/**************************************************************************** * arch/risc-v/include/irq.h * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /* This file should never be included directly but, rather, only indirectly * through nuttx/irq.h */ #ifndef __ARCH_RISCV_INCLUDE_IRQ_H #define __ARCH_RISCV_INCLUDE_IRQ_H /**************************************************************************** * Included Files ****************************************************************************/ /* Include chip-specific IRQ definitions (including IRQ numbers) */ #include #include #include #include #include /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #ifdef __ASSEMBLY__ # define __STR(s) s #else # define __STR(s) #s #endif #define __XSTR(s) __STR(s) /* Map RISC-V exception code to NuttX IRQ */ /* IRQ 0-15 : (exception:interrupt=0) */ #define RISCV_IRQ_IAMISALIGNED (0) /* Instruction Address Misaligned */ #define RISCV_IRQ_IAFAULT (1) /* Instruction Access Fault */ #define RISCV_IRQ_IINSTRUCTION (2) /* Illegal Instruction */ #define RISCV_IRQ_BPOINT (3) /* Break Point */ #define RISCV_IRQ_LAMISALIGNED (4) /* Load Address Misaligned */ #define RISCV_IRQ_LAFAULT (5) /* Load Access Fault */ #define RISCV_IRQ_SAMISALIGNED (6) /* Store/AMO Address Misaligned */ #define RISCV_IRQ_SAFAULT (7) /* Store/AMO Access Fault */ #define RISCV_IRQ_ECALLU (8) /* Environment Call from U-mode */ #define RISCV_IRQ_ECALLS (9) /* Environment Call from S-mode */ #define RISCV_IRQ_ECALLH (10) /* Environment Call from H-mode */ #define RISCV_IRQ_ECALLM (11) /* Environment Call from M-mode */ #define RISCV_IRQ_INSTRUCTIONPF (12) /* Instruction page fault */ #define RISCV_IRQ_LOADPF (13) /* Load page fault */ #define RISCV_IRQ_RESERVED (14) /* Reserved */ #define RISCV_IRQ_STOREPF (15) /* Store/AMO page fault */ #define RISCV_MAX_EXCEPTION (15) /* IRQ 16- : (async event:interrupt=1) */ #define RISCV_IRQ_ASYNC (16) #define RISCV_IRQ_SSOFT (RISCV_IRQ_ASYNC + 1) /* Supervisor Software Int */ #define RISCV_IRQ_MSOFT (RISCV_IRQ_ASYNC + 3) /* Machine Software Int */ #define RISCV_IRQ_STIMER (RISCV_IRQ_ASYNC + 5) /* Supervisor Timer Int */ #define RISCV_IRQ_MTIMER (RISCV_IRQ_ASYNC + 7) /* Machine Timer Int */ #define RISCV_IRQ_SEXT (RISCV_IRQ_ASYNC + 9) /* Supervisor External Int */ #define RISCV_IRQ_MEXT (RISCV_IRQ_ASYNC + 11) /* Machine External Int */ #define RISCV_IRQ_HPMOV (RISCV_IRQ_ASYNC + 17) /* HPM Overflow Int */ /* IRQ bit and IRQ mask */ #ifdef CONFIG_ARCH_RV32 # define RISCV_IRQ_BIT (UINT32_C(1) << 31) #else # define RISCV_IRQ_BIT (UINT64_C(1) << 63) #endif #define RISCV_IRQ_MASK (~RISCV_IRQ_BIT) /* Configuration ************************************************************/ /* If this is a kernel build, how many nested system calls should we * support? */ #ifndef CONFIG_SYS_NNEST # define CONFIG_SYS_NNEST 2 #endif /* Processor PC */ #define REG_EPC_NDX 0 /* General pupose registers * $0: Zero register does not need to be saved * $1: ra (return address) */ #define REG_X1_NDX 1 /* $2: Stack POinter * $3: Global Pointer * $4: Thread Pointer */ #define REG_X2_NDX 2 #define REG_X3_NDX 3 #define REG_X4_NDX 4 /* $5-$7 = t0-t3: Temporary registers */ #define REG_X5_NDX 5 #define REG_X6_NDX 6 #define REG_X7_NDX 7 /* $8: s0 / fp Frame pointer */ #define REG_X8_NDX 8 /* $89 s1 Saved register */ #define REG_X9_NDX 9 /* $10-$17 = a0-a7: Argument registers */ #define REG_X10_NDX 10 #define