/**************************************************************************** * drivers/wireless/nrf24l01/nrf24l01.c * * Copyright (C) 2013 Laurent Latil. All rights reserved. * Authors: Laurent Latil * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /* Features: * - Fixed length and dynamically sized payloads (1 - 32 bytes) * - Management of the 6 receiver pipes * - Configuration of each pipe: address, packet length, auto-acknowledge, etc. * - Use a FIFO buffer to store the received packets * * Todo: * - Add support for payloads in ACK packets (?) * - Add compatibility with nRF24L01 (not +) hardware (?) * */ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_WL_NRF24L01_RXSUPPORT # include #endif #include #include "nrf24l01.h" /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #ifndef CONFIG_WL_NRF24L01_DFLT_ADDR_WIDTH # define CONFIG_WL_NRF24L01_DFLT_ADDR_WIDTH 5 #endif #ifndef CONFIG_WL_NRF24L01_RXFIFO_LEN # define CONFIG_WL_NRF24L01_RXFIFO_LEN 128 #endif #ifdef CONFIG_WL_NRF24L01_CHECK_PARAMS # define CHECK_ARGS(cond) do { if (!(cond)) return -EINVAL; } while (0) #else # define CHECK_ARGS(cond) #endif /* Default SPI bus frequency (in Hz) */ #define NRF24L01_SPIFREQ 9000000 /* Can go up to 10 Mbs according to datasheet */ /* power-down -> standby transition timing (in us). Note: this value is probably larger than required. */ #define NRF24L01_TPD2STBY_DELAY 4500 #define FIFO_PKTLEN_MASK 0x1F /* 5 ls bits used to store packet length */ #define FIFO_PKTLEN_SHIFT 0 #define FIFO_PIPENO_MASK 0xE0 /* 3 ms bits used to store pipe # */ #define FIFO_PIPENO_SHIFT 4 #define FIFO_PKTLEN(dev) (((dev->rx_fifo[dev->nxt_read] & FIFO_PKTLEN_MASK) >> FIFO_PKTLEN_SHIFT) + 1) #define FIFO_PIPENO(dev) (((dev->rx_fifo[dev->nxt_read] & FIFO_PIPENO_MASK) >> FIFO_PIPENO_SHIFT)) #define FIFO_HEADER(pktlen,pipeno) ((pktlen - 1) | (pipeno << FIFO_PIPENO_SHIFT)) #define DEV_NAME "/dev/nrf24l01" /**************************************************************************** * Private Data Types ****************************************************************************/ typedef enum { MODE_READ, MODE_WRITE } nrf24l01_access_mode_t; #define FL_AA_ENABLED (1 << 0) struct nrf24l01_dev_s { FAR struct spi_dev_s *spi; /* Reference to SPI bus device */ FAR struct nrf24l01_config_s *config; /* Board specific GPIO functions */ nrf24l01_state_t state; /* Current state of the nRF24L01 */ uint8_t en_aa; /* Cache EN_AA register value */ uint8_t en_pipes; /* Cache EN_RXADDR register value */ bool ce_enabled; /* Cache the value of CE pin */ uint8_t lastxmitcount; /* Retransmit count of the last succeeded AA transmission */ uint8_t addrlen; /* Address width (3-5) */ uint8_t pipedatalen[NRF24L01_PIPE_COUNT]; uint8_t pipe0addr[NRF24L01_MAX_ADDR_LEN]; /* Configured address on pipe 0 */ uint8_t last_recvpipeno; sem_t sem_tx; #ifdef CONFIG_WL_NRF24L01_RXSUPPORT uint8_t *rx_fifo; /* Circular RX buffer. [pipe# / pkt_len] [packet data...] */ uint16_t fifo_len; /* Number of bytes stored in fifo */ uint16_t nxt_read; /* Next read index */ uint16_t nxt_write; /* Next write index */ sem_t sem_fifo; /* Protect access to rx fifo */ sem_t sem_rx; /* Wait for availability of received data */ struct work_s irq_work; /* Interrupt handling "bottom half" */ #endif uint8_t nopens; /* Number of times the device has been opened */ sem_t devsem; /* Ensures exclusive access to this structure */ #ifndef CONFIG_DISABLE_POLL FAR struct pollfd *pfd; /* Polled file descr (or NULL if any) */ #endif }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ /* Low-level SPI helpers */ static inline void nrf24l01_configspi(FAR struct spi_dev_s *spi); static void nrf24l01_lock(FAR struct spi_dev_s *spi); static void nrf24l01_unlock(FAR struct spi_dev_s *spi); static uint8_t nrf24l01_access(FAR struct nrf24l01_dev_s *dev, nrf24l01_access_mode_t mode, uint8_t cmd, uint8_t *buf, int length); static uint8_t nrf24l01_flush_rx(FAR struct nrf24l01_dev_s *dev); static uint8_t nrf24l01_flush_tx(FAR struct nrf24l01_dev_s *dev); /* Read register from nrf24 */ static uint8_t nrf24l01_readreg(FAR struct nrf24l01_dev_s *dev, uint8_t reg, uint8_t *value, int len); /* Read single byte value from a register of nrf24 */ static uint8_t nrf24l01_readregbyte(FAR struct nrf24l01_dev_s *dev, uint8_t reg); static void nrf24l01_writeregbyte(FAR struct nrf24l01_dev_s *dev, uint8_t reg, uint8_t value); static uint8_t nrf24l01_setregbit(FAR struct nrf24l01_dev_s *dev, uint8_t reg, uint8_t value, bool set); static void nrf24l01_tostate(FAR struct nrf24l01_dev_s *dev, nrf24l01_state_t state); static int nrf24l01_irqhandler(FAR int irq, FAR void *context); static inline int nrf24l01_attachirq(FAR struct nrf24l01_dev_s *dev, xcpt_t isr); static int dosend(FAR struct nrf24l01_dev_s *dev, FAR