README ===== This README file describes the port of NuttX to the SAMA5D3x-EK development boards. These boards feature the Atmel SAMA5D3 microprocessors. Four different SAMA5D3x-EK kits are available - SAMA5D31-EK with the ATSAMA5D31 (http://www.atmel.com/devices/sama5d31.aspx) - SAMA5D33-EK with the ATSAMA5D33 (http://www.atmel.com/devices/sama5d33.aspx) - SAMA5D34-EK with the ATSAMA5D34 (http://www.atmel.com/devices/sama5d34.aspx) - SAMA5D35-EK with the ATSAMA5D35 (http://www.atmel.com/devices/sama5d35.aspx) The each consist of an identical base board with different plug-in modules for each CPU. I also have a 7 inch LCD for my SAMA5D3x-EK, but this is not yet generally available.. SAMA5D3 Family ATSAMA5D31 ATSAMA5D33 ATSAMA5D34 ATSAMA5D35 ------------------------- ------------- ------------- ------------- ------------- Pin Count 324 324 324 324 Max. Operating Frequency 536 536 536 536 CPU Cortex-A5 Cortex-A5 Cortex-A5 Cortex-A5 Max I/O Pins 160 160 160 160 Ext Interrupts 160 160 160 160 USB Transceiver 3 3 3 3 USB Speed Hi-Speed Hi-Speed Hi-Speed Hi-Speed USB Interface Host, Device Host, Device Host, Device Host, Device SPI 6 6 6 6 TWI (I2C) 3 3 3 3 UART 7 5 5 7 CAN - - 2 2 LIN 4 4 4 4 SSC 2 2 2 2 Ethernet 1 1 1 2 SD / eMMC 3 2 3 3 Graphic LCD Yes Yes Yes - Camera Interface Yes Yes Yes Yes ADC channels 12 12 12 12 ADC Resolution (bits) 12 12 12 12 ADC Speed (ksps) 440 440 440 440 Resistive Touch Screen Yes Yes Yes Yes Crypto Engine AES/DES/ AES/DES/ AES/DES/ AES/DES/ SHA/TRNG SHA/TRNG SHA/TRNG SHA/TRNG SRAM (Kbytes) 128 128 128 128 External Bus Interface 1 1 1 1 DRAM Memory DDR2/LPDDR, DDR2/LPDDR, DDR2/LPDDR, DDR2/LPDDR, SDRAM/LPSDR SDRAM/LPSDR DDR2/LPDDR, DDR2/LPDDR, NAND Interface Yes Yes Yes Yes Temp. Range (deg C) -40 to 85 -40 to 85 -40 to 85 -40 to 85 I/O Supply Class 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 Operating Voltage (Vcc) 1.08 to 1.32 1.08 to 1.32 1.08 to 1.32 1.08 to 1.32 FPU Yes Yes Yes Yes MPU / MMU No/Yes No/Yes No/Yes No/Yes Timers 5 5 5 6 Output Compare channels 6 6 6 6 Input Capture Channels 6 6 6 6 PWM Channels 4 4 4 4 32kHz RTC Yes Yes Yes Yes Packages LFBGA324_A LFBGA324_A LFBGA324_A LFBGA324_A Contents ======== - PIO Muliplexing - Development Environment - GNU Toolchain Options - IDEs - NuttX EABI "buildroot" Toolchain - NuttX OABI "buildroot" Toolchain - NXFLAT Toolchain - Loading Code into SRAM with J-Link - Writing to FLASH using SAM-BA - Creating and Using NORBOOT - Buttons and LEDs - Serial Consoles - SAMA5D3x-EK Configuration Options - Configurations PIO Muliplexing =============== To be provided Development Environment ======================= Several possibile development enviorments may be use: - Linux or OSX native - Cygwin unders Windows - MinGW + MSYS under Windows - Windows native (with GNUMake from GNUWin32). All testing has been performed using Cygwin under Windows. The source has been built only using the GNU toolchain (see below). Other toolchains will likely cause problems. GNU Toolchain Options ===================== The NuttX make system will support the several different toolchain options. All testing has been conducted using the CodeSourcery GCC toolchain. To use a different toolchain, you simply need to add change to one of the following configuration options to your .config (or defconfig) file: CONFIG_ARMV7A_TOOLCHAIN_CODESOURCERYW=y : CodeSourcery under Windows CONFIG_ARMV7A_TOOLCHAIN_CODESOURCERYL=y : CodeSourcery under Linux CONFIG_ARMV7A_TOOLCHAIN_ATOLLIC=y : Atollic toolchain for Windos CONFIG_ARMV7A_TOOLCHAIN_DEVKITARM=y : devkitARM under Windows CONFIG_ARMV7A_TOOLCHAIN_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default) CONFIG_ARMV7A_TOOLCHAIN_GNU_EABIL=y : Generic GCC ARM EABI toolchain for Linux CONFIG_ARMV7A_TOOLCHAIN_GNU_EABIW=y : Generic GCC ARM EABI toolchain for Windows The CodeSourcery GCC toolchain is selected with CONFIG_ARMV7A_TOOLCHAIN_GNU_EABIW=y and setting the PATH variable appropriately. If you are not using AtmelStudio GCC toolchain, then you may also