REG_X11_NDX 11 #define REG_X12_NDX 12 #define REG_X13_NDX 13 #define REG_X14_NDX 14 #define REG_X15_NDX 15 #define REG_X16_NDX 16 #define REG_X17_NDX 17 /* $18-$27 = s2-s11: Saved registers */ #define REG_X18_NDX 18 #define REG_X19_NDX 19 #define REG_X20_NDX 20 #define REG_X21_NDX 21 #define REG_X22_NDX 22 #define REG_X23_NDX 23 #define REG_X24_NDX 24 #define REG_X25_NDX 25 #define REG_X26_NDX 26 #define REG_X27_NDX 27 /* $28-31 = t3-t6: Temporary (Volatile) registers */ #define REG_X28_NDX 28 #define REG_X29_NDX 29 #define REG_X30_NDX 30 #define REG_X31_NDX 31 /* Interrupt Context register */ #define REG_INT_CTX_NDX 32 #ifdef CONFIG_ARCH_RISCV_INTXCPT_EXTREGS # define INT_XCPT_REGS (33 + CONFIG_ARCH_RISCV_INTXCPT_EXTREGS) #else # define INT_XCPT_REGS 33 #endif #ifdef CONFIG_ARCH_RV32 # define INT_REG_SIZE 4 #else # define INT_REG_SIZE 8 #endif #define INT_XCPT_SIZE (INT_REG_SIZE * INT_XCPT_REGS) #ifdef CONFIG_ARCH_RV32 # if defined(CONFIG_ARCH_QPFPU) # define FPU_REG_SIZE 4 # elif defined(CONFIG_ARCH_DPFPU) # define FPU_REG_SIZE 2 # elif defined(CONFIG_ARCH_FPU) # define FPU_REG_SIZE 1 # endif #else # if defined(CONFIG_ARCH_QPFPU) # define FPU_REG_SIZE 2 # else # define FPU_REG_SIZE 1 # endif #endif #ifdef CONFIG_ARCH_FPU # define REG_F0_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 0) # define REG_F1_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 1) # define REG_F2_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 2) # define REG_F3_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 3) # define REG_F4_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 4) # define REG_F5_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 5) # define REG_F6_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 6) # define REG_F7_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 7) # define REG_F8_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 8) # define REG_F9_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 9) # define REG_F10_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 10) # define REG_F11_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 11) # define REG_F12_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 12) # define REG_F13_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 13) # define REG_F14_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 14) # define REG_F15_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 15) # define REG_F16_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 16) # define REG_F17_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 17) # define REG_F18_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 18) # define REG_F19_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 19) # define REG_F20_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 20) # define REG_F21_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 21) # define REG_F22_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 22) # define REG_F23_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 23) # define REG_F24_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 24) # define REG_F25_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 25) # define REG_F26_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 26) # define REG_F27_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 27) # define REG_F28_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 28) # define