const uint8_t *data, size_t datalen); static int nrf24l01_unregister(FAR struct nrf24l01_dev_s *dev); #ifdef CONFIG_WL_NRF24L01_RXSUPPORT void fifoput(struct nrf24l01_dev_s *dev, uint8_t pipeno, uint8_t *buffer, uint8_t buflen); uint8_t fifoget(struct nrf24l01_dev_s *dev, uint8_t *buffer, uint8_t buflen, uint8_t *pipeno); static void nrf24l01_worker(FAR void *arg); #endif /* POSIX API */ static int nrf24l01_open(FAR struct file *filep); static int nrf24l01_close(FAR struct file *filep); static ssize_t nrf24l01_read(FAR struct file *filep, FAR char *buffer, size_t buflen); static ssize_t nrf24l01_write(FAR struct file *filep, FAR const char *buffer, size_t buflen); static int nrf24l01_ioctl(FAR struct file *filep, int cmd, unsigned long arg); static int nrf24l01_poll(FAR struct file *filep, FAR struct pollfd *fds, bool setup); /**************************************************************************** * Private Data ****************************************************************************/ static FAR struct nrf24l01_dev_s *g_nrf24l01dev; static const struct file_operations nrf24l01_fops = { nrf24l01_open, /* open */ nrf24l01_close, /* close */ nrf24l01_read, /* read */ nrf24l01_write, /* write */ NULL, /* seek */ nrf24l01_ioctl, /* ioctl */ #ifndef CONFIG_DISABLE_POLL nrf24l01_poll, /* poll */ #endif #ifndef CONFIG_DISABLE_PSEUDOFS_OPERATIONS NULL /* unlink */ #endif }; /**************************************************************************** * Private Functions ****************************************************************************/ static void nrf24l01_lock(FAR struct spi_dev_s *spi) { /* Lock the SPI bus because there are multiple devices competing for the * SPI bus */ (void)SPI_LOCK(spi, true); /* We have the lock. Now make sure that the SPI bus is configured for the * NRF24L01 (it might have gotten configured for a different device while * unlocked) */ SPI_SELECT(spi, SPIDEV_WIRELESS, true); SPI_SETMODE(spi, SPIDEV_MODE0); SPI_SETBITS(spi, 8); (void)SPI_HWFEATURES(spi, 0); (void)SPI_SETFREQUENCY(spi, NRF24L01_SPIFREQ); SPI_SELECT(spi, SPIDEV_WIRELESS, false); } /**************************************************************************** * Function: nrf24l01_unlock * * Description: * Un-lock the SPI bus after each transfer, possibly losing the current * configuration if we are sharing the SPI bus with other devices. * * Parameters: * spi - Reference to the SPI driver structure * * Returned Value: * None * * Assumptions: * ****************************************************************************/ static void nrf24l01_unlock(FAR struct spi_dev_s *spi) { /* Relinquish the SPI bus. */ (void)SPI_LOCK(spi, false); } /**************************************************************************** * Function: nrf24l01_configspi * * Description: * Configure the SPI for use with the NRF24L01. * * Parameters: * spi - Reference to the SPI driver structure * * Returned Value: * None * * Assumptions: * ****************************************************************************/ static inline void nrf24l01_configspi(FAR struct spi_dev_s *spi) { /* Configure SPI for the NRF24L01 module. */ SPI_SELECT(spi, SPIDEV_WIRELESS, true); /* Useful ? */ SPI_SETMODE(spi, SPIDEV_MODE0); SPI_SETBITS(spi, 8); (void)SPI_HWFEATURES(spi, 0); (void)SPI_SETFREQUENCY(spi, NRF24L01_SPIFREQ); SPI_SELECT(spi, SPIDEV_WIRELESS, false); } static inline void nrf24l01_select(struct nrf24l01_dev_s * dev) { SPI_SELECT(dev->spi, SPIDEV_WIRELESS, true); } static inline void nrf24l01_deselect(struct nrf24l01_dev_s * dev) { SPI_SELECT(dev->spi, SPIDEV_WIRELESS, false); } static uint8_t nrf24l01_access(FAR struct nrf24l01_dev_s *dev, nrf24l01_access_mode_t mode, uint8_t cmd, FAR uint8_t *buf, int length) { uint8_t status; /* Prepare SPI */ nrf24l01_select(dev); /* Transfer */ status = SPI_SEND(dev->spi, cmd); switch (mode) { case MODE_WRITE: if (length > 0) { SPI_SNDBLOCK(dev->spi, buf, length); } break; case MODE_READ: SPI_RECVBLOCK(dev->spi, buf, length); break; } nrf24l01_deselect(dev); return status; } static inline uint8_t nrf24l01_flush_rx(struct nrf24l01_dev_s *dev) { return nrf24l01_access(dev, MODE_WRITE, NRF24L01_FLUSH_RX, NULL, 0); } static inline uint8_t nrf24l01_flush_tx(struct nrf24l01_dev_s *dev) { return nrf24l01_access(dev, MODE_WRITE, NRF24L01_FLUSH_TX, NULL, 0); } /* Read register from nrf24l01 */ static inline uint8_t nrf24l01_readreg(struct nrf24l01_dev_s *dev, uint8_t reg, uint8_t *value, int len) { return nrf24l01_access(dev, MODE_READ, reg | NRF24L01_R_REGISTER, value, len); } /* Read single byte value from a register of nrf24l01 */ static inline uint8_t nrf24l01_readregbyte(struct nrf24l01_dev_s *dev, uint8_t reg) { uint8_t val; nrf24l01_readreg(dev, reg, &val, 1); return val; } /* Write