have to modify the PATH in the setenv.h file if your make cannot find the tools. NOTE about Windows native toolchains ------------------------------------ There are several limitations to using a Windows based toolchain in a Cygwin environment. The three biggest are: 1. The Windows toolchain cannot follow Cygwin paths. Path conversions are performed automatically in the Cygwin makefiles using the 'cygpath' utility but you might easily find some new path problems. If so, check out 'cygpath -w' 2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links are used in Nuttx (e.g., include/arch). The make system works around these problems for the Windows tools by copying directories instead of linking them. But this can also cause some confusion for you: For example, you may edit a file in a "linked" directory and find that your changes had no effect. That is because you are building the copy of the file in the "fake" symbolic directory. If you use a\ Windows toolchain, you should get in the habit of making like this: make clean_context all An alias in your .bashrc file might make that less painful. 3. Dependencies are not made when using Windows versions of the GCC. This is because the dependencies are generated using Windows pathes which do not work with the Cygwin make. MKDEP = $(TOPDIR)/tools/mknulldeps.sh NOTE 1: Older CodeSourcery toolchains (2009q1) do not work with default optimization level of -Os (See Make.defs). It will work with -O0, -O1, or -O2, but not with -Os. NOTE 2: The devkitARM toolchain includes a version of MSYS make. Make sure that the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM path or will get the wrong version of make. IDEs ==== NuttX is built using command-line make. It can be used with an IDE, but some effort will be required to create the project (There is a simple RIDE project in the RIDE subdirectory). Makefile Build -------------- Under Eclipse, it is pretty easy to set up an "empty makefile project" and simply use the NuttX makefile to build the system. That is almost for free under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty makefile project in order to work with Windows (Google for "Eclipse Cygwin" - there is a lot of help on the internet). Native Build ------------ Here are a few tips before you start that effort: 1) Select the toolchain that you will be using in your .config file 2) Start the NuttX build at least one time from the Cygwin command line before trying to create your project. This is necessary to create certain auto-generated files and directories that will be needed. 3) Set up include pathes: You will need include/, arch/arm/src/sam34, arch/arm/src/common, arch/arm/src/armv7-m, and sched/. 4) All assembly files need to have the definition option -D __ASSEMBLY__ on the command line. Startup files will probably cause you some headaches. The NuttX startup file is arch/arm/src/sam34/sam_vectors.S. You may need to build NuttX one time from the Cygwin command line in order to obtain the pre-built startup object needed by RIDE. NuttX EABI "buildroot" Toolchain ================================ A GNU GCC-based toolchain is assumed. The files */setenv.sh should be modified to point to the correct path to the Cortex-M3 GCC toolchain (if different from the default in your PATH variable). If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/). This GNU toolchain builds and executes in the Linux or Cygwin environment. 1. You must have already configured Nuttx in /nuttx. cd tools ./configure.sh sama5d3x-ek/ 2. Download the latest buildroot package into 3. unpack the buildroot tarball. The resulting directory may have versioning information on it like buildroot-x.y.z. If so, rename /buildroot-x.y.z to /buildroot. 