes_encrypt_xform(caddr_t key, FAR uint8_t *blk) { aes_encrypt((FAR AES_CTX *)key, blk, blk); } void aes_decrypt_xform(caddr_t key, FAR uint8_t *blk) { aes_decrypt((FAR AES_CTX *)key, blk, blk); } int aes_setkey_xform(FAR void *sched, FAR uint8_t *key, int len) { return aes_setkey((FAR AES_CTX *)sched, key, len); } void aes_ctr_reinit(caddr_t key, FAR uint8_t *iv) { FAR struct aes_ctr_ctx *ctx; ctx = (FAR struct aes_ctr_ctx *)key; bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE); /* reset counter */ bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4); } void aes_gcm_reinit(caddr_t key, FAR uint8_t *iv) { FAR struct aes_ctr_ctx *ctx; ctx = (FAR struct aes_ctr_ctx *)key; bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE); /* reset counter */ bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4); ctx->ac_block[AESCTR_BLOCKSIZE - 1] = 1; /* GCM starts with 1 */ } void aes_ctr_crypt(caddr_t key, FAR uint8_t *data) { FAR struct aes_ctr_ctx *ctx; uint8_t keystream[AESCTR_BLOCKSIZE]; int i; ctx = (FAR struct aes_ctr_ctx *)key; /* increment counter */ for (i = AESCTR_BLOCKSIZE - 1; i >= AESCTR_NONCESIZE + AESCTR_IVSIZE; i--) { /* continue on overflow */ if (++ctx->ac_block[i]) { break; } } aes_encrypt(&ctx->ac_key, ctx->ac_block, keystream); for (i = 0; i < AESCTR_BLOCKSIZE; i++) { data[i] ^= keystream[i]; } explicit_bzero(keystream, sizeof(keystream)); } int aes_ctr_setkey(FAR void *sched, FAR uint8_t *key, int len) { FAR struct aes_ctr_ctx *ctx; if (len < AESCTR_NONCESIZE) { return -1; } ctx = (FAR struct aes_ctr_ctx *)sched; if (aes_setkey(&ctx->ac_key, key, len - AESCTR_NONCESIZE) != 0) { return -1; } bcopy(key + len - AESCTR_NONCESIZE, ctx->ac_block, AESCTR_NONCESIZE); return 0; } void aes_xts_reinit(caddr_t key, FAR uint8_t *iv) { FAR struct aes_xts_ctx *ctx = (FAR struct aes_xts_ctx *)key; uint64_t blocknum; u_int i; /* Prepare tweak as E_k2(IV). IV is specified as LE representation * of a 64-bit block number which we allow to be passed in directly. */ memcpy(&blocknum, iv, AES_XTS_IVSIZE); for (i = 0; i < AES_XTS_IVSIZE; i++) { ctx->tweak[i] = blocknum & 0xff; blocknum >>= 8; } /* Last 64 bits of IV are always zero */ bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE); rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak); } void aes_xts_crypt(FAR struct aes_xts_ctx *ctx, FAR uint8_t *data, u_int do_encrypt) { uint8_t block[AES_XTS_BLOCKSIZE]; u_int i; u_int carry_in; u_int carry_out; for (i = 0; i < AES_XTS_BLOCKSIZE; i++) { block[i] = data[i] ^ ctx->tweak[i]; } if (do_encrypt) { rijndael_encrypt(&ctx->key1, block, data); } else { rijndael_decrypt(&ctx->key1, block, data); } for (i = 0; i < AES_XTS_BLOCKSIZE; i++) { data[i] ^= ctx->tweak[i]; } /* Exponentiate tweak */ carry_in = 0; for (i = 0; i < AES_XTS_BLOCKSIZE; i++) { carry_out = ctx->tweak[i] & 0x80; ctx->tweak[i] = (ctx->tweak[i] << 1) | carry_in; carry_in = carry_out >> 7; } ctx->tweak[0] ^= (AES_XTS_ALPHA & -carry_in); explicit_bzero(block, sizeof(block)); } void aes_xts_encrypt(caddr_t key, FAR uint8_t *data) { aes_xts_crypt((FAR struct aes_xts_ctx *)key, data, 1); } void aes_xts_decrypt(caddr_t key, FAR uint8_t *data) { aes_xts_crypt((FAR struct aes_xts_ctx *)key, data, 0); } int aes_xts_setkey(FAR void *sched, FAR uint8_t *key, int len) { FAR struct aes_xts_ctx *ctx; if (len != 32 && len != 64) { return -1; } ctx = (FAR struct aes_xts_ctx *)sched; rijndael_set_key(&ctx->key1, key, len * 4); rijndael_set_key(&ctx->key2, key + (len / 2), len * 4); return 0; } void aes_ofb_encrypt(caddr_t key, FAR uint8_t *data) { FAR struct