REG_F29_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 29) # define REG_F30_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 30) # define REG_F31_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 31) # define REG_FCSR_NDX (INT_XCPT_REGS + FPU_REG_SIZE * 32) # define FPU_XCPT_REGS (FPU_REG_SIZE * 33) # define FPU_REG_FULL_SIZE (INT_REG_SIZE * FPU_REG_SIZE) #else /* !CONFIG_ARCH_FPU */ # define FPU_XCPT_REGS (0) # define FPU_REG_FULL_SIZE (0) #endif /* CONFIG_ARCH_FPU */ #define XCPTCONTEXT_REGS (INT_XCPT_REGS + FPU_XCPT_REGS) #define XCPTCONTEXT_SIZE (INT_REG_SIZE * XCPTCONTEXT_REGS) /* In assembly language, values have to be referenced as byte address * offsets. But in C, it is more convenient to reference registers as * register save table offsets. */ #ifdef __ASSEMBLY__ # define REG_EPC (INT_REG_SIZE*REG_EPC_NDX) # define REG_X1 (INT_REG_SIZE*REG_X1_NDX) # define REG_X2 (INT_REG_SIZE*REG_X2_NDX) # define REG_X3 (INT_REG_SIZE*REG_X3_NDX) # define REG_X4 (INT_REG_SIZE*REG_X4_NDX) # define REG_X5 (INT_REG_SIZE*REG_X5_NDX) # define REG_X6 (INT_REG_SIZE*REG_X6_NDX) # define REG_X7 (INT_REG_SIZE*REG_X7_NDX) # define REG_X8 (INT_REG_SIZE*REG_X8_NDX) # define REG_X9 (INT_REG_SIZE*REG_X9_NDX) # define REG_X10 (INT_REG_SIZE*REG_X10_NDX) # define REG_X11 (INT_REG_SIZE*REG_X11_NDX) # define REG_X12 (INT_REG_SIZE*REG_X12_NDX) # define REG_X13 (INT_REG_SIZE*REG_X13_NDX) # define REG_X14 (INT_REG_SIZE*REG_X14_NDX) # define REG_X15 (INT_REG_SIZE*REG_X15_NDX) # define REG_X16 (INT_REG_SIZE*REG_X16_NDX) # define REG_X17 (INT_REG_SIZE*REG_X17_NDX) # define REG_X18 (INT_REG_SIZE*REG_X18_NDX) # define REG_X19 (INT_REG_SIZE*REG_X19_NDX) # define REG_X20 (INT_REG_SIZE*REG_X20_NDX) # define REG_X21 (INT_REG_SIZE*REG_X21_NDX) # define REG_X22 (INT_REG_SIZE*REG_X22_NDX) # define REG_X23 (INT_REG_SIZE*REG_X23_NDX) # define REG_X24 (INT_REG_SIZE*REG_X24_NDX) # define REG_X25 (INT_REG_SIZE*REG_X25_NDX) # define REG_X26 (INT_REG_SIZE*REG_X26_NDX) # define REG_X27 (INT_REG_SIZE*REG_X27_NDX) # define REG_X28 (INT_REG_SIZE*REG_X28_NDX) # define REG_X29 (INT_REG_SIZE*REG_X29_NDX) # define REG_X30 (INT_REG_SIZE*REG_X30_NDX) # define REG_X31 (INT_REG_SIZE*REG_X31_NDX) # define REG_INT_CTX (INT_REG_SIZE*REG_INT_CTX_NDX) #ifdef CONFIG_ARCH_FPU # define REG_F0 (INT_REG_SIZE*REG_F0_NDX) # define REG_F1 (INT_REG_SIZE*REG_F1_NDX) # define REG_F2 (INT_REG_SIZE*REG_F2_NDX) # define REG_F3 (INT_REG_SIZE*REG_F3_NDX) # define REG_F4 (INT_REG_SIZE*REG_F4_NDX) # define REG_F5 (INT_REG_SIZE*REG_F5_NDX) # define REG_F6 (INT_REG_SIZE*REG_F6_NDX) # define REG_F7 (INT_REG_SIZE*REG_F7_NDX) # define REG_F8 (INT_REG_SIZE*REG_F8_NDX) # define REG_F9 (INT_REG_SIZE*REG_F9_NDX) # define REG_F10 (INT_REG_SIZE*REG_F10_NDX) # define REG_F11 (INT_REG_SIZE*REG_F11_NDX) # define REG_F12 (INT_REG_SIZE*REG_F12_NDX) # define REG_F13 (INT_REG_SIZE*REG_F13_NDX) # define REG_F14 (INT_REG_SIZE*REG_F14_NDX) # define REG_F15 (INT_REG_SIZE*REG_F15_NDX) # define REG_F16 (INT_REG_SIZE*REG_F16_NDX) # define REG_F17 (INT_REG_SIZE*REG_F17_NDX) # define REG_F18 (INT_REG_SIZE*REG_F18_NDX) # define REG_F19 (INT_REG_SIZE*REG_F19_NDX) # define REG_F20 (INT_REG_SIZE*REG_F20_NDX) # define REG_F21 (INT_REG_SIZE*REG_F21_NDX) # define REG_F22 (INT_REG_SIZE*REG_F22_NDX) # define REG_F23 (INT_REG_SIZE*REG_F23_NDX) # define REG_F24 (INT_REG_SIZE*REG_F24_NDX) # define REG_F25 (INT_REG_SIZE*REG_F25_NDX) # define REG_F26 (INT_REG_SIZE*REG_F26_NDX) # define REG_F27 (INT_REG_SIZE*REG_F27_NDX) # define REG_F28 (INT_REG_SIZE*REG_F28_NDX) # define REG_F29 (INT_REG_SIZE*REG_F29_NDX) # define REG_F30 (INT_REG_SIZE*REG_F30_NDX) # define REG_F31 (INT_REG_SIZE*REG_F31_NDX) # define REG_FCSR (INT_REG_SIZE*REG_FCSR_NDX) #endif #else # define REG_EPC REG_EPC_NDX # define REG_X1 REG_X1_NDX # define REG_X2 REG_X2_NDX # define REG_X3 REG_X3_NDX # define REG_X4 REG_X4_NDX # define REG_X5 REG_X5_NDX # define REG_X6 REG_X6_NDX # define REG_X7 REG_X7_NDX # define REG_X8 REG_X8_NDX # define REG_X9 REG_X9_NDX # define REG_X10 REG_X10_NDX # define REG_X11 REG_X11_NDX # define REG_X12 REG_X12_NDX # define REG_X13 REG_X13_NDX # define REG_X14 REG_X14_NDX # define REG_X15 REG_X15_NDX # define REG_X16 REG_X16_NDX # define REG_X17 REG_X17_NDX # define REG_X18 REG_X18_NDX # define REG_X19 REG_X19_NDX # define REG_X20 REG_X20_NDX # define REG_X21 REG_X21_NDX # define REG_X22 REG_X22_NDX # define REG_X23 REG_X23_NDX # define REG_X24 REG_X24_NDX # define REG_X25 REG_X25_NDX # define REG_X26 REG_X26_NDX # define REG_X27 REG_X27_NDX # define REG_X28 REG_X28_NDX # define REG_X29 REG_X29_NDX # define REG_X30 REG_X30_NDX # define REG_X31 REG_X31_NDX # define REG_INT_CTX REG_INT_CTX_NDX #ifdef CONFIG_ARCH_FPU # define REG_F0 REG_F0_NDX # define REG_F1 REG_F1_NDX # define REG_F2 REG_F2_NDX # define REG_F3 REG_F3_NDX # define REG_F4 REG_F4_NDX # define REG_F5 REG_F5_NDX # define REG_F6 REG_F6_NDX # define REG_F7 REG_F7_NDX # define REG_F8 REG_F8_NDX # define REG_F9 REG_F9_NDX # define REG_F10 REG_F10_NDX # define REG_F11 REG_F11_NDX # define REG_F12 REG_F12_NDX # define REG_F13 REG_F13_NDX # define REG_F14 REG_F14_NDX # define REG_F15 REG_F15_NDX # define REG_F16 REG_F16_NDX # define REG_F17 REG_F17_NDX # define REG_F18 REG_F18_NDX # define REG_F19 REG_F19_NDX # define REG_F20 REG_F20_NDX # define REG_F21 REG_F21_NDX # define REG_F22 REG_F22_NDX # define REG_F23 REG_F23_NDX # define REG_F24 REG_F24_NDX # define REG_F25 REG_F25_NDX # define REG_F26 REG_F26_NDX # define REG_F27 REG_F27_NDX # define REG_F28 REG_F28_NDX # define REG_F29 REG_F29_NDX # define REG_F30 REG_F30_NDX # define REG_F31 REG_F31_NDX # define REG_FCSR REG_FCSR_NDX #endif #endif /* Now define more user friendly alternative name that can be used either * in assembly or C contexts. */ /* $1 = ra: Return address */ #define REG_RA REG_X1 /* $2 = sp: The value of the stack pointer on return from the exception */ #define REG_SP REG_X2 /* $3 = gp: Only needs to be saved under conditions where there are * multiple, per-thread values for the GP. */ #define REG_GP REG_X3 /* $4 = tp: Thread Pointer */ #define REG_TP REG_X4 /* $5-$7 = t0-t2: Caller saved temporary registers */ #define REG_T0 REG_X5 #define REG_T1 REG_X6 #define REG_T2 REG_X7 /* $8 = either s0 or fp: Depends if a frame pointer is used or not */ #define REG_S0 REG_X8 #define REG_FP REG_X8 /* $9 = s1: Caller saved register */ #define REG_S1 REG_X9 /* $10-$17 = a0-a7: Argument registers */ #define REG_A0 REG_X10 #define REG_A1 REG_X11 #define REG_A2 REG_X12 #define REG_A3 REG_X13 #define REG_A4 REG_X14 #define REG_A5 REG_X15 #define REG_A6 REG_X16 #define REG_A7 REG_X17 /* $18-$27 = s2-s11: Callee saved registers */ #define REG_S2 REG_X18 #define REG_S3 REG_X19 #define REG_S4 REG_X20 #define REG_S5 REG_X21 #define REG_S6 REG_X22 #define REG_S7 REG_X23 #define REG_S8 REG_X24 #define REG_S9 REG_X25 #define REG_S10 REG_X26 #define REG_S11 REG_X27 /* $28-$31 = t3-t6: Caller