4. cd /buildroot 5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config 6. make oldconfig 7. make 8. Edit setenv.h, if necessary, so that the PATH variable includes the path to the newly built binaries. See the file configs/README.txt in the buildroot source tree. That has more details PLUS some special instructions that you will need to follow if you are building a Cortex-M3 toolchain for Cygwin under Windows. NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for more information about this problem. If you plan to use NXFLAT, please do not use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain. See instructions below. NuttX OABI "buildroot" Toolchain ================================ The older, OABI buildroot toolchain is also available. To use the OABI toolchain, use the build instructtions above, but (1) modify the cortexm3-eabi-defconfig-4.6.3 configuration to use OABI (using 'make menuconfig'), or (2) use an exising OABI configuration such as cortexm3-defconfig-4.3.3 NXFLAT Toolchain ================ If you are *not* using the NuttX buildroot toolchain and you want to use the NXFLAT tools, then you will still have to build a portion of the buildroot tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can be downloaded from the NuttX SourceForge download site (https://sourceforge.net/projects/nuttx/files/). This GNU toolchain builds and executes in the Linux or Cygwin environment. 1. You must have already configured Nuttx in /nuttx. cd tools ./configure.sh sama5d3x-ek/ 2. Download the latest buildroot package into 3. unpack the buildroot tarball. The resulting directory may have versioning information on it like buildroot-x.y.z. If so, rename /buildroot-x.y.z to /buildroot. 4. cd /buildroot 5. cp configs/cortexm3-defconfig-nxflat .config 6. make oldconfig 7. make 8. Edit setenv.h, if necessary, so that the PATH variable includes the path to the newly built NXFLAT binaries. Loading Code into SRAM with J-Link ================================== Loading code with the Segger tools and GDB ------------------------------------------ 1) Change directories into the directory where you built NuttX. 2) Start the GDB server and wait until it is ready to accept GDB connections. 3) Then run GDB like this: $ arm-none-eabi-gdb (gdb) target remote localhost:2331 (gdb) mon reset (gdb) load nuttx (gdb) ... start debugging ... Loading code using J-Link Commander ---------------------------------- J-Link> r J-Link> loadbin
J-Link> setpc
J-Link> ... start debugging ... Writing to FLASH using SAM-BA ============================= Assumed starting configuration: 1. You have installed the J-Lnk CDC USB driver (Windows only, there is no need to install a driver on any regular Linux distribution), 2. You have the USB connected to DBGU poort (J14) 3. Terminal configuration: 115200 8N1 Using SAM-BA to write to FLASH: 1. Exit the terminal emulation program and remove the USB cable from the DBGU port (J14) 2. Connect the USB cable to the device USB port (J20) 3. JP9 must open (BMS == 1) to boot from on-chip Boot ROM. 4. Press and maintain PB4 CS_BOOT button and power up the board. PB4 CS_BOOT button prevents booting from Nand or serial Flash by disabling Flash Chip Selects after having powered the board, you can release the PB4 BS_BOOT button. 5. On Windows you may need to wait for a device driver to be installed. 6. Start the SAM-BA application, selecting (1) the correct USB serial port, and (2) board = at91sama5d3x-ek. 7. The SAM-BA menu should appear. 8. Select the FLASH bank that you want to use and the address to write to and "Execute" 9. When you are finished writing to FLASH, remove the USB cable from J20 and re-connect the serial link on USB CDC / DBGU connector (J14) and re-open the terminal emulator program. 10. If you loaded code in NOR flash (CS0), then you will need to close JP9 (BMS == 0) to force booting out of NOR flash (see NOTE). 