aes_ofb_ctx *ctx; int i; ctx = (FAR struct aes_ofb_ctx *)key; aes_encrypt(&ctx->ac_key, ctx->iv, ctx->iv); for (i = 0; i < AESOFB_IVSIZE; i++) { data[i] ^= ctx->iv[i]; } } int aes_ofb_setkey(FAR void *sched, FAR uint8_t *key, int len) { FAR struct aes_ofb_ctx *ctx; ctx = (FAR struct aes_ofb_ctx *)sched; if (aes_setkey(&ctx->ac_key, key, len) != 0) { return -1; } return 0; } void aes_ofb_reinit(caddr_t key, FAR uint8_t *iv) { FAR struct aes_ofb_ctx *ctx; ctx = (FAR struct aes_ofb_ctx *)key; ctx->iv = iv; } void aes_cfb8_encrypt(caddr_t key, FAR uint8_t *data) { FAR struct aes_ofb_ctx *ctx; uint8_t ov[AESOFB_IVSIZE + 1]; int i; ctx = (FAR struct aes_ofb_ctx *)key; for (i = 0; i < AESOFB_IVSIZE; i++) { bcopy(ctx->iv, ov, AESOFB_IVSIZE); aes_encrypt(&ctx->ac_key, ctx->iv, ctx->iv); data[i] ^= ctx->iv[0]; ov[AESOFB_IVSIZE] = data[i]; bcopy(ov + 1, ctx->iv, AESOFB_IVSIZE); } } void aes_cfb8_decrypt(caddr_t key, FAR uint8_t *data) { FAR struct aes_ofb_ctx *ctx; uint8_t ov[AESOFB_IVSIZE + 1]; int i; ctx = (FAR struct aes_ofb_ctx *)key; for (i = 0; i < AESOFB_IVSIZE; i++) { bcopy(ctx->iv, ov, AESOFB_IVSIZE); aes_encrypt(&ctx->ac_key, ctx->iv, ctx->iv); ov[AESOFB_IVSIZE] = data[i]; data[i] ^= ctx->iv[0]; bcopy(ov + 1, ctx->iv, AESOFB_IVSIZE); } } void aes_cfb128_encrypt(caddr_t key, FAR uint8_t *data) { FAR struct aes_ofb_ctx *ctx; int i; ctx = (FAR struct aes_ofb_ctx *)key; aes_encrypt(&ctx->ac_key, ctx->iv, ctx->iv); for (i = 0; i < AESOFB_IVSIZE; i++) { data[i] ^= ctx->iv[i]; ctx->iv[i] = data[i]; } } void aes_cfb128_decrypt(caddr_t key, FAR uint8_t *data) { FAR struct aes_ofb_ctx *ctx; uint8_t c; int i; ctx = (FAR struct aes_ofb_ctx *)key; aes_encrypt(&ctx->ac_key, ctx->iv, ctx->iv); for (i = 0; i < AESOFB_IVSIZE; i++) { c = data[i]; data[i] ^= ctx->iv[i]; ctx->iv[i] = c; } } /* And now for auth. */ void null_init(FAR void *ctx) { } void poly1305_setkey(FAR void *sched, FAR const uint8_t *key, uint16_t len) { FAR struct poly1305_state *ctx; ctx = (FAR struct poly1305_state *)sched; poly1305_begin(ctx, key); } int poly1305update_int(FAR void *ctx, FAR const uint8_t *buf, size_t len) { poly1305_update(ctx, buf, len); return 0; } int poly1305_final(FAR uint8_t *digest, FAR void *ctx) { poly1305_finish(ctx, digest); return 0; } int rmd160update_int(FAR void *ctx, FAR const uint8_t *buf, size_t len) { rmd160update(ctx, buf, len); return 0; } int md5update_int(FAR void *ctx, FAR const uint8_t *buf, size_t len) { md5update(ctx, buf, len); return 0; } int sha1update_int(FAR void *ctx, FAR const uint8_t *buf, size_t len) { sha1update(ctx, buf, len); return 0; } int sha224update_int(FAR void *ctx, FAR const uint8_t *buf, size_t len) { sha224update(ctx, buf, len); return 0; } int sha256update_int(FAR void *ctx, FAR const uint8_t *buf, size_t len) { sha256update(ctx, buf, len); return 0; } int sha384update_int(FAR void *ctx, FAR const uint8_t *buf, size_t len) { sha384update(ctx, buf, len); return 0; } int sha512update_int(FAR void *ctx, FAR const uint8_t *buf, size_t len) { sha512update(ctx, buf, len); return 0; } void crc32setkey(FAR void *ctx, FAR const uint8_t *key, uint16_t len) { FAR uint32_t *val = (FAR uint32_t *)key; uint32_t tmp = (*val) ^ CRC32_XOR_VALUE; memcpy(ctx, &tmp, len); } int crc32update(FAR void *ctx, FAR const uint8_t *buf, size_t len) { FAR uint32_t *startval = (FAR uint32_t *)ctx; *startval = crc32part(buf, len, *startval); return 0; } void crc32final(FAR uint8_t *digest, FAR void *ctx) { FAR uint32_t *val = (FAR uint32_t *)ctx; uint32_t result = (*val) ^ CRC32_XOR_VALUE; memcpy(digest, &result, sizeof(uint32_t)); }