value to a register of nrf24l01 */ static inline int nrf24l01_writereg(FAR struct nrf24l01_dev_s *dev, uint8_t reg, FAR const uint8_t *value, int len) { return nrf24l01_access(dev, MODE_WRITE, reg | NRF24L01_W_REGISTER, (FAR uint8_t *)value, len); } /* Write single byte value to a register of nrf24l01 */ static inline void nrf24l01_writeregbyte(struct nrf24l01_dev_s *dev, uint8_t reg, uint8_t value) { nrf24l01_writereg(dev, reg, &value, 1); } static uint8_t nrf24l01_setregbit(struct nrf24l01_dev_s *dev, uint8_t reg, uint8_t value, bool set) { uint8_t val; nrf24l01_readreg(dev, reg, &val, 1); if (set) { val |= value; } else { val &= ~value; } nrf24l01_writereg(dev, reg, &val, 1); return val; } #ifdef CONFIG_WL_NRF24L01_RXSUPPORT /* RX fifo mgt */ void fifoput(struct nrf24l01_dev_s *dev, uint8_t pipeno, uint8_t *buffer, uint8_t buflen) { sem_wait(&dev->sem_fifo); while (dev->fifo_len + buflen + 1 > CONFIG_WL_NRF24L01_RXFIFO_LEN) { /* TODO: Set fifo overrun flag ! */ int skiplen = FIFO_PKTLEN(dev) + 1; dev->nxt_read = (dev->nxt_read + skiplen) % CONFIG_WL_NRF24L01_RXFIFO_LEN; dev->fifo_len -= skiplen; } dev->rx_fifo[dev->nxt_write] = FIFO_HEADER(buflen, pipeno); dev->nxt_write = (dev->nxt_write + 1) % CONFIG_WL_NRF24L01_RXFIFO_LEN; /* Adjust fifo bytes count */ dev->fifo_len += (buflen + 1); while (buflen--) { dev->rx_fifo[dev->nxt_write] = *(buffer++); dev->nxt_write = (dev->nxt_write + 1) % CONFIG_WL_NRF24L01_RXFIFO_LEN; } sem_post(&dev->sem_fifo); } uint8_t fifoget(struct nrf24l01_dev_s *dev, uint8_t *buffer, uint8_t buflen, uint8_t *pipeno) { uint8_t pktlen; uint8_t i; sem_wait(&dev->sem_fifo); ASSERT(dev->fifo_len > 0); pktlen = FIFO_PKTLEN(dev); if (NULL != pipeno) { *pipeno = FIFO_PIPENO(dev); } dev->nxt_read = (dev->nxt_read + 1) % CONFIG_WL_NRF24L01_RXFIFO_LEN; for (i = 0; i < pktlen && i < buflen; i++) { *(buffer++) = dev->rx_fifo[dev->nxt_read]; dev->nxt_read = (dev->nxt_read + 1) % CONFIG_WL_NRF24L01_RXFIFO_LEN; } if (i < pktlen) { dev->nxt_read = (dev->nxt_read + pktlen - i) % CONFIG_WL_NRF24L01_RXFIFO_LEN; } /* Adjust fifo bytes count */ dev->fifo_len -= (pktlen + 1); sem_post(&dev->sem_fifo); return pktlen; } #endif static int nrf24l01_irqhandler(int irq, FAR void *context) { FAR struct nrf24l01_dev_s *dev = g_nrf24l01dev; wllvdbg("*IRQ*"); #ifdef CONFIG_WL_NRF24L01_RXSUPPORT /* If RX is enabled we delegate the actual work to bottom-half handler */ work_queue(HPWORK, &g_nrf24l01dev->irq_work, nrf24l01_worker, dev, 0); #else /* Otherwise we simply wake up the send function */ sem_post(&dev->sem_tx); /* Wake up the send function */ #endif return OK; } /* Configure IRQ pin (falling edge) */ static inline int nrf24l01_attachirq(FAR struct nrf24l01_dev_s *dev, xcpt_t isr) { return dev->config->irqattach(isr); } static inline bool nrf24l01_chipenable(FAR struct nrf24l01_dev_s *dev, bool enable) { if (dev->ce_enabled != enable) { dev->config->chipenable(enable); dev->ce_enabled = enable; return !enable; } else { return enable; } } #ifdef CONFIG_WL_NRF24L01_RXSUPPORT static void nrf24l01_worker(FAR void *arg) { FAR struct nrf24l01_dev_s *dev = (FAR struct nrf24l01_dev_s *) arg; uint8_t status; uint8_t fifo_status; nrf24l01_lock(dev->spi); status = nrf24l01_readregbyte(dev, NRF24L01_STATUS); if (status & NRF24L01_RX_DR) { /* put CE low */ bool ce = nrf24l01_chipenable(dev, false); wdbg("RX_DR is set!\n"); /* Read and store all received payloads */ do { uint8_t pipeno; uint8_t pktlen; uint8_t buf[NRF24L01_MAX_PAYLOAD_LEN]; /* For each packet: * - Get pipe # * - Get payload length (either static or dynamic) * - Read payload content */ pipeno = (status & NRF24L01_RX_P_NO_MASK) >> NRF24L01_RX_P_NO_SHIFT; pktlen = dev->pipedatalen[pipeno]; if (NRF24L01_DYN_LENGTH == pktlen) { /* If dynamic length payload need to use R_RX_PL_WID command to get actual length */ nrf24l01_access(dev, MODE_READ, NRF24L01_R_RX_PL_WID, &pktlen, 1); } /* Get payload content */ nrf24l01_access(dev, MODE_READ, NRF24L01_R_RX_PAYLOAD, buf, pktlen); fifoput(dev, pipeno, buf, pktlen); sem_post(&dev->sem_rx); /* Wake-up any thread waiting in recv */ status = nrf24l01_readreg(dev, NRF24L01_FIFO_STATUS, &fifo_status, 1); wdbg("FIFO_STATUS=%02x\n", fifo_status); wdbg("STATUS=%02x\n", status); } while (!