11. Power cycle the board. NOTES: By closing JP9 (BMS == 0), you can force the board to boot directly to NOR FLASH. Executing from other memories will require that you provide a special code header so that you code can be recognized as a boot-able image by the ROM bootloader. Creating and Using NORBOOT ========================== In order to have more control of debugging code that runs out of NOR FLASH, I created the sama5d3x-ek/norboot configuration. That configuration is described below under "Configurations." Here are some general instructions on how to build an use norboot: Building: 1. Remove any old configurations (if applicable). cd make distclean 2. Install and build the norboot configuration: cd tools ./configure.sh sama5d3x-ek/ cd - . ./setenv.sh Before sourcing the setenv.sh file above, you should examine it and perform edits as necessary so that TOOLCHAIN_BIN is the correct path to the directory than holds your toolchain binaries. 3. Rename the binaries. Since you will need two versions of NuttX: this norboot version that runs in internal SRAM and another under test in NOR FLASH, I rename the resulting binary files so that they can be distinguished: mv nuttx norboot mv nuttx.hex norboot.hex mv nuttx.bin norboot.bin 4. Build your NOR configuration and write this into NOR FLASH. Here, for example, is how you would create the NSH NOR configuration: cd make distclean # Remove the norboot configuration cd tools ./configure.sh sama5d3x-ek/nsh # Establish the NSH configuration cd - make # Build the NSH configuration Then use SAM-BA to write the nuttx.bin binary into NOR FLASH. This will involve holding the CS_BOOT button and power cycling to start the ROM loader. The SAM-BA serial connection will be on the device USB port, not the debug USB port. Follow the SAM-BA instruction to write the nuttx.bin binary to NOR FLASH. 5. Restart the system without holding CS_BOOT to get back to the normal debug setup. 6. Then start the J-Link GDB server and GDB. In GDB, I do the following: (gdb) mon reset # Reset and halt the CPU (gdb) load norboot # Load norboot into internal SRAM (gdb) mon go # Start norboot (gdb) mon halt # Break in (gdb) mon reg pc = 0x10000040 # Set the PC to NOR flash entry point (gdb) mon go # And jump into NOR flash The norboot program can also be configured to jump directly into NOR FLASH with out requiring the the final halt and go, but since I have been debugging the early boot sequence, the above sequence has been most convenient for me. STATUS: 2013-7-30: I have been unable to execute this configuration from NOR FLASH by closing the BMS jumper (J9). As far as I can tell, this jumper does nothing on my board??? So I have been using the norboot configuration exclusively to start the program-under-test in NOR FLASH. Buttons and LEDs ================ Buttons ------- There are five push button switches on the SAMA5D3X-EK base board: 1. One Reset, board reset (BP1) 2. One Wake up, push button to bring the processor out of low power mode (BP2) 3. One User momentary Push Button 4. One Disable CS Push Button Only the momentary push button is controllable by software (labeled "PB_USER1" on the board): - PE27. Pressing the switch connect PE27 to grounded. Therefore, PE27 must be pulled high internally. When the button is pressed the SAMA5 will sense "0" is on PE27. LEDs ---- There are two LEDs on the SAMA5D3 series-CM board that can be controlled by software. A blue LED is controlled via GPIO pins. A red LED normally provides an indication that power is supplied to the board but can also be controlled via software. PE25. This blue LED is pulled high and is illuminated by pulling PE25 low. PE24. The red LED is also pulled high but is driven by a transistor so that it is illuminated when power is applied even if PE24 is not configured as an output. If PE24 is configured as an output, then the LCD is illuminated by a high output. These LEDs are not used by the board port unless CONFIG_ARCH_LEDS is defined. In that case, the usage by the board port is defined in include/board.h and src/sam_leds.c. The LEDs are used to encode OS-related events as follows: SYMBOL Meaning LED state Blue Red ------------------- ----------------------- -------- -------- LED_STARTED NuttX has been started OFF OFF LED_HEAPALLOCATE Heap has been allocated OFF OFF LED_IRQSENABLED Interrupts enabled OFF OFF LED_STACKCREATED Idle stack created ON OFF LED_INIRQ In an