saved temporary registers */ #define REG_T3 REG_X28 #define REG_T4 REG_X29 #define REG_T5 REG_X30 #define REG_T6 REG_X31 #ifdef CONFIG_ARCH_FPU /* $0-$1 = fs0-fs1: Callee saved registers */ # define REG_FS0 REG_F8 # define REG_FS1 REG_F9 /* $18-$27 = fs2-fs11: Callee saved registers */ # define REG_FS2 REG_F18 # define REG_FS3 REG_F19 # define REG_FS4 REG_F20 # define REG_FS5 REG_F21 # define REG_FS6 REG_F22 # define REG_FS7 REG_F23 # define REG_FS8 REG_F24 # define REG_FS9 REG_F25 # define REG_FS10 REG_F26 # define REG_FS11 REG_F27 #endif /**************************************************************************** * Public Types ****************************************************************************/ #ifndef __ASSEMBLY__ /* This structure represents the return state from a system call */ #ifdef CONFIG_LIB_SYSCALL struct xcpt_syscall_s { uintptr_t sysreturn; /* The return PC */ #ifndef CONFIG_BUILD_FLAT uintptr_t int_ctx; /* Interrupt context (i.e. m-/sstatus) */ #endif }; #endif /* The following structure is included in the TCB and defines the complete * state of the thread. */ struct xcptcontext { /* The following function pointer is non-NULL if there are pending signals * to be processed. */ void *sigdeliver; /* Actual type is sig_deliver_t */ /* These additional register save locations are used to implement the * signal delivery trampoline. * * REVISIT: Because there is only a reference of these save areas, * only a single signal handler can be active. This precludes * queuing of signal actions. As a result, signals received while * another signal handler is executing will be ignored! */ uintptr_t *saved_regs; #ifndef CONFIG_BUILD_FLAT /* This is the saved address to use when returning from a user-space * signal handler. */ uintptr_t sigreturn; #endif #ifdef CONFIG_LIB_SYSCALL /* The following array holds information needed to return from each nested * system call. */ uint8_t nsyscalls; struct xcpt_syscall_s syscall[CONFIG_SYS_NNEST]; #endif #ifdef CONFIG_ARCH_ADDRENV #ifdef CONFIG_ARCH_KERNEL_STACK /* In this configuration, all syscalls execute from an internal kernel * stack. Why? Because when we instantiate and initialize the address * environment of the new user process, we will temporarily lose the * address environment of the old user process, including its stack * contents. The kernel C logic will crash immediately with no valid * stack in place. */ uintptr_t *ustkptr; /* Saved user stack pointer */ uintptr_t *kstack; /* Allocate base of the (aligned) kernel stack */ uintptr_t *ktopstk; /* Top of kernel stack */ uintptr_t *kstkptr; /* Saved kernel stack pointer */ #endif #endif /* Register save area */ uintptr_t *regs; }; #endif /* __ASSEMBLY__ */ /**************************************************************************** * Public Types ****************************************************************************/ #ifndef __ASSEMBLY__ /**************************************************************************** * Inline functions ****************************************************************************/ /* Return the current value of the stack pointer */ static inline uintptr_t up_getsp(void) { register uintptr_t sp; __asm__ ( "\tadd %0, x0, x2\n" : "=r"(sp) ); return sp; } /**************************************************************************** * Public Data ****************************************************************************/ #undef