(fifo_status | NRF24L01_RX_EMPTY)); /* Clear interrupt sources */ nrf24l01_writeregbyte(dev, NRF24L01_STATUS, NRF24L01_RX_DR); /* Restore CE */ nrf24l01_chipenable(dev, ce); #ifndef CONFIG_DISABLE_POLL if (dev->pfd) { dev->pfd->revents |= POLLIN; /* Data available for input */ wvdbg("Wake up polled fd"); sem_post(dev->pfd->sem); } #endif } if (status & (NRF24L01_TX_DS | NRF24L01_MAX_RT)) { /* The actual work is done in the send function */ sem_post(&dev->sem_tx); } if (dev->state == ST_RX) { /* re-enable CE (to go back to RX mode state) */ nrf24l01_chipenable(dev, true); } nrf24l01_unlock(dev->spi); } #endif static void nrf24l01_tostate(struct nrf24l01_dev_s *dev, nrf24l01_state_t state) { nrf24l01_state_t oldstate = dev->state; if (oldstate == state) { return; } if (oldstate == ST_POWER_DOWN) { /* Leaving power down (note: new state cannot be power down here) */ nrf24l01_setregbit(dev, NRF24L01_CONFIG, NRF24L01_PWR_UP, true); usleep(NRF24L01_TPD2STBY_DELAY); } /* Entering new state */ switch (state) { case ST_UNKNOWN: /* Power down the module here... */ case ST_POWER_DOWN: nrf24l01_chipenable(dev, false); nrf24l01_setregbit(dev, NRF24L01_CONFIG, NRF24L01_PWR_UP, false); break; case ST_STANDBY: nrf24l01_chipenable(dev, false); nrf24l01_setregbit(dev, NRF24L01_CONFIG, NRF24L01_PRIM_RX, false); break; #ifdef CONFIG_WL_NRF24L01_RXSUPPORT case ST_RX: nrf24l01_setregbit(dev, NRF24L01_CONFIG, NRF24L01_PRIM_RX, true); nrf24l01_chipenable(dev, true); break; #endif } dev->state = state; } static int dosend(FAR struct nrf24l01_dev_s *dev, FAR const uint8_t *data, size_t datalen) { uint8_t status; uint8_t obsvalue; int result; /* Store the current lifecycle state in order to restore it after transmit done */ nrf24l01_state_t prevstate = dev->state; nrf24l01_tostate(dev, ST_STANDBY); /* Write payload */ nrf24l01_access(dev, MODE_WRITE, NRF24L01_W_TX_PAYLOAD, (FAR uint8_t *)data, datalen); /* Enable CE to start transmission */ nrf24l01_chipenable(dev, true); /* Free the SPI bus during the IRQ wait */ nrf24l01_unlock(dev->spi); /* Wait for IRQ (TX_DS or MAX_RT) */ while (sem_wait(&dev->sem_tx) != 0) { /* Note that we really need to wait here, as the interrupt source * (either TX_DS in case of success, or MAX_RT for failure) needs to be cleared. */ DEBUGASSERT(errno == EINTR); } /* Re-acquire the SPI bus */ nrf24l01_lock(dev->spi); status = nrf24l01_readreg(dev, NRF24L01_OBSERVE_TX, &obsvalue, 1); if (status & NRF24L01_TX_DS) { /* transmit OK */ result = OK; dev->lastxmitcount = (obsvalue & NRF24L01_ARC_CNT_MASK) >> NRF24L01_ARC_CNT_SHIFT; wvdbg("Transmission OK (lastxmitcount=%d)\n", dev->lastxmitcount); } else if (status & NRF24L01_MAX_RT) { wvdbg("MAX_RT!\n", dev->lastxmitcount); result = -ECOMM; dev->lastxmitcount = NRF24L01_XMIT_MAXRT; /* If no ACK packet is received the payload remains in TX fifo. We need to flush it. */ nrf24l01_flush_tx(dev); } else { /* Unexpected... */ wdbg("No TX_DS nor MAX_RT bit set in STATUS reg!\n"); result = -EIO; } /* Clear interrupt sources */ nrf24l01_writeregbyte(dev, NRF24L01_STATUS, NRF24L01_TX_DS | NRF24L01_MAX_RT); /* Restore state */ nrf24l01_tostate(dev, prevstate); return result; } /* POSIX API */ static int nrf24l01_open(FAR struct file *filep) { FAR struct inode *inode; FAR struct nrf24l01_dev_s *dev; int result; wvdbg("Opening nRF24L01 dev\n"); DEBUGASSERT(filep); inode = filep->f_inode; DEBUGASSERT(inode && inode->i_private); dev = (FAR struct nrf24l01_dev_s *)inode->i_private; /* Get exclusive access to the driver data structure */ if (sem_wait(&dev->devsem) < 0) { /* This should only happen if the wait was canceled by an signal */ DEBUGASSERT(errno == EINTR); return -EINTR; } /* Check if device is not already used */ if (dev->nopens > 0) { result = -EBUSY; goto errout; } result = nrf24l01_init(dev); if (!result) { dev->nopens++; } errout: sem_post(&dev->devsem); return result; } static int nrf24l01_close(FAR struct file *filep) { FAR struct inode *inode; FAR struct nrf24l01_dev_s *dev; wvdbg("Closing nRF24L01 dev\n"); DEBUGASSERT(filep); inode = filep->f_inode; DEBUGASSERT(inode && inode->i_private); dev = (FAR struct nrf24l01_dev_s *)inode->i_private; /* Get exclusive access to the driver data structure */ if (sem_wait(&dev->devsem) < 0) { /* This should only happen if the wait was canceled by an signal */ DEBUGASSERT(errno == EINTR); return -EINTR; } nrf24l01_changestate(dev, ST_POWER_DOWN); dev->nopens--; sem_post(&dev->devsem); return OK; } static ssize_t nrf24l01_read(FAR struct file *filep, FAR char *buffer, size_t buflen) { #ifndef CONFIG_WL_NRF24L01_RXSUPPORT return -ENOSYS; #else FAR struct nrf24l01_dev_s *dev; FAR struct inode *inode; int result; DEBUGASSERT(filep); inode = filep->f_inode; DEBUGASSERT(inode && inode->i_private); dev = (FAR struct nrf24l01_dev_s *)inode->i_private; if (sem_wait(&dev->devsem) < 0) { /* This should only happen if the wait was canceled by an signal */ DEBUGASSERT(errno == EINTR); return -EINTR; } result = nrf24l01_recv(dev, (uint8_t *)buffer, buflen, &dev->last_recvpipeno); sem_post(&dev->devsem); return result; #endif } static ssize_t nrf24l01_write(FAR struct file *filep, FAR const char *buffer, size_t buflen) { FAR struct nrf24l01_dev_s *dev; FAR struct inode *inode; int result; DEBUGASSERT(filep); inode = filep->f_inode; DEBUGASSERT(inode && inode->i_private); dev = (FAR struct nrf24l01_dev_s *)inode->i_private; if (sem_wait(&dev->devsem) < 0) { /* This should only happen if the wait was canceled by an signal */ DEBUGASSERT(errno == EINTR); return -EINTR; } result = nrf24l01_send(dev, (const uint8_t *)buffer, buflen); sem_post(&dev->devsem); return result; } static int nrf24l01_ioctl(FAR struct file *filep, int cmd, unsigned long arg) { FAR struct inode *inode; FAR struct nrf24l01_dev_s *dev; int result = OK; wvdbg("cmd: %d arg: %ld\n", cmd, arg); DEBUGASSERT(filep); inode = filep->f_inode; DEBUGASSERT(inode && inode->i_private); dev = (FAR struct nrf24l01_dev_s *)inode->i_private; /* Get exclusive access to the driver data structure */ if (sem_wait(&dev->devsem) < 0) { /* This should only happen if the wait was canceled by an signal */ DEBUGASSERT(errno == EINTR); return -EINTR; } /* Process the IOCTL by command */ switch (cmd) { case WLIOC_SETRADIOFREQ: /* Set radio frequency. Arg: Pointer to uint32_t frequency value */ { FAR uint32_t *ptr = (FAR uint32_t *)((uintptr_t)arg); DEBUGASSERT(ptr != NULL); nrf24l01_setradiofreq(dev, *ptr); } break; case WLIOC_GETRADIOFREQ: /* Get current radio frequency. arg: Pointer to uint32_t frequency value */ { FAR uint32_t *ptr = (FAR uint32_t *)((uintptr_t)arg); DEBUGASSERT(ptr != NULL); *ptr = nrf24l01_getradiofreq(dev); } break; case NRF24L01IOC_SETTXADDR: /* Set current TX addr. arg: Pointer to uint8_t array defining the address */ { FAR const uint8_t *addr = (FAR const uint8_t *)(arg); DEBUGASSERT(addr != NULL); nrf24l01_settxaddr(dev, addr); } break; case NRF24L01IOC_GETTXADDR: /* Get current TX addr. arg: Pointer to uint8_t array defining the address */ { FAR uint8_t *addr = (FAR uint8_t *)(arg); DEBUGASSERT(addr != NULL); nrf24l01_gettxaddr(dev, addr); } break; case WLIOC_SETTXPOWER: /* Set current radio frequency. arg: Pointer to int32_t, output power */ { FAR int32_t *ptr = (FAR int32_t *)(arg); DEBUGASSERT(ptr != NULL); nrf24l01_settxpower(dev, *ptr); } break; case WLIOC_GETTXPOWER: /* Get current radio frequency. arg: Pointer to int32_t, output power */ { FAR int32_t *ptr = (FAR int32_t *)(arg); DEBUGASSERT(ptr != NULL); *ptr = nrf24l01_gettxpower(dev); } break; case NRF24L01IOC_SETRETRCFG: /* Set retransmit params. arg: Pointer to nrf24l01_retrcfg_t */ { FAR nrf24l01_retrcfg_t *ptr = (FAR nrf24l01_retrcfg_t *)(arg); DEBUGASSERT(ptr != NULL); nrf24l01_setretransmit(dev, ptr->delay, ptr->count); } break; case NRF24L01IOC_GETRETRCFG: /* Get retransmit params. arg: Pointer to nrf24l01_retrcfg_t */ result = -ENOSYS; /* TODO */ break; case NRF24L01IOC_SETPIPESCFG: { int i; FAR nrf24l01_pipecfg_t **cfg_array = (FAR nrf24l01_pipecfg_t **)(arg); DEBUGASSERT(cfg_array != NULL); for (i = 0; i < NRF24L01_PIPE_COUNT; i++) { if (cfg_array[i]) { nrf24l01_setpipeconfig(dev, i, cfg_array[i]); } } } break; case NRF24L01IOC_GETPIPESCFG: { int i; FAR nrf24l01_pipecfg_t **cfg_array = (FAR nrf24l01_pipecfg_t **)(arg); DEBUGASSERT(cfg_array != NULL); for (i = 0; i < NRF24L01_PIPE_COUNT; i++) { if (cfg_array[i]) { nrf24l01_getpipeconfig(dev, i, cfg_array[i]); } } } break; case NRF24L01IOC_SETPIPESENABLED: { int i; uint8_t en_pipes; FAR uint8_t *en_pipesp = (FAR uint8_t *)(arg); DEBUGASSERT(en_pipesp != NULL); en_pipes = *en_pipesp; for (i = 0; i < NRF24L01_PIPE_COUNT; i++) { if ((dev->en_pipes & (1 << i)) != (en_pipes & (1 << i))) { nrf24l01_enablepipe(dev, i, en_pipes & (1 << i)); } } } break; case NRF24L01IOC_GETPIPESENABLED: { FAR uint8_t *en_pipesp = (FAR uint8_t *)(arg); DEBUGASSERT(en_pipesp != NULL); *en_pipesp = dev->en_pipes; break; } case NRF24L01IOC_SETDATARATE: { FAR nrf24l01_datarate_t *drp = (FAR nrf24l01_datarate_t *)(arg); DEBUGASSERT(drp != NULL); nrf24l01_setdatarate(dev, *drp); break; } case NRF24L01IOC_GETDATARATE: result = -ENOSYS; /* TODO */ break; case NRF24L01IOC_SETADDRWIDTH: { FAR uint32_t *widthp = (FAR uint32_t *)(arg); DEBUGASSERT(widthp != NULL); nrf24l01_setaddrwidth(dev, *widthp); break; } case NRF24L01IOC_GETADDRWIDTH: { FAR int *widthp = (FAR int *)(arg); DEBUGASSERT(widthp != NULL); *widthp = (int)dev->addrlen; break; } case NRF24L01IOC_SETSTATE: { FAR nrf24l01_state_t *statep = (FAR nrf24l01_state_t *)(arg); DEBUGASSERT(statep != NULL); nrf24l01_changestate(dev, *statep); break; } case NRF24L01IOC_GETSTATE: { FAR nrf24l01_state_t *statep = (FAR nrf24l01_state_t *)(arg); DEBUGASSERT(statep != NULL); *statep = dev->state; break; } case NRF24L01IOC_GETLASTXMITCOUNT: { FAR uint32_t *xmitcntp = (FAR uint32_t *)(arg); DEBUGASSERT(xmitcntp != NULL); *xmitcntp = dev->lastxmitcount; break; } case NRF24L01IOC_GETLASTPIPENO: { FAR uint32_t *lastpipep = (FAR uint32_t *)(arg); DEBUGASSERT(lastpipep != NULL); *lastpipep = dev->last_recvpipeno; break; } default: result = -ENOTTY; break; } sem_post(&dev->devsem); return result; } #ifndef CONFIG_DISABLE_POLL static int nrf24l01_poll(FAR struct file *filep, FAR struct pollfd *fds, bool setup) { #ifndef CONFIG_WL_NRF24L01_RXSUPPORT /* Polling is currently implemented for data input only */ return -ENOSYS; #else FAR struct inode *inode; FAR struct nrf24l01_dev_s *dev; int result = OK; wvdbg("setup: %d\n", (int)setup); DEBUGASSERT(filep && fds); inode = filep->f_inode; DEBUGASSERT(inode && inode->i_private); dev = (FAR struct nrf24l01_dev_s *)inode->i_private; /* Exclusive access */ if (sem_wait(&dev->devsem) < 0) { /* This should only happen if the wait was canceled by an signal */ DEBUGASSERT(errno == EINTR); return -EINTR; } /* Are we setting up the poll? Or tearing it down? */ if (setup) { /* Ignore waits that do not include POLLIN */ if ((fds->events & POLLIN) == 0) { result = -EDEADLK; goto errout; } /* Check if we can accept this poll. * For now, only one thread can poll the device at any time (shorter / simpler code) */ if (dev->pfd) { result = -EBUSY; goto errout; } dev->pfd = fds; } else /* Tear it down */ { dev->pfd = NULL; } errout: sem_post(&dev->devsem); return result; #endif } #endif static int nrf24l01_unregister(FAR struct nrf24l01_dev_s *dev) { CHECK_ARGS(dev); /* Release IRQ */ nrf24l01_attachirq(dev, NULL); g_nrf24l01dev = NULL; /* Free memory */ #ifdef CONFIG_WL_NRF24L01_RXSUPPORT kmm_free(dev->rx_fifo); #endif kmm_free(dev); return OK; } /**************************************************************************** * Public Functions ****************************************************************************/ int nrf24l01_register(FAR struct spi_dev_s *spi, FAR struct nrf24l01_config_s *cfg) { FAR struct nrf24l01_dev_s *dev; int result = OK; #ifdef CONFIG_WL_NRF24L01_RXSUPPORT uint8_t *rx_fifo; #endif ASSERT((spi != NULL) & (cfg != NULL)); if ((dev = kmm_malloc(sizeof(struct nrf24l01_dev_s))) == NULL) { return -ENOMEM; } dev->spi = spi; dev->config = cfg; dev->state = ST_UNKNOWN; dev->en_aa = 0; dev->ce_enabled = false; sem_init(&(dev->devsem), 0, 1); dev->nopens = 0; #ifndef CONFIG_DISABLE_POLL dev->pfd = NULL; #endif sem_init(&(dev->sem_tx), 0, 0); #ifdef CONFIG_WL_NRF24L01_RXSUPPORT if ((rx_fifo = kmm_malloc(CONFIG_WL_NRF24L01_RXFIFO_LEN)) == NULL) { kmm_free(dev); return -ENOMEM; } dev->rx_fifo = rx_fifo; dev->nxt_read = 0; dev->nxt_write = 0; dev->fifo_len = 0; sem_init(&(dev->sem_fifo), 0, 1); sem_init(&(dev->sem_rx), 0, 0); #endif /* Set the global reference */ g_nrf24l01dev = dev; /* Configure IRQ pin (falling edge) */ nrf24l01_attachirq(dev, nrf24l01_irqhandler); /* Register the device as an input device */ ivdbg("Registering " DEV_NAME "\n"); result = register_driver(DEV_NAME, &nrf24l01_fops, 0666, dev); if (result < 0) { wdbg("register_driver() failed: %d\n", result); nrf24l01_unregister(dev); } return result; } FAR struct nrf24l01_dev_s * nrf24l01_getinstance(void) { return g_nrf24l01dev; } /* (re)set the device in a default initial state */ int nrf24l01_init(FAR struct nrf24l01_dev_s *dev) { int result = OK; uint8_t features; CHECK_ARGS(dev); nrf24l01_lock(dev->spi); /* Configure the SPI parameters before communicating */ nrf24l01_configspi(dev->spi); /* Enable features. */ nrf24l01_writeregbyte(dev, NRF24L01_FEATURE, NRF24L01_EN_DPL); features = nrf24l01_readregbyte(dev, NRF24L01_FEATURE); if (0 == features) { /* The ACTIVATE instruction is not documented in the nRF24L01+ docs. * However it is referenced / described by many sources on Internet, * * Is it for nRF24L01 (not +) hardware ? */ uint8_t v = 0x73; nrf24l01_access(dev, MODE_WRITE, NRF24L01_ACTIVATE, &v, 1); features = nrf24l01_readregbyte(dev, NRF24L01_FEATURE); if (0 == features) { /* If FEATURES reg is still unset here, consider there is no actual hardware */ result = -ENODEV; goto out; } } /* Set initial state */ nrf24l01_tostate(dev, ST_POWER_DOWN); /* Disable all pipes */ dev->en_pipes = 0; nrf24l01_writeregbyte(dev, NRF24L01_EN_RXADDR, 0); /* Set addr width to default */ dev->addrlen = CONFIG_WL_NRF24L01_DFLT_ADDR_WIDTH; nrf24l01_writeregbyte(dev, NRF24L01_SETUP_AW, CONFIG_WL_NRF24L01_DFLT_ADDR_WIDTH - 2); /* Get pipe #0 addr */ nrf24l01_readreg(dev, NRF24L01_RX_ADDR_P0, dev->pipe0addr, dev->addrlen); dev->en_aa = nrf24l01_readregbyte(dev, NRF24L01_EN_AA); /* Flush HW fifo */ nrf24l01_flush_rx(dev); nrf24l01_flush_tx(dev); /* Clear interrupt sources (useful ?) */ nrf24l01_writeregbyte(dev, NRF24L01_STATUS, NRF24L01_RX_DR | NRF24L01_TX_DS | NRF24L01_MAX_RT); out: nrf24l01_unlock(dev->spi); return result; } int nrf24l01_setpipeconfig(FAR struct nrf24l01_dev_s *dev, unsigned int pipeno, FAR const nrf24l01_pipecfg_t *pipecfg) { bool dynlength; bool en_aa; CHECK_ARGS(dev && pipecfg && pipeno < NRF24L01_PIPE_COUNT); dynlength = (pipecfg->payload_length == NRF24L01_DYN_LENGTH); /* Need to enable AA to enable dynamic length payload */ en_aa = dynlength || pipecfg->en_aa; nrf24l01_lock(dev->spi); /* Set addr */ int addrlen = (pipeno <= 1) ? dev->addrlen : 1; /* Pipe 0 & 1 are the only ones to have a full length address */ nrf24l01_writereg(dev, NRF24L01_RX_ADDR_P0 + pipeno, pipecfg->rx_addr, addrlen); /* Auto ack */ if (en_aa) { dev->en_aa |= 1 << pipeno; } else { dev->en_aa &= ~(1 << pipeno); } nrf24l01_setregbit(dev, NRF24L01_EN_AA, 1 << pipeno, en_aa); /* Payload config */ nrf24l01_setregbit(dev, NRF24L01_DYNPD, 1 << pipeno, dynlength); if (!dynlength) { nrf24l01_writeregbyte(dev, NRF24L01_RX_PW_P0 + pipeno, pipecfg->payload_length); } nrf24l01_unlock(dev->spi); dev->pipedatalen[pipeno] = pipecfg->payload_length; return OK; } int nrf24l01_getpipeconfig(FAR struct nrf24l01_dev_s *dev, unsigned int pipeno, FAR nrf24l01_pipecfg_t *pipecfg) { bool dynlength; CHECK_ARGS(dev && pipecfg && pipeno < NRF24L01_PIPE_COUNT); nrf24l01_lock(dev->spi); /* Get pipe address */ int addrlen = (pipeno <= 1) ? dev->addrlen : 1; /* Pipe 0 & 1 are the only ones to have a full length address */ nrf24l01_readreg(dev, NRF24L01_RX_ADDR_P0 + pipeno, pipecfg->rx_addr, addrlen); /* Auto ack */ pipecfg->en_aa = ((nrf24l01_readregbyte(dev, NRF24L01_EN_AA) & (1 << pipeno)) != 0); /* Payload config */ dynlength = ((nrf24l01_readregbyte(dev, NRF24L01_DYNPD) & (1 << pipeno)) != 0); if (dynlength) { pipecfg->payload_length = NRF24L01_DYN_LENGTH; } else { pipecfg->payload_length = nrf24l01_readregbyte(dev, NRF24L01_RX_PW_P0 + pipeno); } nrf24l01_unlock(dev->spi); return OK; } int nrf24l01_enablepipe(FAR struct nrf24l01_dev_s *dev, unsigned int pipeno, bool enable) { CHECK_ARGS(dev && pipeno < NRF24L01_PIPE_COUNT); uint8_t rxaddrval; uint8_t pipemask = 1 << pipeno; nrf24l01_lock(dev->spi); /* Enable pipe on nRF24L01 */ rxaddrval = nrf24l01_readregbyte(dev, NRF24L01_EN_RXADDR); if (enable) { rxaddrval |= pipemask; } else { rxaddrval &= ~pipemask; } nrf24l01_writeregbyte(dev, NRF24L01_EN_RXADDR, rxaddrval); nrf24l01_unlock(dev->spi); /* Update cached value */ dev->en_pipes = rxaddrval; return OK; } int nrf24l01_settxaddr(FAR struct nrf24l01_dev_s *dev, FAR const uint8_t *txaddr) { CHECK_ARGS(dev && txaddr); nrf24l01_lock(dev->spi); nrf24l01_writereg(dev, NRF24L01_TX_ADDR, txaddr, dev->addrlen); nrf24l01_unlock(dev->spi); return OK; } int nrf24l01_gettxaddr(FAR struct nrf24l01_dev_s *dev, FAR uint8_t *txaddr) { CHECK_ARGS(dev && txaddr); nrf24l01_lock(dev->spi); nrf24l01_readreg(dev, NRF24L01_TX_ADDR, txaddr, dev->addrlen); nrf24l01_unlock(dev->spi); return OK; } int nrf24l01_setretransmit(FAR struct nrf24l01_dev_s *dev, nrf24l01_retransmit_delay_t retrdelay, uint8_t retrcount) { uint8_t val; CHECK_ARGS(dev && retrcount <= NRF24L01_MAX_XMIT_RETR); val = (retrdelay << NRF24L01_ARD_SHIFT) | (retrcount << NRF24L01_ARC_SHIFT); nrf24l01_lock(dev->spi); nrf24l01_writeregbyte(dev, NRF24L01_SETUP_RETR, val); nrf24l01_unlock(dev->spi); return OK; } int nrf24l01_settxpower(FAR struct nrf24l01_dev_s *dev, int outpower) { uint8_t value; uint8_t hwpow; /** RF_PWR value <-> Output power in dBm * * '00' – -18dBm * '01' – -12dBm * '10' – -6dBm * '11' – 0dBm */ switch (outpower) { case 0: hwpow = 3 << NRF24L01_RF_PWR_SHIFT; break; case -6: hwpow = 2 << NRF24L01_RF_PWR_SHIFT; break; case -12: hwpow = 1 << NRF24L01_RF_PWR_SHIFT; break; case -18: hwpow = 0; break; default: return -EINVAL; } nrf24l01_lock(dev->spi); value = nrf24l01_readregbyte(dev, NRF24L01_RF_SETUP); value &= ~(NRF24L01_RF_PWR_MASK); value |= hwpow; nrf24l01_writeregbyte(dev, NRF24L01_RF_SETUP, value); nrf24l01_unlock(dev->spi); return OK; } int nrf24l01_gettxpower(FAR struct nrf24l01_dev_s *dev) { uint8_t value; int powers[] = { -18, -12, -6, 0}; nrf24l01_lock(dev->spi); value = nrf24l01_readregbyte(dev, NRF24L01_RF_SETUP); nrf24l01_unlock(dev->spi); value = (value & NRF24L01_RF_PWR_MASK) >> NRF24L01_RF_PWR_SHIFT; return powers[value]; } int nrf24l01_setdatarate(FAR struct nrf24l01_dev_s *dev, nrf24l01_datarate_t datarate) { uint8_t value; nrf24l01_lock(dev->spi); value = nrf24l01_readregbyte(dev, NRF24L01_RF_SETUP); value &= ~(NRF24L01_RF_DR_HIGH | NRF24L01_RF_DR_LOW); switch (datarate) { case RATE_1Mbps: break; case RATE_2Mbps: value |= NRF24L01_RF_DR_HIGH; break; case RATE_250kbps: value |= NRF24L01_RF_DR_LOW; break; } nrf24l01_writeregbyte(dev, NRF24L01_RF_SETUP, value); nrf24l01_unlock(dev->spi); return OK; } int nrf24l01_setradiofreq(FAR struct nrf24l01_dev_s *dev, uint32_t freq) { uint8_t value; CHECK_ARGS(dev && freq >= NRF24L01_MIN_FREQ && freq <= NRF24L01_MAX_FREQ); value = freq - NRF24L01_MIN_FREQ; nrf24l01_lock(dev->spi); nrf24l01_writeregbyte(dev, NRF24L01_RF_CH, value); nrf24l01_unlock(dev->spi); return