interrupt No change LED_SIGNAL In a signal handler No change LED_ASSERTION An assertion failed No change LED_PANIC The system has crashed OFF Blinking LED_IDLE MCU is is sleep mode Not used Thus if the blue LED is statically on, NuttX has successfully booted and is, apparently, running normmally. If the red is flashing at approximately 2Hz, then a fatal error has been detected and the system has halted. Serial Consoles =============== USART1 ------ By default USART1 is used as the NuttX serial console in all configurations (unless otherwise noted). USART1 is buffered with an RS-232 Transceiver (Analog Devices ADM3312EARU) and connected to the DB-9 male socket (J8). USART1 Connector J8 ------------------------------- SAMA5 FUNCTION NUTTX GPIO PIO NAME CONFIGURATION ---- ---------- --------------- PB27 RTS1 GPIO_USART1_RTS PB29 TXD1 GPIO_USART1_TXD PB28 RXD1 GPIO_USART1_RXD PB26 CTS1 GPIO_USART1_CTS NOTE: Debug TX and RX pins also go the the ADM3312EARU, but I am uncertain of the functionality. ------------------------------- SAMA5 FUNCTION NUTTX GPIO PIO NAME CONFIGURATION ---- ---------- --------------- PB31 DTXD GPIO_DBGU_DTXD PB30 DRXD GPIO_DBGU_DRXD Hardware UART via CDC --------------------- "J-Link-OB-ATSAM3U4C comes with an additional hardware UART that is accessible from a host via CDC which allows terminal communication with the target device. This feature is enabled only if a certain port (CDC disabled, PA25, pin 24 on J-Link-OB-ATSAM3U4C) is NOT connected to ground (open). - Jumper JP16 not fitted: CDC is enabled - Jumper JP16 fitted : CDC is disabled" SAMA5D3x-EK Configuration Options ================================= CONFIG_ARCH - Identifies the arch/ subdirectory. This should be set to: CONFIG_ARCH="arm" CONFIG_ARCH_family - For use in C code: CONFIG_ARCH_ARM=y CONFIG_ARCH_architecture - For use in C code: CONFIG_ARCH_CORTEXA5=y CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory CONFIG_ARCH_CHIP="sama5" CONFIG_ARCH_CHIP_name - For use in C code to identify the exact chip: CONFIG_ARCH_CHIP_SAMA5=y and one of: CONFIG_ARCH_CHIP_ATSAMA5D31=y CONFIG_ARCH_CHIP_ATSAMA5D33=y CONFIG_ARCH_CHIP_ATSAMA5D34=y CONFIG_ARCH_CHIP_ATSAMA5D35=y CONFIG_ARCH_BOARD - Identifies the configs subdirectory and hence, the board that supports the particular chip or SoC. CONFIG_ARCH_BOARD="sama5d3x-ek" (for the SAMA5D3x-EK development board) CONFIG_ARCH_BOARD_name - For use in C code CONFIG_ARCH_BOARD_SAMA5D3X_EK=y CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation of delay loops CONFIG_ENDIAN_BIG - define if big endian (default is little endian) CONFIG_RAM_SIZE - Describes the installed DRAM (SRAM in this case): CONFIG_RAM_SIZE=0x0002000 (128Kb) CONFIG_RAM_START - The physical start address of installed DRAM CONFIG_RAM_START=0x20000000 CONFIG_RAM_VSTART - The virutal start address of installed DRAM CONFIG_RAM_VSTART=0x20000000 CONFIG_ARCH_IRQPRIO - The SAM3UF103Z supports interrupt prioritization CONFIG_ARCH_IRQPRIO=y CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that have LEDs CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt stack. If defined, this symbol is the size of the interrupt stack in bytes. If not defined, the user task stacks will be used during interrupt handling. CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture. CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that cause a 100 second delay during boot-up. This 100 second delay serves no purpose other than it allows you to calibratre CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until the delay actually is 100 seconds. Individual subsystems can be enabled: CONFIG_SAMA5_DBGU - Debug Unit Interrupt CONFIG_SAMA5_PIT - Periodic Interval Timer Interrupt CONFIG_SAMA5_WDT - Watchdog timer Interrupt CONFIG_SAMA5_HSMC - Multi-bit ECC Interrupt CONFIG_SAMA5_SMD - SMD Soft Modem CONFIG_SAMA5_USART0 - USART 0 CONFIG_SAMA5_USART1 - USART 1 CONFIG_SAMA5_USART2 - USART 2 CONFIG_SAMA5_USART3 - USART 3 CONFIG_SAMA5_UART0 - UART 0 CONFIG_SAMA5_UART1 - UART 1 