EXTERN #if defined(__cplusplus) #define EXTERN extern "C" extern "C" { #else #define EXTERN extern #endif /* g_current_regs[] holds a references to the current interrupt level * register storage structure. If is non-NULL only during interrupt * processing. Access to g_current_regs[] must be through the macro * CURRENT_REGS for portability. */ /* For the case of architectures with multiple CPUs, then there must be one * such value for each processor that can receive an interrupt. */ EXTERN volatile uintptr_t *g_current_regs[CONFIG_SMP_NCPUS]; #define CURRENT_REGS (g_current_regs[up_cpu_index()]) /**************************************************************************** * Public Function Prototypes ****************************************************************************/ /**************************************************************************** * Name: up_irq_enable * * Description: * Return the current interrupt state and enable interrupts * ****************************************************************************/ irqstate_t up_irq_enable(void); /**************************************************************************** * Name: up_cpu_index * * Description: * Return an index in the range of 0 through (CONFIG_SMP_NCPUS-1) that * corresponds to the currently executing CPU. * * Input Parameters: * None * * Returned Value: * An integer index in the range of 0 through (CONFIG_SMP_NCPUS-1) that * corresponds to the currently executing CPU. * ****************************************************************************/ #ifdef CONFIG_SMP int up_cpu_index(void); #else # define up_cpu_index() (0) #endif /**************************************************************************** * Inline Functions ****************************************************************************/ /**************************************************************************** * Name: up_irq_save * * Description: * Disable interrupts and return the previous value of the mstatus register * ****************************************************************************/ static inline irqstate_t up_irq_save(void) { irqstate_t flags; /* Read mstatus & clear machine interrupt enable (MIE) in mstatus */ __asm__ __volatile__ ( "csrrc %0, " __XSTR(CSR_STATUS) ", %1\n" : "=r" (flags) : "r"(STATUS_IE) : "memory" ); /* Return the previous mstatus value so that it can be restored with * up_irq_restore(). */ return flags; } /**************************************************************************** * Name: up_irq_restore * * Description: * Restore the value of the mstatus register * ****************************************************************************/ static inline void up_irq_restore(irqstate_t flags) { __asm__ __volatile__ ( "csrw " __XSTR(CSR_STATUS) ", %0\n" : /* no output */ : "r" (flags) : "memory" ); } /**************************************************************************** * Name: up_interrupt_context * * Description: * Return true is we are currently executing in the interrupt * handler context. * ****************************************************************************/ static inline bool up_interrupt_context(void) { #ifdef CONFIG_SMP irqstate_t flags = up_irq_save(); #endif bool ret = CURRENT_REGS != NULL; #ifdef CONFIG_SMP up_irq_restore(flags); #endif return ret; } #undef EXTERN #if defined(__cplusplus) } #endif #endif /* __ASSEMBLY__ */ #endif /* __ARCH_RISCV_INCLUDE_IRQ_H */