OK; } uint32_t nrf24l01_getradiofreq(FAR struct nrf24l01_dev_s *dev) { int rffreq; CHECK_ARGS(dev); nrf24l01_lock(dev->spi); rffreq = (int)nrf24l01_readregbyte(dev, NRF24L01_RF_CH); nrf24l01_unlock(dev->spi); return rffreq + NRF24L01_MIN_FREQ; } int nrf24l01_setaddrwidth(FAR struct nrf24l01_dev_s *dev, uint32_t width) { CHECK_ARGS(dev && width <= NRF24L01_MAX_ADDR_LEN && width >= NRF24L01_MIN_ADDR_LEN); nrf24l01_lock(dev->spi); nrf24l01_writeregbyte(dev, NRF24L01_SETUP_AW, width-2); nrf24l01_unlock(dev->spi); dev->addrlen = width; return OK; } int nrf24l01_changestate(FAR struct nrf24l01_dev_s *dev, nrf24l01_state_t state) { nrf24l01_lock(dev->spi); nrf24l01_tostate(dev, state); nrf24l01_unlock(dev->spi); return OK; } int nrf24l01_send(FAR struct nrf24l01_dev_s *dev, FAR const uint8_t *data, size_t datalen) { int result; CHECK_ARGS(dev && data && datalen <= NRF24L01_MAX_PAYLOAD_LEN); nrf24l01_lock(dev->spi); result = dosend(dev, data, datalen); nrf24l01_unlock(dev->spi); return result; } int nrf24l01_sendto(FAR struct nrf24l01_dev_s *dev, FAR const uint8_t *data, size_t datalen, FAR const uint8_t *destaddr) { bool pipeaddrchg = false; int result; nrf24l01_lock(dev->spi); /* If AA is enabled (pipe 0 is active and its AA flag is set) and the dest * addr is not the current pipe 0 addr we need to change pipe 0 addr in * order to receive the ACK packet. */ if ((dev->en_aa & 1) && (memcmp(destaddr, dev->pipe0addr, dev->addrlen))) { wdbg("Change pipe #0 addr to dest addr\n"); nrf24l01_writereg(dev, NRF24L01_RX_ADDR_P0, destaddr, NRF24L01_MAX_ADDR_LEN); pipeaddrchg = true; } result = dosend(dev, data, datalen); if (pipeaddrchg) { /* Restore pipe #0 addr */ nrf24l01_writereg(dev, NRF24L01_RX_ADDR_P0, dev->pipe0addr, NRF24L01_MAX_ADDR_LEN); wdbg("Pipe #0 default addr restored\n"); } nrf24l01_unlock(dev->spi); return result; } int nrf24l01_lastxmitcount(FAR struct nrf24l01_dev_s *dev) { return dev->lastxmitcount; } #ifdef CONFIG_WL_NRF24L01_RXSUPPORT ssize_t nrf24l01_recv(struct nrf24l01_dev_s *dev, uint8_t *buffer, size_t buflen, uint8_t *recvpipe) { if (sem_wait(&dev->sem_rx) != 0) { /* This should only happen if the wait was canceled by an signal */ DEBUGASSERT(errno == EINTR); return -EINTR; } return fifoget(dev, buffer, buflen, recvpipe); } #endif #ifdef NRF24L01_DEBUG static void binarycvt(char *deststr, const uint8_t *srcbin, size_t srclen) { int i = 0; while (i < srclen) { sprintf(deststr + i*2, "%02x", srcbin[i]); ++i; } *(deststr + i*2) = '\0'; } void nrf24l01_dumpregs(struct nrf24l01_dev_s *dev) { uint8_t addr[NRF24L01_MAX_ADDR_LEN]; char addrstr[NRF24L01_MAX_ADDR_LEN * 2 +1]; syslog(LOG_INFO, "CONFIG: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_CONFIG)); syslog(LOG_INFO, "EN_AA: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_EN_AA)); syslog(LOG_INFO, "EN_RXADDR: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_EN_RXADDR)); syslog(LOG_INFO, "SETUP_AW: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_SETUP_AW)); syslog(LOG_INFO, "SETUP_RETR:%02x\n", nrf24l01_readregbyte(dev, NRF24L01_SETUP_RETR)); syslog(LOG_INFO, "RF_CH: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_RF_CH)); syslog(LOG_INFO, "RF_SETUP: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_RF_SETUP)); syslog(LOG_INFO, "STATUS: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_STATUS)); syslog(LOG_INFO, "OBS_TX: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_OBSERVE_TX)); nrf24l01_readreg(dev, NRF24L01_TX_ADDR, addr, dev->addrlen); binarycvt(addrstr, addr, dev->addrlen); syslog(LOG_INFO, "TX_ADDR: %s\n", addrstr); syslog(LOG_INFO, "CD: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_CD)); syslog(LOG_INFO, "RX_PW_P0: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_RX_PW_P0)); syslog(LOG_INFO, "RX_PW_P1: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_RX_PW_P1)); syslog(LOG_INFO, "RX_PW_P2: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_RX_PW_P2)); syslog(LOG_INFO, "RX_PW_P3: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_RX_PW_P3)); syslog(LOG_INFO, "RX_PW_P4: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_RX_PW_P4)); syslog(LOG_INFO, "RX_PW_P5: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_RX_PW_P5)); syslog(LOG_INFO, "FIFO_STAT: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_FIFO_STATUS)); syslog(LOG_INFO, "DYNPD: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_DYNPD)); syslog(LOG_INFO, "FEATURE: %02x\n", nrf24l01_readregbyte(dev, NRF24L01_FEATURE)); } #ifdef CONFIG_WL_NRF24L01_RXSUPPORT void nrf24l01_dumprxfifo(struct nrf24l01_dev_s *dev) { syslog(LOG_INFO, "bytes count: %d\n", dev->fifo_len); syslog(LOG_INFO, "next read: %d, next write: %d\n", dev->nxt_read, dev-> nxt_write); } #endif #endif