CONFIG_SAMA5_TWI0 - Two-Wire Interface 0 CONFIG_SAMA5_TWI1 - Two-Wire Interface 1 CONFIG_SAMA5_TWI2 - Two-Wire Interface 2 CONFIG_SAMA5_HSMCI0 - High Speed Multimedia Card Interface 0 CONFIG_SAMA5_HSMCI1 - High Speed Multimedia Card Interface 1 CONFIG_SAMA5_HSMCI2 - High Speed Multimedia Card Interface 2 CONFIG_SAMA5_SPI0 - Serial Peripheral Interface 0 CONFIG_SAMA5_SPI1 - Serial Peripheral Interface 1 CONFIG_SAMA5_TC0 - Timer Counter 0 (ch. 0, 1, 2) CONFIG_SAMA5_TC1 - Timer Counter 1 (ch. 3, 4, 5) CONFIG_SAMA5_PWM - Pulse Width Modulation Controller CONFIG_SAMA5_ADC - Touch Screen ADC Controller CONFIG_SAMA5_DMAC0 - DMA Controller 0 CONFIG_SAMA5_DMAC1 - DMA Controller 1 CONFIG_SAMA5_UHPHS - USB Host High Speed CONFIG_SAMA5_UDPHS - USB Device High Speed CONFIG_SAMA5_GMAC - Gigabit Ethernet MAC CONFIG_SAMA5_EMAC - Ethernet MAC CONFIG_SAMA5_LCDC - LCD Controller CONFIG_SAMA5_ISI - Image Sensor Interface CONFIG_SAMA5_SSC0 - Synchronous Serial Controller 0 CONFIG_SAMA5_SSC1 - Synchronous Serial Controller 1 CONFIG_SAMA5_CAN0 - CAN controller 0 CONFIG_SAMA5_CAN1 - CAN controller 1 CONFIG_SAMA5_SHA - Secure Hash Algorithm CONFIG_SAMA5_AES - Advanced Encryption Standard CONFIG_SAMA5_TDES - Triple Data Encryption Standard CONFIG_SAMA5_TRNG - True Random Number Generator CONFIG_SAMA5_ARM - Performance Monitor Unit CONFIG_SAMA5_FUSE - Fuse Controller CONFIG_SAMA5_MPDDRC - MPDDR controller Some subsystems can be configured to operate in different ways. The drivers need to know how to configure the subsystem. CONFIG_PIOA_IRQ - Support PIOA interrupts CONFIG_PIOB_IRQ - Support PIOB interrupts CONFIG_PIOC_IRQ - Support PIOD interrupts CONFIG_PIOD_IRQ - Support PIOD interrupts CONFIG_PIOE_IRQ - Support PIOE interrupts CONFIG_USART0_ISUART - USART0 is configured as a UART CONFIG_USART1_ISUART - USART1 is configured as a UART CONFIG_USART2_ISUART - USART2 is configured as a UART CONFIG_USART3_ISUART - USART3 is configured as a UART ST91SAM4S specific device driver settings CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=0,1,2,3) or UART m (m=4,5) for the console and ttys0 (default is the USART1). CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received. This specific the size of the receive buffer CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before being sent. This specific the size of the transmit buffer CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART. Must be CONFIG_U[S]ARTn_BITS - The number of bits. Must be either 7 or 8. CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity CONFIG_U[S]ARTn_2STOP - Two stop bits Configurations ============== Information Common to All Configurations ---------------------------------------- Each SAM3U-EK configuration is maintained in a sub-directory and can be selected as follow: cd tools ./configure.sh sama5d3x-ek/ cd - . ./setenv.sh Before sourcing the setenv.sh file above, you should examine it and perform edits as necessary so that TOOLCHAIN_BIN is the correct path to the directory than holds your toolchain binaries. And then build NuttX by simply typing the following. At the conclusion of the make, the nuttx binary will reside in an ELF file called, simply, nuttx. make The that is provided above as an argument to the tools/configure.sh must be is one of the following. NOTES: 1. These configurations use the mconf-based configuration tool. To change any of these configurations using that tool, you should: a. Build and install the kconfig-mconf tool. See nuttx/README.txt and misc/tools/ b. Execute 'make menuconfig' in nuttx/ in order to start the reconfiguration process. 2. Unless stated otherwise, all configurations generate console output on UART0 (J3). 3. Unless otherwise stated, the configurations are setup for Linux (or any other POSIX environment like Cygwin under Windows): Build Setup: CONFIG_HOST_LINUX=y : Linux or other POSIX environment 4. All of these configurations use the Code Sourcery for Windows toolchain (unless stated otherwise in the description of the configuration). That toolchain selection can easily be reconfigured using 'make menuconfig'. Here are the relevant current settings: Build Setup: CONFIG_HOST_WINDOS=y : Microsoft Windows CONFIG_WINDOWS_CYGWIN=y : Using Cygwin or other POSIX environment System Type -> Toolchain: CONFIG_ARMV7A_TOOLCHAIN_GNU_EABIW=y : GNU EABI toolchain for windows That same configuration will work with Atmel GCC toolchain. The only change required to use the Atmel GCC toolchain is to change the PATH variable so that those tools are selected instead of the CodeSourcery tools. Try 'which arm-none-eabi-gcc' to make sure that you are selecting the right tool. The setenv.sh file is available for you to use to set the PATH variable. The path in the that file may not, however, be correct for your installation. See also the "NOTE about Windows native toolchains" in the section call "GNU Toolchain Options" above. Configuration sub-directories ----------------------------- hello: This configuration directory, performs the (almost) simplest of all possible examples: examples/hello. This just comes up, says hello on the serial console and terminates. This configuration is of value during bring-up because it is small and can run entirely out of internal SRAM. NOTES: 1. This configuration uses the default USART1 serial console. That is easily changed by reconfiguring to (1) enable a different serial peripheral, and (2) selecting that serial peripheral as the console device. 2. By default, this configuration is set up to build on Windows under either a Cygwin or MSYS environment using a recent, Windows- native, generic ARM EABI GCC toolchain (such as the CodeSourcery toolchain). Both the build environment and the toolchain selection can easily be changed by reconfiguring: CONFIG_HOST_WINDOWS=y : Windows operating system CONFIG_WINDOWS_CYGWIN=y : POSIX environment under windows CONFIG_ARMV7A_TOOLCHAIN_CODESOURCERYW=y : CodeSourcery for Windows 3. This configuration executes out of internal SRAM and can only be loaded via JTAG. CONFIG_SAMA5_BOOT_ISRAM=y : Boot into internal SRAM CONFIG_BOOT_RUNFROMISRAM=y : Run from internal SRAM STATUS: 2013-7-19: This configuration (as do the others) run at 396MHz. The SAMA5D3 can run at 536MHz. I still need to figure out the PLL settings to get that speed. 2013-7-28: This configuration was verified functional. 2013-7-31: Delay loop calibrated. norboot: This is a little program to help debug of code in NOR flash. It does the following: - It enables and configures NOR FLASH, then - Waits for you to break in with GDB. At that point, you can set the PC and begin executing from NOR FLASH under debug control. NOTES: 1. This program derives from the hello configuration. All of the notes there apply to this configuration as well. STATUS: 2013-7-19: This configuration (as do the others) run at 396MHz. The SAMA5D3 can run at 536MHz. I still need to figure out the PLL settings to get that speed. 2013-7-31: Delay loop calibrated. nsh: This configuration directory provide the NuttShell (NSH). NOTES: 1. This configuration uses the default USART1 serial console. That is easily changed by reconfiguring to (1) enable a different serial peripheral, and (2) selecting that serial peripheral as the console device. 2. By default, this configuration is set up to build on Windows under either a Cygwin or MSYS environment using a recent, Windows- native, generic ARM EABI GCC toolchain (such as the CodeSourcery toolchain). Both the build environment and the toolchain selection can easily be changed by reconfiguring: CONFIG_HOST_WINDOWS=y : Windows operating system CONFIG_WINDOWS_CYGWIN=y : POSIX environment under windows CONFIG_ARMV7A_TOOLCHAIN_CODESOURCERYW=y : CodeSourcery for Windows 3. This configuration executes out of CS0 NOR flash and can only be loaded via SAM-BA. These are the relevant configuration options the define the NOR FLASH configuration: CONFIG_SAMA5_BOOT_CS0FLASH=y : Boot from FLASH on CS0 CONFIG_BOOT_RUNFROMFLASH=y : Run in place on FLASH (vs copying to RAM) CONFIG_SAMA5_EBICS0=y : Enable CS0 external memory CONFIG_SAMA5_EBICS0_SIZE=134217728 : Memory size is 128KB CONFIG_SAMA5_EBICS0_NOR=y : Memory type is NOR FLASH CONFIG_FLASH_START=0x10000000 : Physical FLASH start address CONFIG_FLASH_VSTART=0x10000000 : Virtual FLASH start address CONFIG_FLASH_SIZE=134217728 : FLASH size (again) CONFIG_RAM_START=0x00300400 : Data stored after page table CONFIG_RAM_VSTART=0x00300400 CONFIG_RAM_SIZE=114688 : Available size of 128KB - 16KB for page table NOTE: In order to boot in this configuration, you need to close the BMS jumper. 4. This configuration has support for NSH built-in applications enabled. However, no built-in applications are selected in the base configuration. STATUS: 2013-7-19: This configuration (as do the others) run at 396MHz. The SAMA5D3 can run at 536MHz. I still need to figure out the PLL settings to get that speed. 2013-7-31: I have been unable to execute this configuration from NOR FLASH by closing the BMS jumper (J9). As far as I can tell, this jumper does nothing on my board??? I have been using the norboot configuration to start the program in NOR FLASH (see just above). See "Creating and Using NORBOOT" above. 2013-7-31: This NSH configuration appears to be fully functional. 2013-7-31: Using delay loop calibration from the hello configuration. That configuration runs out of internal SRAM and, as a result, this configuration needs to be recalibrated. ostest: This configuration directory, performs a simple OS test using examples/ostest. NOTES: 1. This configuration uses the default USART1 serial console. That is easily changed by reconfiguring to (1) enable a different serial peripheral, and (2) selecting that serial peripheral as the console device. 2. By default, this configuration is set up to build on Windows under either a Cygwin or MSYS environment using a recent, Windows- native, generic ARM EABI GCC toolchain (such as the CodeSourcery toolchain). Both the build environment and the toolchain selection can easily be changed by reconfiguring: CONFIG_HOST_WINDOWS=y : Windows operating system CONFIG_WINDOWS_CYGWIN=y : POSIX environment under windows CONFIG_ARMV7A_TOOLCHAIN_CODESOURCERYW=y : CodeSourcery for Windows 3. This configuration executes out of CS0 NOR flash and can only be loaded via SAM-BA. These are the relevant configuration options the define the NOR FLASH configuration: CONFIG_SAMA5_BOOT_CS0FLASH=y : Boot from FLASH on CS0 CONFIG_BOOT_RUNFROMFLASH=y : Run in place on FLASH (vs copying to RAM) CONFIG_SAMA5_EBICS0=y : Enable CS0 external memory CONFIG_SAMA5_EBICS0_SIZE=134217728 : Memory size is 128KB CONFIG_SAMA5_EBICS0_NOR=y : Memory type is NOR FLASH CONFIG_FLASH_START=0x10000000 : Physical FLASH start address CONFIG_FLASH_VSTART=0x10000000 : Virtual FLASH start address CONFIG_FLASH_SIZE=134217728 : FLASH size (again) CONFIG_RAM_START=0x00300400 : Data stored after page table CONFIG_RAM_VSTART=0x00300400 CONFIG_RAM_SIZE=114688 : Available size of 128KB - 16KB for page table NOTE: In order to boot in this configuration, you need to close the BMS jumper. STATUS: 2013-7-19: This configuration (as do the others) run at 396MHz. The SAMA5D3 can run at 536MHz. I still need to figure out the PLL settings to get that speed. 2013-7-30: I have been unable to execute this configuration from NOR FLASH by closing the BMS jumper (J9). As far as I can tell, this jumper does nothing on my board??? I have been using the norboot configuration to start the program in NOR FLASH (see just above). See "Creating and Using NORBOOT" above. 2013-7-31: The OS test configuration is basically functional, but takes a very long time in the round-robin scheduler test computing prime numbers. This test is supposed to be slow -- like several seconds -- but not many minutes. No idea why yet. The best guess would be an excessive number of context switches. 2013-7-31: Using delay loop calibration from the hello configuration. That configuration runs out of internal SRAM and, as a result, this configuration needs to be recalibrated.